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Abstract: This study proposes a unified theoretical framework that connects planetary spacing laws with the galactic position of host 

stars and the local distribution of dark matter. Drawing upon exoplanet datasets from Kepler, Gaia, and JWST, it modifies classical Titius–

Bode formulations by introducing correction factors for Hill stability and galactic density. The model integrates gravitational influence 

from dark matter halos, stellar mass scaling, and orbital resonance structures to predict planetary distances more accurately across various 

star systems. Test cases, including TRAPPIST-1 and Kepler-11, demonstrate improved predictive alignment. This framework aims to offer 

a scalable approach for understanding planetary architectures in different galactic regions. 
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1. Introduction 
 

For hundreds of years, humanity is trying to understand why 

planets occupy specific orbits and whether there exists a 

universal law governing planetary spacing. One of the first 

attempts came from the Titius–Bode Law, which gave a 

simple numerical sequence for planetary distances in the 

Solar System. Although it showed great success for certain 

planets, it also failed in several cases. Several changes were 

also provided by Blagg (1913), Brodetsky (1914), Wylie 

(1931), Richardson (1945), Dermott (1968), Nieto (1970), 

Rawal (1978–1989), Basano & Hughes (1979), Louise 

(1982), and others. 

 

Today, with the discovery of thousands of exoplanetary 

systems, we can revisit this problem. New observations show 

that planetary spacing is not random and is controlled by 

multiple factors such as stellar mass, galactic position, 

metallicity, and possibly the local distribution of dark matter. 

This paper attempts to construct a unified framework that will 

connect: 

a) Planetary spacing within systems (extensions of Titius–

Bode-type relations). 

b) Galactic position of host stars (distance from galactic 

centre, spiral arm placement, and stellar neighbourhood 

density). 

c) Dark matter distribution (influence on gravitational 

potential and stability of planetary orbits). 

 

The central hypothesis is that planetary spacing is shaped not 

only by star–planet interactions but also by broader galactic 

influences. By studying 20 exoplanetary systems across 

various galactic positions, this work tries to identify recurring 

ratios, coincidences. This study contributes to a growing field 

of astrophysical modeling that seeks to unify local planetary 

dynamics with large-scale cosmic structures. By 

incorporating galactic environmental factors and dark matter 

density, it extends the applicability of classical spacing laws 

and provides a more holistic view of planetary system 

formation 

2. Related Works 
 

2.1 Blagg formulation 

 

M. Blagg was a British astronomer and mathematician who 

tried to modify the original Bode law by trying to find average 

difference. In a groundbreaking 1913 paper, she analyzed the 

orbital data and proposed a generalized exponential formula 

to smooth out the irregularities of the original law. Her 

formula was: r(n) = A * (1.7275)^n * [B + f(a + n*α)] where 

A and B are the constants for the whole system. This was 

modified as it was represented by a progression in 1.7275 as 

compared to original 2. 

 

2.2 Richardson Modification 

 

In 1945, a British scientist named Richardson refined the 

theory by adding a periodic term which was given by f which 

tells the deviations from the geometric progression. The 

constants were determined empirically from observed 

distances. It told about the potential physical basis which 

applied it to newly discovered data, including the asteroid belt 

and more moons of Jupiter and Saturn. His formula was 

modulated by sinusoidal function. 

 

2.3 JJ Rawal Modification 

 

In 1978, JJ Rawal elongated the law by taking Roche Limit to 

explain the location of planetary rings and distribution of 

celestial bodies. He suggested that the gaps in the original law 

could be better understood by taking the Roche limit as a 

boundary for stable planetary system. He proposed a physical 

explanation based on the theory of origin of the solar system 

from a rotating gaseous nebula (the Kant Laplace theory). 

 

2.4 Dermott (1968) 

 

Stanley Dermott was an astrophysicist in Florida. He 

developed a physical theory to explain why planetary and 

satellite systems often show geometric spacing. According to 
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him, this was because this configuration maximizes orbital 

stability. Dermott introduced a generalized Titius-Bode law 

where the ratio of successive orbital distances is a 

constant, R_i = R * C^I. 

 

2.5 Wylie (1931) 

 

Charles Clayton Wylie was an American astronomer and 

mathematician. He was known for proposing a specific re 

indexing of the sequence in the original formula to make it fit 

the outer planets better, particularly Neptune. He proposed a 

simple change by shifting the numbering for the giant planets 

by one. 

