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Abstract: A lot of work in vibration analysis involves both fundamental and particular analysis of plates of various forms. Vibration
analysis is employed in many industries, including the nuclear energy, construction, automotive, petroleum, and sports sectors.
Numerous characteristics, such as non-uniformity, variable thickness, viscoelastic effect, elastic basis, etc., are used in plate analysis.
The vibration analysis of a right triangular plate with linearly variable thickness will be covered in this paper. taking into account the
damping parameter and the visco-elastic effect. CSS and thickness variations in the x-direction are the problem's boundary conditions.
The separation of variables and the Rayleigh Rit; technique have been used to solve the governing differential equation. Using the
Gram Schmidt Orthogonalization technique, a two-term deflection function is produced. The logarithmic decrement, time period,
firequency parameter, and deflection at various locations of the first two modes of vibration are calculated for a range of values of taper

constants, damping parameters, and aspect ratio.
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1. Introduction

Numerous studies have been conducted on the vibrations of
rectangular plates with varying thicknesses [1-3], but none
have been conducted on visco-elastic plates. Sobotka [4] has
examined the free vibrations of uniform visco-elastic
orthotropic rectangular plates. Bhatnagar and Gupta [5-6]
conducted a study on the impact of thermal gradient on
vibration of visco-elastic circular and elliptic plates of
varying thickness. An excellent monograph on triangular
plates was published in 1969 by Leissa [7] and also flexural
vibration studies on different shapes and configurations of
plates are well documented. Research into triangular plate
vibration is quite limited However, the triangular
configuration of panels is common in many industries, so
this area needs more research. One of the disadvantages of
analyzing these problems is the difficulty of creating
changes in two related variables to explain the triangle.
Triangular plates with different configurations usually
involve a lot of work and structural analysis, so more
research is needed in this area.

The concept of free vibration in a structure, plate or system
is hypothetical because damping is always present in all
forms. The literature review also shows that problem of
damping decisions has not been studied much. This research,
which incorporates damping into plate vibration studies, will
benefit fields such as seismology, Nuclear structure design
and the design of dam and bridge. The main problem in
analyzing a triangular plate is the amount of work involved
in implicitly constructing the transformation function to
describe the triangle. As technology advances, researchers
use different methods to study triangles. F.EM is a
particular example of the approach by [8,10] Gorman
[11,12] proposed an analysis method to determine the
location of the building structure in a triangle without
vibration. He also worked on right angled triangles for

vibration analysis under different boundary conditions. The
main purpose of this study is to investigate the effect of
constant x direction taper on the vibration of visco elastic
right angled triangular plate with CSS boundary conditions
of the edges. Assumptions of small deflections and linear,
isotropic  viscoelastic ~ properties are made. The
Viscoelasticity of the plate is assumed to be Kelvin type.
Figures are made of norma metal "Duralium" material. The
taper constant and damping parameter values for different
aspect ratios, deviation of the first two vibration modes of
time difference, frequency, time period and logarithmic
decrement are calculated and the results are presented in
tabular and graphical form.

2. Mathematical Model for the Problem

We obtain mathematical model for equation of isotropic
right triangular plate with variable thickness by introducing
K as the damping parameter and assume that the damping
forces are proportional to velocity, then model equation
given by Leissa [7] is transformed and equation of motion is
given as
=05 04w 9w *w
D[d(w + Z—szayz + W) + 25 Py + axayz) +
LT A (AW T
oy \ay3 = 0yodx? 0x2 \9x2 ay?2 dy?

ay?2
32w 9%d 9%w 2w
Uax2)+2(1_v) 0xdy dxdy - 0(1)

ad 03w 3w

ow
]+Kg+ph6t2

For solution of equation (1) the following form, which is
taken in the form of products of two functions is assumed as

w(x,y,t) =W, NTE) (2)

Substituting the value from (2) in (1) we get the following

transformed equations i.e. (3) and (4)
8%T | Kk T 285 _
mﬁ'p—hg'l'? DT =0(3)
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Thus Equation (3) and (4) are the required differential
equation of motion for the plate and time function of free
and damped vibration having variable thickness

respectively. We shall now separately solve above two
equations.

