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Abstract: A lot of work in vibration analysis involves both fundamental and particular analysis of plates of various forms. Vibration 

analysis is employed in many industries, including the nuclear energy, construction, automotive, petroleum, and sports sectors. 

Numerous characteristics, such as non-uniformity, variable thickness, viscoelastic effect, elastic basis, etc., are used in plate analysis. 

The vibration analysis of a right triangular plate with linearly variable thickness will be covered in this paper. taking into account the 

damping parameter and the visco-elastic effect. CSS and thickness variations in the x-direction are the problem's boundary conditions. 

The separation of variables and the Rayleigh Ritz technique have been used to solve the governing differential equation. Using the 

Gram Schmidt Orthogonalization technique, a two-term deflection function is produced. The logarithmic decrement, time period, 

frequency parameter, and deflection at various locations of the first two modes of vibration are calculated for a range of values of taper 

constants, damping parameters, and aspect ratio. 
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1. Introduction 
 

Numerous studies have been conducted on the vibrations of 

rectangular plates with varying thicknesses [1-3], but none 

have been conducted on visco-elastic plates. Sobotka [4] has 

examined the free vibrations of uniform visco-elastic 

orthotropic rectangular plates. Bhatnagar and Gupta [5-6] 

conducted a study on the impact of thermal gradient on 

vibration of visco-elastic circular and elliptic plates of 

varying thickness. An excellent monograph on triangular 

plates was published in 1969 by Leissa [7] and also flexural 

vibration studies on different shapes and configurations of 

plates are well documented. Research into triangular plate 

vibration is quite limited However, the triangular 

configuration of panels is common in many industries, so 

this area needs more research. One of the disadvantages of 

analyzing these problems is the difficulty of creating 

changes in two related variables to explain the triangle. 

Triangular plates with different configurations usually 

involve a lot of work and structural analysis, so more 

research is needed in this area.  

 

The concept of free vibration in a structure, plate or system 

is hypothetical because damping is always present in all 

forms. The literature review also shows that problem of 

damping decisions has not been studied much. This research, 

which incorporates damping into plate vibration studies, will 

benefit fields such as seismology, Nuclear structure design 

and the design of dam and bridge. The main problem in 

analyzing a triangular plate is the amount of work involved 

in implicitly constructing the transformation function to 

describe the triangle. As technology advances, researchers 

use different methods to study triangles. F.E.M is a 

particular example of the approach by [8,10] Gorman 

[11,12] proposed an analysis method to determine the 

location of the building structure in a triangle without 

vibration. He also worked on right angled triangles for 

vibration analysis under different boundary conditions. The 

main purpose of this study is to investigate the effect of 

constant x direction taper on the vibration of visco elastic 

right angled triangular plate with CSS boundary conditions 

of the edges. Assumptions of small deflections and linear, 

isotropic viscoelastic properties are made. The 

Viscoelasticity of the plate is assumed to be Kelvin type. 

Figures are made of norma metal "Duralium" material. The 

taper constant and damping parameter values for different 

aspect ratios, deviation of the first two vibration modes of 

time difference, frequency, time period and logarithmic 

decrement are calculated and the results are presented in 

tabular and graphical form. 

 

2. Mathematical Model for the Problem 
 

We obtain mathematical model for equation of isotropic 

right triangular plate with variable thickness by introducing 

K as the damping parameter and assume that the damping 

forces are proportional to velocity, then model equation 

given by Leissa [7] is transformed and equation of motion is 

given as  

 𝐷̂[𝑑̃(
𝜕4𝑤̃

𝜕𝑥4 + 2
𝜕4𝑤̃

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑤̃

𝜕𝑦4 ) + 2
𝜕𝑑̃

𝜕𝑥
(

𝜕3𝑤̃

𝜕𝑥3 +
𝜕3𝑤̃

𝜕𝑥𝜕𝑦2) +

2
𝜕𝑑̃

𝜕𝑦
(

𝜕3𝑤̃

𝜕𝑦3 +
𝜕3𝑤̃

𝜕𝑦𝜕𝑥2) +
𝜕2𝑑̃

𝜕𝑥2 (
𝜕2𝑤̃

𝜕𝑥2 + ʋ
𝜕2𝑤̃

𝜕𝑦2 ) +
𝜕2𝑑̃

𝜕𝑦2 (
𝜕2𝑤̃

𝜕𝑦2 +

ʋ
𝜕2𝑤̃

𝜕𝑥2 ) + 2(1 − ʋ)
𝜕2𝑑̃

𝜕𝑥𝜕𝑦

𝜕2𝑤̃

𝜕𝑥𝜕𝑦
] + 𝐾

𝜕𝑤̃

𝜕𝑡
+ 𝜌ℎ

𝜕2𝑤̃

𝜕𝑡2 = 0 (1) 