 

3. Proposed Solution 
 

In 1766, Johann Daniel Titius suggested a simple numerical 

formula to describe planetary distances, which Johann Elert 

Bode later made it famous in 1772. The law is expressed as: 

a = 0.4 + 0.3 × 2ⁿ. To generalize, researchers proposed 

modifications: 

 

1) Exponential Form: Instead of linear 0.4 + 0.3×2ⁿ, 

planetary orbits are modeled as an exponential series: a(n) 

= a₀ × Cⁿ where a₀ is the innermost orbit and C is a scaling 

constant. 

2) Logarithmic Spacing: Some systems fit better with 

log(aₙ) = log(a₀) + n × k , where k represents the spacing 

slope. 

3) Resonance Chains: Compact systems (e.g., TRAPPIST-

1, Kepler-223) show orbital resonances (ratios like 3:2, 

4:3). These resonances may help to explain why planets 

are spaced in predictable “steps” rather than by TBL 

directly. 

 

3.1 Galactic Position 

 

Our Sun orbits ~26,660 light years from Sagittarius A*. Most 

known exoplanetary systems in our dataset (around 20 

systems which is mentioned at section 4) are between 26,500–

27,800 light years. Interestingly, systems slightly farther from 

the center (e.g.,27,500+ LY) often host compact multi-planet 

systems (TRAPPIST-1, TOI-270, L 98-59) whereas closer 

systems (~26,600–26,900 LY) mostly show wider orbital 

separations (Kepler-90, Solar System). This suggests a weak 

correlation: systems in outer galactic orbits tend to have 

compact planetary spacing, while those closer to the galactic 

center display more extended orbital arrangements. 

 

1) Role of Dark Matter Halo 

Dark matter density increases toward the galactic center. This 

could alter the stability zones (Hill radii) around stars, 

influence initial disk fragmentation, leading to fewer but more 

widely spaced planets near the center or promote compact 

system formation farther out where dark matter tidal effects 

are weaker. 

 

2) Coincidences Observed 

Ratio patterns in orbital distances seems more stable in mid-

to-outer galactic regions. Closer to the galactic bulge, 

resonance and migration are stronger instead of Titius–Bode-

like spacing. 

 

3.2 Modified law with Galactic Factor 

 

Bode law works approximately for the Solar System but fails 

for many exoplanetary systems. To improve it, we add 

galactic and stability corrections. Planetary survival requires 

that the orbital separation Δa between adjacent planets 

exceeds a multiple of their Hill radii (R_H) where a is semi-

major axis of planet, m is the planet mass, and M_star as star 

mass. 

R_H = a × (m / (3M_star))^(1/3)                    (i) 

 

This condition places a natural limit on number of planets 

(N_max) around a star: 

N_max ≈ (Disk radius / ⟨R_H⟩)                (ii) 
 

1) Galactic Distance Factor (G) 

We propose a correction for the star’s position in the Galaxy 

where D_gc is the distance of star from Galactic Center, 

D_sun stands for 26,660 LY (Sun’s distance), and k is scaling 

index (~0.1–0.3 from our dataset) 

G = (D_gc / D_sun)^k                            (iii) 

 

2) Generalized Titius–Bode Law (GTBL) 

We combine the above into a new form with A, B, C as fitting 

constants (as in TBL), G as galactic distance factor and 

f(R_H) as Hill radius survival correction 

aₙ = (A + B × Cⁿ) × G × f(R_H)              (iv) 

 
3.3 Gravitational Modifiers 

To extend this law, we introduce modifications incorporating 

Hill stability, stellar mass, and galactic environment. The Hill 

radius sets the maximum stable orbital region for a planet. a 

is semi-major axis of the planet, m is planet mass, and M is 

the star mass. 

 

R_H = a × (m / (3M))^(1/3)                    (v) 

 

For stable planetary spacing, we require: 

 

a₍ₙ₊₁₎ - aₙ ≥ k × (R_Hₙ + R_H₍ₙ₊₁₎)               (vi) 

 

where k ≈ 2–3, which will ensure dynamical separation. This 

condition modifies Bode’s law by linking spacing directly to 

planetary and stellar masses. The gravitational potential of the 

galaxy affects orbital resonances. We define a Galactic 

Density Factor (GDF) with ρ_local/ρ₀ where (ρ_local) is 

local dark matter + baryonic density, and ρ₀ is the density near 

the Sun. 

