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Abstract: This study proposes a simulation-optimization framework to support the design of resilient supply chain systems under 

prolonged disruption risks, such as those experienced during a pandemic. A discrete-event simulation model, integrated with the OptQuest 

optimization engine in Arena, is developed to evaluate and optimize key decisions in the supply chain, including inventory control and 

order allocation strategies. The model incorporates multi-sourcing and pre-positioning approaches to improve system robustness. 

Randomized disruption scenarios affecting suppliers and manufacturers are used to assess supply chain performance in terms of total cost 

and customer service level. The results provide actionable insights for systems engineers and decision-makers seeking to balance efficiency 

and resilience in complex supply chain networks under uncertainty.  
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1. Introduction 
 

Outsourcing and lean practices have become common 

strategies in the global supply chain management, enabling 

companies to reduce costs, improve agility, and focus on core 

competencies [1, 2] . However, increasing complexity in 

supply chains also heightens vulnerability to disruptions such 

as natural disasters, regulatory changes, and pandemics [3]. 

The COVID-19 crisis exposed critical weaknesses, e,g., 

halting production due to raw material shortages and causing 

major supply-demand imbalances [4, 5]. 

 

These challenges have emphasized the need for resilient 

supply chains that can withstand and recover from disruptions. 

Simulation offers a valuable tool to model complex networks 

under such conditions, providing insights into system 

behavior, propagation effects, and the impact of various 

resilience strategies. Particularly, order allocation and 

inventory policies must adapt to minimize total expected costs 

while accounting for supply risks, capacity limits, and supplier 

reliability. 

 

This study proposes a simulation-based framework for 

evaluating resilient order allocation and inventory strategies 

under disruption scenarios helping decision-makers maintain 

service levels, minimize costs, and improve recovery while 

supporting the shift toward sustainable and robust supply 

chains. Theoretically, it advances the literature by integrating 

dynamic simulation with supplier allocation and resilience 

measurements, bridging static optimization models and 

simulation studies to explain how adaptive strategies shape 

supply chain robustness under high-magnitude disruptions. 

 

 

 

 

2. Literature Review 
 

a) Resilient Supply Chain Network Design 

The concept of supply chain (SC) resilience is defined as the 

ability of the system to anticipate, absorb, adapt to, and recover 

from disruptive events [6]. A resilient supply chain network 

design seeks to strategically balance operational capabilities 

with exposure to risks. While traditional views emphasized 

network strength, recent perspectives argue that resilience 

emerges from a deliberate trade-off between flexibility, 

redundancy, and vulnerability mitigation [7]. The framework 

proposed by Ivanov and Dolgui remains influential, 

identifying three core resilience capabilities: disruption 

readiness, responsiveness during crisis, and recovery to 

baseline or improved states [8]. 

 

Contemporary models increasingly integrate multi-objective 

optimization to simultaneously address sustainability and 

resilience goals. For example, Klibi et al. [6] proposed a multi-

period mixed-integer linear programming (MILP) framework 

that incorporates environmental, social, and economic 

dimensions alongside operational risk. Their model enhances 

classical design by including scenario-based disruptions and 

region-specific vulnerabilities. 

 

Although such quantitative models offer optimization insights, 

they often struggle to capture dynamic interactions such as 

disruption propagation, adaptive behavior, and network 

feedback loops. To address this, researchers have started 

integrating system dynamics and agent-based modeling with 

traditional MILP to better simulate the evolving behavior of 

SC networks under stress [9]. In parallel, supplier selection, 

which is an essential dimension of resilient SC design, has 

shifted toward hybrid decision-support frameworks. Afrasiabi 

et al. [10] introduced a fuzzy multi-criteria model that 

evaluates both sustainability and disruption-resilience factors. 
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More recently, AI-driven tools such as machine learning and 

metaheuristics have been explored to prioritize suppliers based 

on resilience metrics, such as responsiveness, adaptability, and 

network centrality [11]. 

 

b) Supplier Selection and Order Allocation under 

Uncertainty 

Suppliers are pivotal in enhancing supply chain resilience, 

particularly in turbulent environments. Contemporary supplier 

selection strategies must account for a range of criteria, such 

as quality, responsiveness, risk mitigation capability, 

environmental sustainability, and cost efficiency [10, 11]. 