 

For solution of equation (1) the following form, which is 

taken in the form of products of two functions is assumed as 

𝑤̃(𝑥, 𝑦, 𝑡) = 𝑊̃(𝑥, 𝑦)𝑇̃(𝑡) (2)  

 

Substituting the value from (2) in (1) we get the following 

transformed equations i.e. (3) and (4)  

 
𝜕2𝑇̃

𝜕𝑡2 +
𝐾

𝜌ℎ

𝜕𝑇̃

𝜕𝑡
+ 𝒫2D̂𝑇̃ = 0 (3) 

Paper ID: SR251028090751 DOI: https://dx.doi.org/10.21275/SR251028090751 1630 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 and 𝑑̃(
𝜕4𝑤̃

𝜕𝑥4 + 2
𝜕4𝑤̃

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑤̃

𝜕𝑦4 ) + 2
𝜕 𝑑̃

𝜕𝑥
(

𝜕3𝑤̃

𝜕𝑥3 +
𝜕3𝑤̃

𝜕𝑥𝜕𝑦2) +

2
𝜕 𝑑̃

𝜕𝑦
(

𝜕3𝑤̃

𝜕𝑦3 +
𝜕3𝑤̃

𝜕𝑦𝜕𝑥2) +
𝜕2 𝑑̃

𝜕𝑥2 (
𝜕2𝑤̃

𝜕𝑥2 + ʋ
𝜕2𝑤̃

𝜕𝑦2) +
𝜕2 𝑑̃

𝜕𝑦2 (
𝜕2𝑤̃

𝜕𝑦2 +

ʋ
𝜕2𝑤̃

𝜕𝑥2 ) + 2(1 − ʋ)
𝜕2 𝑑̃

𝜕𝑥𝜕𝑦

𝜕2𝑤̃

𝜕𝑥𝜕𝑦
− 𝜌ℎ𝒫2𝑤̃ = 0 (4) 

 

Thus Equation (3) and (4) are the required differential 

equation of motion for the plate and time function of free 

and damped vibration having variable thickness 

respectively. We shall now separately solve above two 

equations.  

 

Time function of variable of plates 

Time functions of free vibrations of visco-elastic plates are 

defined by the general ordinary differential Equation (3). 

Their form depends on visco-elastic operator D̂.For Kelvin’s 

model, one can have D̂ ≡ {1 + (
Ƞ

𝐺
)(

𝑑

𝑑𝑡
)} (5) Using 

equation(5) in equation (3) ,one obtains T̈̃ + (
𝐾

𝜌ℎ
+

𝒫2Ƞ

𝐺
)Ṫ̃ +

𝒫2T̃ = 0 (6)  

 

Equation (6) is a differential eqation of order two for time 

function T. The Solution of equation (6) is established as 

𝑇̃(t) = 𝑒𝛼𝑡{c1̃𝑐𝑜𝑠𝛽𝑡 + c2̃𝑠𝑖𝑛𝛽𝑡} (7) 

 

Where α = −(
𝐾

2𝜌ℎ
+

𝒫2Ƞ

2𝐺
) and β = 𝒫√1 −

𝛼2

𝒫2 = 𝒫0 , here 𝒫 

is natural frequency, 𝒫0 is angular frequency and c1̃ , c2̃ are 

arbitrary but fixed which are calculated from the primary 

restriction of the plate. For the present study initial 

conditions as 𝑇̃ = 1 and 𝑇̇̃ = 0 at t=0 (8)  

 

Using equation (8) in equation (7), one obtains  c1̃=1 and 

c2̃= - 
𝛼

𝛽
 (9)  

 

Using equation (9) in equation (7), one have 𝑇̃(t)  =

𝑒𝛼𝑡{𝑐𝑜𝑠𝛽𝑡 − 
𝛼

𝛽
 𝑠𝑖𝑛𝛽𝑡} (10) 

 

For damped transverse vibration of the triangular plate 

amplitude (𝑤̃) can be expressed as  

 𝑤̃(𝑥, 𝑦, 𝑡) =  𝑊̃(𝑥, 𝑦)[𝑒𝛼𝑡 {𝑐𝑜𝑠𝛽𝑡 −
𝛼

𝛽
𝑠𝑖𝑛𝛽𝑡}] (11) 

 