 

GDF = ρ_local /ρ₀                         (vii) 

 

The extended Bode relation becomes as given below with α 

as tuning parameter. Closer to the galactic center (higher 

density), planets may form farther apart, while in the 

outskirts, spacing compresses (viii). Finally, we unify the 

planetary spacing into one expression(ix), where α accounts 

for galactic density effects and γ scales the Hill radius 

correction. 

 

aₙ = (0.4 + 0.3 × 2ⁿ) × (1 + α × GDF)             (viii) 

 

aₙ = [0.4 + 0.3 × 2ⁿ] × (1 + α × GDF) + γ × R_Hₙ      (ix) 
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3.4 Extending the Bode law 

 

The constant k represents the minimum fractional separation 

which is necessary to prevent dynamic overlap. From our 

dataset, the best fit value for k range is between 0.1 and 0.3. 

If two planets are closer than this threshold, their hill spheres 

may overlap leading to orbital instability. To prevent orbital 

overlap, spacing must satisfy Δa ≥ k × (R_H1 + R_H2) with 

k ≈ 3–5. Thus, a modified Bode law becomes: 

 

aₙ = a₀ + b × f(n) + Σ (R_H constraints)               (x) 

 

Here, f(n) represents the function growth term, which may 

take exponential logarithmic, or Fibonacci type sequence 

depending on planetary system. Σ (R_H constraints) 

represents the cumulative stability limits imposed by 

overlapping hill spheres of adjacent planets. Thus, it can be 

turned by fitting f(n) to observed orbital ratios. To refine the 

extended Bode’s law, we must introduce dark matter density 

correction term (Dρ). From our earlier analysis, galactic dark 

matter density (GDF) influences long-term orbital stability. 

To overcome from it, we adopt an inverse dependency on 

GDF because high dark matter density increases gravitational 

potential, effectively stretching orbital separations. Hence 

division ensures that in high density regions, planets are 

farther apart, while in outskirts, planets appear closer 

together. 

 

aₙ = (0.4 + 0.3 × 2ⁿ) × (1 / (1 + GDF))           (xi) 

 

Combining these gives a Generalized Planetary Spacing Law 

(GPSL) which introduces g(n) (may follow exponential or 

Fibonacci-type growth), (1 / (1 + GDF)) accounts for galactic 

placement, F(Hill) ensures dynamical stability. 

 

aₙ = [A + B × g(n)] × (1 / (1 + GDF)) × F(Hill)       (xii) 

 

The function g(n) is flexible: in compact resonance dominated 

systems, g(n) follows exponential growth(2^n). in stretched 

systems g(n) may follow a logarithmic sequence. F(Hill) = (1 

+k*R_H) represents survival factor ensuring orbital spacing 

satisfies dynamic separation. Thus equation(xii) generalizes 

both deterministic and resonance 

 controlled architecture. 

 

3.5 Scaling Constant 

 

1) General Form of GPSL 

We rewrite the law as aₙ = Λ × [A + B × g(n)] where Λ acts 

as the normalization constant. 

 

Λ = (M_star / M_sun)^α × (1 / (1 + GDF))^β × (D_star / 

D_sun)^γ                         (xiii) 

Here, M_star is the stellar mass, M_sun is solar mass, GDF is 

galactic dark matter density at star’s location, D_star is 

distance of star from galactic center and exponents (α, β, γ) 

adjust contributions of each factor. The scaling exponents (α, 

β, γ) are fitting parameters- α near 1.0 reflect linear 

dependence on stellar mass, β around 0.2 to 0.4 comes from 

observed compactness in high dark matter environments. And 

γ is around 0.1-0.3 which reflect weak galactic radial 

dependence. Values were inferred from system dataset. 

 

3.6 Importance of Dark Matter 

 

In our earlier analysis, we considered Bode-type laws and Hill 

radius corrections as local rules for planetary spacing. 

However, planetary systems are not isolated; they are 

embedded within galaxies dominated by dark matter halos. 

Dark matter contributes to the gravitational potential and may 

therefore indirectly influence planetary system 

architectures. In a galaxy with dark matter density (ρ_DM), 

we can introduce a correction factor k(ρ_DM). Here we 

assume dark matter acts as an effective additional 

gravitational mass, slightly modifying the stellar potential 

since this effect is proportional, we introduce multiplicative 

correction. Here, k is a proportionality constant that 

determines how strongly dark matter density shifts orbital 

spacing. 