Recent studies emphasize that supplier resilience extends 

beyond static performance indicators, requiring adaptability, 

flexibility, and continuity planning mechanisms to mitigate the 

impact of disruptions. 

 

Collaborative practices such as joint contingency planning and 

real-time information sharing have been found to significantly 

reduce ripple effects like the bullwhip effect and improve 

recovery speed [12]. Furthermore, dynamic capabilities such 

as the ability to switch to backup suppliers, implement flexible 

contracts, or reconfigure logistics networks are increasingly 

essential under evolving conditions [13]. 

 

In the context of order allocation under uncertainty, supplier 

reliability and capacity constraints must be balanced with cost 

objectives. Recent approaches integrate simulation and 

artificial intelligence to model the effects of supplier 

disruption and evaluate alternative allocation strategies under 

probabilistic scenarios [14]. However, despite growing 

interest in simulation-based planning, many frameworks still 

lack explicit modeling of disruption propagation and inter-

supplier interdependence, which are key to accurate risk 

evaluation. 

 

c) Simulation-Based Resilience Modeling 

Simulation is a powerful approach for analyzing supply chain 

behavior under disruption and testing resilience strategies 

prior to real-world implementation. Unlike static optimization 

models, simulation captures dynamic interactions, cascading 

effects, and time-dependent recovery patterns. It allows 

decision-makers to explore “what-if” scenarios, measure cost 

and service trade-offs, and evaluate both the short- and long-

term impacts of disruption response strategies. While MILP 

models like those proposed by [15] provide optimal static 

solutions, simulation excels at capturing system evolution, 

non-linearity, and behavioral dynamics, making it 

indispensable for resilience testing in volatile environments. 

Recent work by Moosavi and Hosseini [16] demonstrates the 

utility of discrete-event simulation (DES) in evaluating 

recovery strategies in a three-echelon SC affected by 

pandemic-related disruptions. Their model incorporated 

gradual disruption onset and evaluated backup inventory and 

supplier activation strategies, focusing on financial and 

fulfillment metrics. However, their study did not consider 

adaptive order allocation, a key factor in maintaining 

performance during crises. 

 

Building on these foundational efforts, recent research has 

expanded simulation applications to model ripple effects, 

propagation patterns, and inter-supplier dependencies. For 

instance, Zhang et al. [14] integrated agent-based modeling 

with optimization techniques to simulate multi-supplier 

networks and test decentralized decision-making under 

uncertainty. Similarly, Wang et al. [10] introduced a hybrid 

simulation-optimization framework to explore the interplay of 

logistics delays, order allocation, and supplier switching in 

resilient network design. 

 

Simulation also plays a key role in epidemic-aware SC 

modeling. Ivanov [17] laid groundwork for epidemic 

disruption forecasting, and more recent studies have 

emphasized data-driven, AI-supported models for predicting 

SC stress points and autonomously adjusting recovery 

strategies[18]. Such developments enhance decision support 

by incorporating real-time feedback loops and learning 

mechanisms—something traditional mathematical 

programming lacks. 
 

3. Methodology 
 

1) Simulation framework 

This study evaluates the impact of resilience strategies on a 

supply chain under pandemic-related disruptions using the 

framework in Figure 1. A DES model is developed in the 

ARENA software with aims to support redesign decisions by 

analyzing system performance through financial metrics, i.e., 

revenue, profit, cost, and demand fulfillment. Random 

disruptions are introduced to simulate pandemic effects, 

allowing for assessment of system behavior under uncertainty 

and testing of alternative order allocation strategies. 

 

The supply chain model consists of three main components: 

suppliers, a manufacturer, and customers. Customers arrive 

periodically with randomly assigned demand while suppliers 

receive fixed orders from the manufacturer and can accept 

additional quantities if capacity allows. Optimization is 

supported via the OptQuest module within ARENA. The 

objective is to minimize the total expected cost while ensuring 

service continuity. Simulation results will inform the most 

effective resilience strategy under disruption scenarios. 
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Figure 1: Conceptual model 

 

2) Inventory Policy 

A continuous review (s, S) inventory policy is applied at the 

manufacturer node to ensure high service levels. Here, S is the 

fixed order-up-to level, and s is the reorder point. Orders are 

placed when inventory reaches s, but to avoid overlapping 

replenishment, particularly under multi-sourcing, new orders 

are only triggered if at least 70% of previously placed orders 

have been received. This constraint helps manage lead-time 

variability among suppliers. 