Time function of variable of plates

Time functions of free vibrations of visco-elastic plates are
defined by the general ordinary differential Equation (3).
Their form depends on visco-elastic operator D.For Kelvin’s

D={1+@EIO)
+ PTZH)T +

model, one can have Using

equation(5) in equation (3) ,one obtains T+ (pﬁh
P3T =0 (6)

Equation (6) is a differential eqation of order two for time
function T. The Solution of equation (6) is established as
T(t) = e*{¢;cospt + Ssinpt} (7)

Whereot——(zTh+ )andB ?/ —2=730,here?

is natural frequency, PO is angular frequency and ¢ , & are
arbitrary but fixed which are calculated from the primary
restriction of the plate. For the present study initial

conditions as T = 1and T = 0 at t=0 (8)

Using equation (8) in equation (7), one obtains ¢;=1 and
G=-5©)

Using equation (9) in equation (7), one have T(t) =
e“{cospt — % sinft} (10)

For damped transverse vibration of the triangular plate
amplitude (W) can be expressed as

w(x,y,t) = W(x,y)[e* {cosﬂt - %sinﬁt}] (11)

Substituting the above value from (10) in (4) and equating
the coefficient sine and cosine term we establish the

equation for deﬂection function as

5 04w o*w ad 03w 3w
d( +2 dx20y? 6 4)+ ax (6x3 +6x6y2) ay (6 3

a3 ) az (az atw ) 9%d (az 92w )
77 Ze(= 77 22 (4 022
dyodx? + 0x2 \ 9x2 +tv dy? + dy2 \ay? + dx2 +

2 2
2(1 —u)f’—"l"’——"—W—phP2 =0(12)

Assuming that the thickness variation of the plate in x
direction, the flexural rigidity of the plate d is written as
(assuming possion’s ratio v is constant)

5 Eho® * X\ 3 5 * X\3
dmts (14 B3, d= A+ 65
5 Ehg®

d°_12(1—u2) (13)
substituting (13) in (12) and introducing non dimensional
variables X'=x/a and Y'=y/b and simplifying one gets

Where

4 4 4
(1+ B X") (ax,4 42 —ax'zay’z + ay,4) +2a*(1 +
9°W
BX) (1 + pX) (S 2) 4 2041 +

a(1+px')” X’) ’w 4
BX) =y ay’ (6Y’3 + BY’ﬁx’Z) tatl+

a2(1+ px)° 2w 4
prx) S (ax,z +u aY’Z) +at(l+

ey 204 8K 02W | 92w .
prx) T (28 1y 28 4 2(1 - vat (L +
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o3 .
B*X") 22(1+ B*x')" 9*w  k*a'w phoa p? (1+
ax'ay’  ax'aY’  4phg do
Ko

B*X")2W = 0 (14) Replacing 4”};‘1&0 by and % by

£2.We shall now find the deflection functlon W using
orthogonal plate function.

Orthogonal Plate Function

The deflection function for a vibrating triangular plate may
be defined by a set of two dimensional orthogonal plate
function W (X', Y)=A®+A,D; (15)

where @ and @, are orthogonal plate function ®; (X', Y') is
so chosen for triangular plate in our study such that it at least
satisfy the geometrical boundary conditions of the plate and
a better approximation and convergence is achieved if @,
(X', Y)) it also satisfy the natural boundary conditions.

For present problem the required function in equation (15) is ®; (X,Y") =[5, 0, (X,Y) (16)

The IT denotes the product of terms, @, are the edge functions which can be easily formulated if the edge support condition of
the plate is known. The function @, (X, Y") for different support conditions are summarized below
X' —c,atedge X' =c

(i)For simply supported edge O(X', Y')=

Y' —d,atedgeY =d 17)

Y —tX'—e,atedgeY =tX'+e

(X' —c¢)?%,atedgeX' =c

(ii) for clamped edge O(X', Y')=

For DX, Y )=Fo(X YY1 (X Y )t Dr(X. V),
[ @,(X', Y)Y, (X, Y')dX'dY’ = {O,ifi * j
1 ) )] ) 1 ’ if = ]

Schmidt orthogonalization definition)

(By gram

(Y —d)?,atedge Y =d (18)

(Y —tX' —e)?,atedge Y =tX' + e

I (X Y) D1 (XY )i (XY )dX'dy/
[ @i(X.Y)®;(X)Y)dX'dY’

Where a,,;=

(19)

Where f, (X,Y) is the generating function , r=[vVm — 1 |
and t = (m-1)-r% If t is even, thens=t/2;,0< s <1 => f,
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X, Y)=X"If t is odd, then s= (t-1)/2; 0 s <7 —1 => f,,
(X,Y)=X"Y" Where [ ] is denotes the greatest integer
function and fn (X,Y) is calculated by deciding the

parameters
Boun'd ary | Generating Plate functions
condition functions
CSS fiX’, Y)=1 O=Y A(X-1)(Y'-X)
BXL,Y)=X [0=X'D1 (X', Y)-a21 @1 X', Y)

Method of analysis: The plate geometry for thin triangular
plate is given in fig. (a) and approximate solution is derived
using Rayleigh’s principle, which states that

vmax:Tmax (20)

Here Vmax is max. Strain energy and Tmax is max. Kinetic

energy

Equation of motion:- The expression for K.E. (T) and S.E.