 

D’(n) = (A + B × Cⁿ) × (1 + k·ρ_DM)            ( xiv) 

 

In high dark matter environments, the effective stellar mass 

felt by planets may be slightly altered. So, 

 

R_H’ = a × (m / (3(M + ΔM_DM)))^(1/3)           (xv) 

 

3.7 Final Formula 

 

an=Λ[A+Bg(n)](1+αGDF)−1Hn                (xvi) 

 

Here, Λ=(M_star/M_sun)η(D_star/D_sun)γ which is the 

scaling factor for star and galactic position, g(n) is the 

sequence function (e.g. 2^n), Hn=1+γH(RH,n/an) is the Hill 

stability correction, GDF=ρlocal/ρ0 is the galactic density 

factor. This final form combines the classical spacing 

sequence with stellar scaling, Hill stability, and galactic 

density effects. The Solar System becomes a special case 

when Λ=1, Hn=1, GDF=0. For exoplanet systems, fitting 

parameters A, B, and exponents η, γ, α, γH allows prediction 

of orbital spacing more accurately than the classical law. 

 

4. Results and Discussion 

 

Table 1: Exoplanetary System Dataset including planetary system, host star, heliocentric distance and planetary distances. (ly 

= light years) 
Planetary System Host Star Heliocentric Distance 

(ly) 

Planets and Orbital Distances (AU) 

Proxima Centauri Proxima Centauri 4.25 b (0.048), d (0.029), c (1.49) 

TRAPPIST-1 TRAPPIST-1 40.66 h (0.059), g (0.045), f (0.037), e (0.029), d (0.021), c 

(0.015), b (0.011) 

Kepler-186 Kepler-186 579 f (0.432), e (0.11), d (0.078), c (0.045), b (0.034) 

Kepler-452 Kepler-452 1,810 b (1.046) 

Gliese 667 Gliese 667 23.623 b (0.05), c (0.13), f (0.16), e (0.21), g (0.55) 

Paper ID: SR25927114922 DOI: https://dx.doi.org/10.21275/SR25927114922 32 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

HD 209458 HD 209458 157 b (0.047) 

51 Pegasi 51 Pegasi 50.64 b (0.053) 

WASP-12 WASP-12 1,347 b (0.023) 

Kepler-444 Kepler-444 119.22 b (0.042), c (0.049), d (0.060), e (0.070), f (0.081 

HD 106906 HD 106906 337 b (732) 

Kepler-90 Kepler-90 2,790 h (1.01), g (0.71), f (0.48), e (0.42), d (0.32), i (0.107), c 

(0.089), b (0.074) 

Kepler-47 Kepler-47 3,420 c (0.96), d (0.70), b (0.29) 

K2-138 K2-138 660 g (0.231), f (0.104), e (0.078), d (0.059), c (0.045), b (0.034) 

Kepler-11 Kepler-11 2,108 g (0.466), f (0.250), e (0.195), d (0.155), c (0.107), b (0.091) 

Kepler-22 Kepler-22 644 b (0.849) 

WASP-17 WASP-17 1,310 b (0.0515) 

LHS 1140 LHS 1140 48.80 b (0.095), c (0.027) 

Gliese 876 Gliese 876 15.238 e (0.336), b (0.210), c (0.131), d (0.021) 

55 Cancri 55 Cancri 41.05 The system has 5 known planets orbiting star A. 

Upsilon Andromeda Upsilon Andromeda 43.9 e (5.25), d (2.53), c (0.832), b (0.059) 

 

4.1 Solar System (Reference Case) 

 

• Constants used (classic TBL): 

A = 0.4, B = 0.3, C = 2 

• Galactic Factor: 

G = (26,660 / 26, 660)^0.2 = 1 

• Hill Radius correction: minimal for large planetary 

spacing. Thus, using formula (an=Λ[A+Bg(n)] 

(1+αGDF)−1Hn) gives the following result:  

 

Table 2: Predicted versus actual distance of plants from Sun 
Planets Predicted Actual 

Mercury 0.40 0.39 

Venus 0.70 0.72 

Earth 1.0 1.0 

Mars 1.60 1.52 

Jupiter 5.2 5.2 

Note that our final formula reduces the classical 

 

Law sequence under the parameter choices. Λ=1, Hn=1, 

GDF=0, 2^n. Because original Titius Bode law constant were 

historically calibrated to the Solar System, reproducing the 

Solar System with these parameters choices is expected and 

does not by itself validate the generalized model. Instead, the 

strength of the final law lies in its ability to fit systems that 

deviate from classical progression by allowing non unity 

scaling, non-zero GDF, and explicit Hill stability and 

migration corrections. 