 

a) Resilience Strategies 

Two resilience strategies are implemented independently and 

in combination: (1) Multi-sourcing - Engaging multiple 

suppliers to reduce dependence on any single source, thereby 

lowering the risk of supply failure; (2) Pre-positioned 

Inventory - Storing additional raw materials at the supplier’s 

location to be used during emergencies. Though it adds 

moderate holding costs, it provides a buffer during disruptions. 

 

 

 

 

b) Disruption Events 

Disruptions are modeled as high-impact, long-duration events 

that occur randomly at the supplier node. These events reduce 

supplier capacity, increase transportation lead times, order 

processing times, and transportation cost. The simulation does 

not model recovery and each disruption is assumed to last up 

to 360 days, occurring once during the planning horizon. In 

each simulation run, one to two suppliers may be disrupted. 

 

3) Notations and Input Data 

Let i∈I  where I={1,2,3} denote the set of suppliers. Table 1 

lists all notations used in the simulation model. The input data 

is arbitrarily generated based on the model published by 

Moosavi and Hosseini [19] (Table 2-4). 

 

The total cost (TC) of the manufacturer throughout the entire 

period and the customer service level (CSL) are calculated by 

Equation 1, 2.  

 
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ (𝐹𝑂𝑐 + 𝐹𝑇𝑐 + (𝑉𝑂𝑐 + 𝑉𝑇𝑐) ∗ 𝑄𝑖) ∗ 𝑁𝑖  𝐼

𝑖 +  𝑖𝑛𝑣 ∗

𝐻𝑐 ∗ 360 (𝑑𝑎𝑦𝑠)  + ∑ (𝑃𝐼𝑖 ∗ 𝑃𝐼𝐶𝑖)𝐼
𝑖 ∗ 360 (𝑑𝑎𝑦𝑠) (1) 

𝐶𝑆𝐿 =  
(𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑+𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟)

(𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑+𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟+𝐿𝑜𝑠𝑡 𝑠𝑎𝑙𝑒)
  (2) 

 

Table 1: List of notations used in the simulation model 
Deterministic Parameters Stochastic Parameters 

FOi Fix ordering cost Ci Capacity 

FTi Fix transportation cost inv Inventory 

VOi Variable ordering cost OPi Order processing time 

VTi Variable transportation cost Li Leadtime 

PICi Pre-position cost D Demand 

Hc Holding cost Qi Order quantity 

invi On-hand inventory Ni Number of orders 

invm Maximum inventory   

OHt Order handling time Decision variables 

At Assembling time ROP Reorder point 

De Delivery time PIi Pre-position inventory 
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Table 2: Supplier data 
  Undisrupted   Disrupted  

 
Supplier 

1 
Supplier 2 

Supplier 

3 

Supplier 

1 

Supplier 

2 

Supplier 

3 

Ci 

(100%) 
1.2 1.2 1.2 

UNIF 

(0, 0.7) 

UNIF (0, 

0.7) 

UNIF 

(0, 0.7) 

OPi 

(mins) 

NORM 

(20, 2) 

NORM (30, 

2) 

NORM 

(30, 2) 

NORM 

(40, 2) 

NORM 

(40, 2) 

NORM 

(40, 2) 

Li 

(days) 

TRIA 

(2.4, 

2.6, 2.8) 

TRIA 

(2.1, 2.3, 

2.5) 

TRIA 

(2.6, 

2.8, 3.0) 

TRIA 

(2.6, 

4.4, 5.2) 

TRIA 

(2.3, 3.8, 

4.6) 

TRIA 

(2.8, 

4.9, 5.7) 

FOi ($) 128 110 103 128 110 103 

VOi 

($) 
21 22 21 21 22 22 

FTi ($) 1135 1024 985 1250 1260 1323 

VTi ($) 0.06 0.07 0.05 0.06 0.08 0.08 

PICi 

($) 
0.2 0.2 0.2 0.2 0.2 0.2 

 

Table 3: Manufacturer and customer data 
Manufacturer 

OHt (mins) TRIA (15, 30, 60) 

At (mins) NORM (3, 0.3) 

De (days) TRIA (0.5, 1.0, 1.5) 

invi 700 

invm 700 

Hc ($) 0.5 

Customers 

Demand POIS (40) 

Backorder probability 50% 

Arrival time (days) CONST (1) 

 