V) are

Thax =

(K—i)z]wz((X’,,Y’)dX’dY’ Q1)

~ab? [[[((1+ B*

X2 +

-~ , 237 2

Vimax =30b [[{(L+ £X)* (53) + 20a%(1 +
*y")4 02_W02_W 14 sy '\ 4 BZ_W 2 _

BX) (6X’26Y’2)+ a1+ BX) (aY'Z) +20

V(1 + g X)*a'? (

%W
X1 9Y’

)z}dx’dY’ (22)

Solution and frequency equation
% (Vmax — Tmax) (23)

Which leads to the governing Eigen value equation Z[Kl- j—

£2M;j]c; = 0 (24)

Kij=Pij+a’4Qij +a'?v (Rij+Sij)+2(1 - U)(X’zTij
* ! K ! ! ! ! ! !
M;; = ff[(l + X2 + (K—O)Z]CDi(X YN0 (X', Y)dX'dY',

2g;(X,Y) 020X Y)

= *x')4 2 dy’
P=f(1 + B*X) 20X ox X <’11X dy,

= x4 PO X YN OCR XY
Q= Jf(+ BX) aY' ay ay ay' dxdy,

= g 020X Y 820X’ Y")
Ri=[f(1+ BX) o
= w4 020 (XY") 9205(X"Y

S+ g TR

= wng 020X YY) 205X YY)
Ti=[J (1 + BX) o axor  GX Y

Fij: KL] —I{ZME' i,j=1,2

dx'dy’,

dx'dy,

j oo
On simplifying (24) one gets Fi; A1 +Fi2 A2=0, i=1,2 (25)

Where Fi, Fip (i=1,2) involve parametric constant and the
frequency parameter.

For a non trivial solution, the determinant of the coefficient
of equation (25) must be zero. So one gets the frequency

Fll F12
=0 (26
Foi Fpl 020

equation as

From equation (34), one can obtains a quadratic equation in
A*from which the two values of A% can found .After
determining Ajand A, from equation (26), one can obtain
deflection functionW.

by

Choosing A;=1,one obtains A2=-b—1 and then W comes out
12

as W=, +(— ';ﬁ) @, (27)

Thus deflection W may be expressed, by using equation (27)
and (10) in equation (2), to give

WYL= (@ + (— 2@ e fcospt — Ssinpt}] 28)

biy
Time period of the vibration of the plate is given by K% ,
Where P is angular frequency

Logarithmic decrement of the vibrations given by the

standard formula * = %lo e Y1 ) (29)

WN+1

Numerical evaluations: E=7.08x10'"N/M?,
G=2.632x10'"N/M?, 1=14.612x10°Ns/M?2,
p=2.80x10°kg/M?, v=0.3, h=0.01m.

Result and discussion: Tablel constitutes 1% and 2™
frequency modes which are evaluated for the clamped
simply supported visco elastic right triangular boundary
condition for different values of damping parameter K/Ko
and taper parameter B* for Poisson ratio v=0.3, thickness of
plate h=0.01 and aspect ratio a/b=5/2. Projecting tablel
through graph fig.1 shows the behavior of frequency
parameter £ with the increasing value of taper parameter
(B*) for any fixed but arbitrary value of damping parameter
viz. K/K (0.0, 0.2, 0.4, 0.6, 0.8,).

Table 1: Frequency Parameter of a CSS Visco Elastic Triangular Plate For Different Values of Taper Constant, A Damping
Factor and A Constant Aspect Ratio A/B=5/2

p* 0.0 0.2 0.4 0.6 0.8

K MODE MODE MODE MODE MODE MODE MODE MODE MODE MODE
@ 1st ond 1st ond 1t ond 1t ond 1st ond
0.0 284.24 706.25 329.63 748.17 375.84 795.10 422.51 845.81 469.41 899.43
0.2 278.72 692.53 324.84 736.44 371.62 784.84 418.71 836.68 465.96 891.19
0.4 263.91 655.73 311.64 704.33 359.71 756.30 407.88 810.96 456.03 867.77
0.6 243.73 605.60 292.81 659.04 342.17 714.97 391.56 772.94 440.81 832.56
0.8 221.95 551.49 271.39 608.18 321.45 667.07 371.68 727.72 421.84 789.80
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Figure 1: Frequency Parameter of a CSS Visco Elastic Triangular Plate for Different Values of Taper Constant, A Damping
Factor and a Constant