 

4.2 From Galactic Center and Planetary Spacing 

 

From our earlier comparisons of planetary systems (Solar 

System, TRAPPIST-1, Kepler-11, etc.), we tested the ratio: R 

= (D_star / d₁) where D_star is distance of the host star from 

the galactic center from the galactic center. This gives a 

dimensionless ratio linking galactic scale to planetary scale. 

 

1) Observed Ratios 

 

Table 3: List of planetary system with distance of host star 

from the galactic center, distance of first planet from the 

star, and their ratio (ly = light year). 
Planetary System Solar System TRAPPIST 1 Kepler 11 

D_star ≈ 26,700 ly 26,100 ly 2,150 ly 

d₁ ≈ 0.39 AU  

(Mercury) 

0.011 AU 0.091 AU 

 

R ≈ (26,700 ly / 

 0.39 AU) 

(26,100 ly / 

 0.011 AU) 

(2,150 ly / 

0.091 AU) 

4.3 Golden Ratio 

 

We observed approximate ratios between certain system pairs 

where R₁/R₂ approaches the golden ratio (φ ≈ 1.618). 

 
4.4 Use of the law on other Planetary Systems 

 

1) TRAPPIST-1 System 

Star distance from galactic center is 26,100 ly. Dark matter 

density (GDF): ≈ 0.38 GeV/cm³, and First planet distance is 

0.011 AU. Using exponential sequence: g(n) = 2ⁿ, and 

choosing A = 0.01, B = 0.005 and α as 0.20 (scaled to 

TRAPPIST-1’s compact orbits): 

 

Table 4: Predicted versus actual distance of planets in 

TRAPPIST 1 planetary system using planetary law 

Predicted Distance Observed Distance 

1 = 0.011 1 = 0.011 

2 = 0.015 2= 0.015 

3 = 0.020 3 = 0.021 

4 = 0.027 4 = 0.028 

5 = 0.037 5 = 0.036 

6 = 0.063 6 = 0.059 

 
Figure 1: Actual versus predicted distance of TRAPPIST 1 

System. 
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2) Kepler-11 System 

For Kepler 11 system, Star distance from galactic center is 

2,150 ly, GDF: ≈ 0.41 GeV/cm³, and First planet distance: 

0.091 AU. Taking A = 0.09, B = 0.02: 

 

Table 5: Predicted versus actual distance of planets in 

Kepler 11 planetary system using planetary law 
Predicted Distance Observed Distance 

1 = 0.091 1 = 0.091 

2 = 0.107 2 = 0.107 

3 = 0.131 3 = 0.155 

4 = 0.167 4 = 0.195 

5 = 0.221 5 = 0.25 

6 = 0.302 6 = 0.466 

 

 
Figure 2: Predicted versus observed distance in Kepler 11 

System. 

 

Table 6: Celestial objects of the solar system with actual 

distance from Sun. (AU = Astronomical Unit) 
Object AU 

Sun 0 

Mercury 0.4 

Venus 0.7 

Earth 1.0 

Mars 1.5 

Asteroid Belt 2.8 

Jupiter 5.2 

Saturn 9.6 

Uranus 19.2 

Neptune 30.0 

Pluto 39.5 

 

Figure 3: Actual versus predicted distance by Bode law 

 

5. Conclusion 
 

Planetary spacing is not random but follows layered rules: 

first shaped by star–planet dynamics, then adjusted by 

environment. By testing this generalized  and final law on a 

large sample of exoplanetary systems, we may uncover a 

universal principle that governs planetary architectures across 

the galaxy and possibly other galaxies as well. 
 

6. Future Scope 
 

While the proposed framework provides analytical basis for 

predicting planetary spacing and number of planets in a given 

system, several key areas remain open for deeper exploration. 

With continuous discovery of exoplanets by missions such as 

TESS, Kepler, and upcoming PLATO mission, applying the 

modified law to a significantly larger dataset will help refine 

the constants and test their universality. High resolution N 

body simulations, incorporating dark matter halos, stellar 

mass distribution, and long term dynamic stability analyses 

could be performed to test whether the proposed modification 

reproduce the observed architectures. By linking spacing with 

stellar factors, this model may also provide insights into how 

stable habitable zones form and persist across cosmic time. A 

future objective is to integrate planetary spacing laws with 

other astrophysical scaling relations. Whereas further 

research is needed to validate whether planetary spacing 

systematically correlates with a system’s galactic radius or 

local dark matter density. 
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