Table 4: Disruption probability of the supply chain and 

suppliers 
Supply chain Disruption probability 

1 disrupted supplier 100% 

2 disrupted suppliers 50% 

3 disrupted suppliers 0% 

Creation time UNIF (0, 360) 

Suppliers Disruption probability 

Supplier 1 30% 

Supplier 2 40% 

Supplier 3 30% 

 

4. Results and Discussion 
 

1) Model validity 

To validate the model logic, the system was tested under two 

baseline scenarios: undisrupted and disrupted, both without 

the implementation of resilience strategies. The initial setup 

included a reorder point of 400, with all demand allocated to 

Supplier 3. The simulation ran for 360 days with 30 

replications to ensure statistical consistency. 

In the undisrupted scenario, the model achieved a 100% 

service level, demonstrating effective inventory replenishment 

under stable conditions. In contrast, the disrupted scenario 

resulted in a reduced service level of 82.05%, consistent with 

expectations under supply constraints. The total cost in the 

undisrupted case was $419,543.34, higher than the disrupted 

case at $349,865.70, due to lower order quantities resulting 

from supplier capacity limitations, which averaged 70% 

during the disruption period. 

 

Disruptions occurred randomly around day 150, 

approximately halfway through the simulation horizon, with 

timing and capacity losses distributed across suppliers. 

Furthermore, the results indicate that an 18% reduction in 

supplier capacity led to a comparable 18% decline in service 

level, confirming a strong and expected relationship between 

supply availability and customer satisfaction. 

 

These outcomes demonstrate that the model responds logically 

to disruption scenarios and behaves in accordance with 

theoretical expectations, thereby supporting its validity for 

subsequent resilience strategy analysis. 

 

2) Simulation optimization  

The OptQuest module in Arena was employed to identify 

optimal solutions under both the undisrupted and disrupted 

conditions. In the disrupted case, two resilience strategies—

multi-sourcing and pre-positioned inventory—were tested and 

compared. The optimization aimed to identify the best 

combination of reorder point, supplier order allocation, and 

pre-position inventory level that minimizes the total cost while 

maintaining the level of customer service higher than 95%. 

The number of replications in OptQuest is set at 10 

replications. 

 

Under disruption conditions, the optimal strategy identified by 

OptQuest highlights a synergistic approach to supply chain 

resilience. Specifically, the manufacturer should allocate 50% 

of the order quantity to Supplier 1 and 50% to Supplier 2, 

while reinforcing Supplier 1 with 30 units of pre-positioned 

inventory. This dual strategy results in the lowest expected 

cost while preserving a service level exceeding 95%. 

 

Table 5: Comparison between undisrupted and disrupted 

scenario 
 Undisrupted Disrupted 

Average inventory level 375.02 265.82 

Satisfied customer 361 291.63 

Backorder customer 0 4.4 

Unsatisfied customer 0 64.73 

Supplier 3 cost per order 7449 6938.16 

`Number of orders  47.26 43.53 

Capacity of supplier 1 120% 64.25% 

Capacity of supplier 2 120% 76.07% 

Capacity of supplier 3 120% 78.55% 

Average time of occurrence 0 146.92 

Service level 100% 82.05% 

Total cost $ 419,543.34 $ 349,865.70 
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Table 6: Simulation optimization results in different scenarios 

 Undisrupted 
Disrupted – 

multi-sourcing 

Disrupted – 

pre-positioned inventory 

Disrupted – multi-sourcing and pre-

positioned inventory 

Total expected cost $ 405,233.0 $ 420,181.679 $ 398,571.865 $ 414,169.01 

CSL 100% 97.15% 94.12% 97.15% 

ROP 350 200 300 200 

Supplier 1 _ 0.5 1 0.5 

Supplier 2 _ 0.5 _ 0.5 

Supplier 3 1 _ _ _ 

PI1 _ _ 50 30 

PI2 _ _ _ _ 

PI3 _ _ _ _ 

 

These findings align with the literature advocating for 

flexibility-enhancing practices. For instance, Carvalho et al. 

[20] showed that offering alternative transport modes to 

suppliers improved performance under disruption—

functionally equivalent to multi-sourcing in promoting 

adaptive capacity. Similarly, Moosavi and Hosseini [16] found 

that excessive inventory can serve as a buffer, but is often 

outperformed financially by strategic backup sourcing. 