Frequency parameter A shows increments in its value with
increase in value of taper parameter for the both modes of
vibration w.r.t distinct value of damping parameter. Also
table 1 and figure 1, provide us the inference of damping
parameter K/Ko on frequency parameter for two modes of
vibration, if we take any fixed but arbitrary value of taper
parameter f* (0.0,0.2,0.4,0.6,0.8) that there is decrement in
value of £ with the increase of damping parameter K/Ko and
this decrement is linear in nature. Table 2 and Figure 2

explain the importance of frequency parameter for the first
two modes of Vibration at different a/b ratios in the
following three cases:

(i) B*=0.2, ==0.2,(ii) B*=0.6, —=0.6 ,(iii) p*=0.8,—=0.8

Ko Ko Ko

we observe that as value of a/b increases for different
*(0.0,0.2,0.4,0.6,0.8) these is parabolic increment in
frequency parameter 4.

Table 2: Frequency Parameter of a CSS Visco Elastic Right Triangular Plate for Different Aspect Ratio (a/b)

b B*=0.2, K/Ko=0.2 B*=0.6, K/Ko=0.6 B*=0.8, K/Ko=0.8
MODE 1* MODE 2/ MODE [* MODE 2/ MODE [* MODE 2/
0.5 85.6522 223.5754 101.1533 279.3438 107.8517 304.6686
1 123.2963 264.2706 145.1654 316.6385 154.3210 341.0806
15 183.8450 354.9676 212.1673 403.7523 227.0462 425.1705
2 242.1672 518.6366 293.2695 556.5276 315.7926 574.6746
2.5 324.8414 736.4421 391.5597 772.9385 421.8376 789.8044
= 1000 ~ et *=02,  K/K0=0.2 MODE 1st
% 800 - —l=[*=02, K/K0=0.2 MODE 2nd
e B*=0.6, K/K0=0.6 MODE 1st
E E 500 1 —e=p*=0.6, K/K0=0.6 MODE 2ud
2o 400 - e 3#=0 8, K/K0=0.8 MODE Ist
> 2w —#—(*=08, K/K0=0.8 MODE 2nd
0 05 1 15 2 25 3
a'b

Figure 2: Frequency Parameter of a CSS Visco Elastic Right Triangular Plate For n different Aspect Ratio (a/b)

From table 3 and figure 3, for aspect ratio a/b=5/2 the time
period K have been computed for CSS right triangular plate
for two modes of vibrations with different edge restrictions
for variation in different value of taper constant B* and
damping parameter K/Ko. It can be seen from table 3 that as
taper constant increases for any fixed but arbitrary value of

damping parameter K/Ko(0.0,0.2,0.4,0.6,0.8),the time period
decreases.Table3 and figure 3 also provide the result that if
we take any fixed value of taper parameter * and value of
damping parameter K/K, increases frequency parameter
increases and the increment is parabolic for 1% mode and
linear for 2" mode

Table 3: Time Period (Kx10°) of a CSS Visco Elastic Triangular Plate for Different Values of Taper Constant, A Damping
Factor and a Constant Aspect Ratio a/b=5/2

B 0.0 0.2 0.4 0.6 0.8
K/K MODE MODE MODE MODE MODE MODE MODE MODE MODE MODE

0 18t 2nd 1st 2nd 1st 2nd 1st 2nd 18t 2nd
0.0 145.26 58.46 125.26 55.19 109.86 51.93 97.73 48.82 87.96 4591
0.2 148.14 59.62 127.11 56.07 111.11 52.61 98.61 49.35 88.61 46.33
0.4 156.45 62.96 132.49 58.62 114.79 54.59 101.23 5091 90.54 47.58
0.6 169.40 68.18 141.01 62.65 120.67 57.75 105.45 53.42 93.67 49.59
0.8 186.03 74.87 152.14 67.89 128.45 61.89 111.09 56.74 97.88 52.28
1.0 205.43 82.68 165.36 74.08 137.81 66.85 117.95 60.74 103.04 55.53
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Figure 3: Time Period of a CSS Visco Elastic Triangular Plate for Different Values of Taper Constant, A Damping Factor
and a Constant Aspect Ratio a/b=5/2