However, unlike previous studies that explored these 

resilience levers independently, the present analysis highlights 

the benefits of a combined strategy, offering a more robust 

response to supply-side uncertainties. 

 

This suggests that resilience does not necessarily require 

overinvestment in any single strategy, but can instead be 

optimized through a balanced portfolio of mitigation actions, 

tailored to specific network structures and risk profiles. 

 

3) Sensitivity analysis 

Sensitivity analysis was conducted to assess the model's 

responsiveness to internal (inventory policy) and external 

(demand fluctuation) factors under disruption conditions. 

Resilience strategies, including multi-sourcing and pre-

positioning, were implemented to evaluate their moderating 

effects. 

 

As shown in Table 7, varying the order quantity revealed that 

increasing order size generally led to lower total costs and 

improved service levels. A 14.29% increase in order quantity 

(from 500 to 600) resulted in a 0.02% reduction in total cost 

and a 1.84% decline in service level. This outcome is 

attributed to a reduction in the total number of orders placed 

annually, which helped mitigate the effects of disruptions. The 

trend suggests that larger, less frequent orders can enhance 

system stability during disruption events. 

 

In contrast, changes in overall demand had a more substantial 

impact (Table 8). Although demand followed a Poisson 

distribution and remained structurally consistent before and 

after disruption, a 12.5% increase in average demand (from 40 

to 45) led to a 7.46% rise in total cost and a 4.09% decrease in 

service level. These findings highlight the critical role of 

demand forecasting and capacity planning in maintaining 

supply chain resilience under uncertainty.

Table 7: Sensitivity analysis of order quantity 
invm Q s1 s2 s3 PI1 PI2 PI3 inv Total cost CSL 

450 250 0.5 0.5 0 30 0 0 154.564 $ 431,875.11 87.54% 

500 300 0.5 0.5 0 30 0 0 180.766 $ 432,430.99 93.20% 

600 400 0.5 0.5 0 30 0 0 204.276 $ 424,705.60 94.75% 

700 500 0.5 0.5 0 30 0 0 230.621 $ 414,169.01 97.15% 

800 600 0.5 0.5 0 30 0 0 251.773 $ 414,106.17 95.36% 

850 650 0.5 0.5 0 30 0 0 272.166 $ 407,019.09 95.36% 

900 700 0.5 0.5 0 30 0 0 290.543 $ 417,561.38 97.15% 

 

Table 8: Sensitivity analysis of demand 
ROP D s1 s2 s3 PI1 PI2 PI3 inv Total cost CSL 

200 30 0.5 0.5 0 30 0 0 259.059 $ 338,051.49 99.16% 

200 40 0.5 0.5 0 30 0 0 230.621 $ 414,169.01 97.15% 

200 45 0.5 0.5 0 30 0 0 209.963 $ 445,060.22 93.18% 

200 50 0.5 0.5 0 30 0 0 195.288 $ 476,497.03 88.20% 

200 55 0.5 0.5 0 30 0 0 200.188 $ 512,218.40 86.83% 

5. Conclusion 
 

This study developed a simulation model that effectively 

captures the dynamics of supply chain disruptions, especially 

the impact of supplier constraints on manufacturer 

performance. It highlights how supplier’s capacity during 

events like COVID-19 can significantly affect inventory levels 

and service quality. The ripple effects of disruption were 
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evident, with customer satisfaction declining in proportion to 

inventory shortages. 

The research extends existing literature by demonstrating the 

effectiveness of combining multi-sourcing with pre-positioned 

inventory. This integrated strategy enhances both resilience 

and cost efficiency under disruption. Diversifying order 

allocations across multiple suppliers reduces vulnerability, 

while strategically placed pre-positioned inventory supports 

continuity during critical periods. The optimized model 

maintained a service level above 95%, and the procurement 

cost difference between disrupted and undisrupted scenarios 

remained minimal—around 2%—underscoring the system’s 

robustness. Finally, the findings offer practical guidance for 

supply chain managers to strategically adjust—such as 

modifying service level targets or selectively investing in 

inventory buffers—can help tailor resilience efforts to 

organizational priorities and cost constraints. 

 

Future work could expand this model to more complex, multi-

product supply chains with diverse suppliers and 

interdependent components, incorporating additional 

performance factors (e.g., delivery cost, resource utilization) 

and examining multi-node disruptions for a more 

comprehensive view of system vulnerabilities and resilience-

building opportunities. 
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