Table 4: Time Period (Kx10%) of a CSS Visco Elastic Right Triangular Plate for Different Aspect Ratio (a/b)

b B*=0.2 K/Ko=0.2 B*=0.6 K/Ko=0.6 B*=0.8 K/Ko=0.8
MODE I* [ MODE 2™ | MODE 1* | MODE 2™ | MODE 1* | MODE 2"
0.5 | 482.08 184.68 408.20 147.81 382.85 135.53
1 | 334.89 156.24 284.44 130.40 267.56 121.06
1.5 | 224.59 116.33 194.61 102.27 181.86 97.16
2 | 170.50 79.61 140.79 74.19 130.75 71.85
25| 12711 56.07 105.45 53.42 97.88 52.27

o =—=[*=02 K/K0=0.2 MODE 13t
400 =l [*=0 2 K/K0=0.2 MODE 2nd
wde{*=06 K/K0=0.6 MODE 1st

=—e==p*=06 K/K0=0.6MODE 2nd

TIME PERIOD
b
[a=]
=

a'b
Figure 4: Time Period of a CSS Visco Elastic Right Triangular Plate For Different Aspect Ratio (a/b)

Table 4 and figure4 depicts value of time period K for first It is important to observe that when aspect ratio increases,

two modes of vibration for different values of aspect ratio time period reduces in the preceding three situations for

a/b for the following three cases: (i) p* =0.2, K£ =0.2, (i) both modes of vibration. This reduction is again parabolic
0 1n nature.

B*=0.6, ==0.6, (iii) p* =0.8, —=0.8
Ko Ko

Table S: Logarithmic Decrement If a CSS Visco Elastic Triangular Plate for Different Values of Taper Constant, A Damping
Factor and A Constant Aspect Ratio a/b=5/2
B 0.0 0.2 0.4 0.6 0.8
MODE | MODE | MODE | MODE | MODE | MODE | MODE | MODE | MODE | MODE
K/Ko 1st 2nd 18t 2nd 18t ond 1t ond 1st ond
0.0 -0.754 | -1.874 | -0.875 | -1.986 | -0.997 | -2.110 | -1.121 | -2.245 | -1.246 | -2.387
0.2 -1.996 | -3.094 | -2.025 | -3.118 | -2.069 | -3.166 | -2.125 | -3.234 | -2.189 | -3.317
0.4 -3.213 | -4.253 | -3.154 | -4.196 | -3.121 | -4.174 | -3.109 | -4.179 | -3.114 | -4.207
0.6 -4.416 | -5377 | -4.267 | -5239 | -4.158 | -5.147 | -4.079 | -5.091 | -4.026 | -5.066
0.8 -5.615 | -6.490 | -5.374 | -6.268 | -5.186 | -6.104 | -5.040 | -5.985 | -4.927 | -5.904

Table 5 contains the results of the logarithmic decrement of ~ parameter, respectively. It is observed from the table that the
the ratio a / b = 5/2 for the first two types of vibration for =~ logarithmic decrement decreases as the damping parameter
different values of the taper constant and damping  increases.
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Table 6: Deflection (W) of a CSS Right Triangular Plate for Different Values of X" and Y’, A Constant Aspect Ratio (a/b=5/2)
and B"=0.4, K/K¢=0.4 and Time T =0K AND 5K

X' 0.2 0.4 0.6
Y’ MODE 1 MODE 2nd MODE 1 MODE 2nd MODE 1¢ MODE 2nd
02 0 0 0.000514283 0.035374471 0.00417777645 0.022253429914
’ 0 0 0.857955x 10710 | 0.305718x 10710 | 14.0197x 1010 | 0.386865x 1010
04 0.01122541 -0.288319 0 0 0.00835555291 0.04450685982
’ 8.39392x 10710 | -1.11688x 10~10 0 0 28.0394x 10710 | 0.773731x 10~10
0.6 0.05051438 -1.2974129 -0.00462854 -0.318370247 0 0
' 37.7727x 10710 | -5.02585x 1010 | -7.72159%x 1010 | -2.75146x 1010 0 0
0.8 0.134705024 -3.4597677 -0.01645706 -1.131983103 -0.0334222116 -0.1780274393
) 100.727x 10710 | _13.4023x 10710 | _27.4546x 10710 | -9.78297x 10710 | -112.158% 1010 | -3.09492x 1010

Table6 contains the deflection function values (i.e. the
amplitude of the vibration modes )for the first two vibration

modes with aspect ratios a/b = 5/2, respectively, for distinct

[10]

values of X' and Y'.The following parameter are used to

calculate w.
Table 6: B*=0.4, K/K¢=0.4,

time T =0K , time T=5K and [11]

values in bold indicate deflection at T =5K
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