Substituting the above value from (10) in (4) and equating 

the coefficient sine and cosine term we establish the 

equation for deflection function as 

𝑑̃(
𝜕4𝑊̃

𝜕𝑥4 + 2
𝜕4𝑊̃

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑊̃

𝜕𝑦4 ) + 2
𝜕 𝑑̃

𝜕𝑥
(

𝜕3𝑊̃

𝜕𝑥3 +
𝜕3𝑊̃

𝜕𝑥𝜕𝑦2)+2
𝜕 𝑑̃

𝜕𝑦
(

𝜕3𝑊̃

𝜕𝑦3 +

𝜕3𝑊̃

𝜕𝑦𝜕𝑥2) +
𝜕2 𝑑̃

𝜕𝑥2 (
𝜕2𝑊̃

𝜕𝑥2 + ʋ
𝜕2𝑊̃

𝜕𝑦2 ) +
𝜕2 𝑑̃

𝜕𝑦2 (
𝜕2𝑊̃

𝜕𝑦2 + ʋ
𝜕2𝑊̃

𝜕𝑥2 ) +

2(1 − ʋ)
𝜕2 𝑑̃

𝜕𝑥𝜕𝑦

𝜕2𝑊̃

𝜕𝑥𝜕𝑦
−

𝑘2𝑊̃

4𝜌ℎ
− 𝜌ℎ𝑃2𝑊̃ = 0 (12)  

 

Assuming that the thickness variation of the plate in x 

direction, the flexural rigidity of the plate 𝑑 ̃is written as 

(assuming possion’s ratio ʋ is constant) 

 𝑑̃=
𝐸ℎ0

3

12(1−ʋ2)
(1 +  𝛽∗ 𝑥

𝑎
)3. , 𝑑̃= 𝑑̃0(1 +  𝛽∗ 𝑥

𝑎
)3

 Where 

𝑑̃0=
𝐸ℎ0

3

12(1−ʋ2)
 (13)  

substituting (13) in (12) and introducing non dimensional 

variables X′=x/a and Y′=y/b and simplifying one gets 

a4(1 +  𝛽∗X′)4 (
𝜕4𝑊̃

𝜕X′4 + 2
𝜕4𝑊̃

𝜕X′2
𝜕Y′2 +

𝜕4𝑊̃

𝜕Y′4) + 2𝑎4(1 +

 𝛽∗X′)
𝜕

𝜕X′
(1 + 𝛽∗X′)3 (

𝜕3𝑊̃

𝜕X′3 +
𝜕3𝑊̃

𝜕X′𝜕Y′2) + 2𝑎4(1 +

 𝛽∗X′)
𝜕(1+ 𝛽∗X′)

3

𝜕Y′ (
𝜕3𝑊̃

𝜕Y′3 +
𝜕3𝑊̃

𝜕Y′𝜕X′2) + 𝑎4(1 +

 𝛽∗X′)
𝜕2(1+ 𝛽∗X′)

3

𝜕X′2 (
𝜕2𝑊̃

𝜕X′2 + ʋ
𝜕2𝑊̃

𝜕Y′2) + 𝑎4(1 +

 𝛽∗X′)
𝜕2(1+ 𝛽∗X′)

3

𝜕Y′2 (
𝜕2𝑊̃

𝜕Y′2 + ʋ
𝜕2𝑊̃

𝜕X′2) + 2(1 − ʋ)𝑎4(1 +

 𝛽∗X′)
𝜕2(1+ 𝛽∗X′)

3

𝜕X′𝜕Y′

𝜕2𝑊̃

𝜕X′𝜕Y′ −
𝑘2𝑎4𝑊̃

4𝜌h0 𝑑̃0
−

𝜌ℎ0𝑎4𝑃2

𝑑̃0
(1 +

 𝛽∗X′)2𝑊̃ = 0 (14) Replacing 
4𝜌h0 𝑑̃0

𝑎4  by 
𝐾0

2

µ2  and 
𝜌ℎ0𝑎4𝑃2

𝑑̃0
 by 

ʎ2.We shall now find the deflection function 𝑊̃ using 

orthogonal plate function. 

 

Orthogonal Plate Function 

 

The deflection function for a vibrating triangular plate may 

be defined by a set of two dimensional orthogonal plate 

function 𝑊̃(X′, Y′)=A1Ф1+A2Ф2 (15)  

where Ф1 and Ф2 are orthogonal plate function Ф1 (X′, Y′) is 

so chosen for triangular plate in our study such that it at least 

satisfy the geometrical boundary conditions of the plate and 

a better approximation and convergence is achieved if Ф1 

(X′, Y′) it also satisfy the natural boundary conditions. 

 

For present problem the required function in equation (15) is Фi (X′, Y′) = ∏ 𝛩𝑘(X′, Y′)3
𝑘=1  (16)  

 

The Π denotes the product of terms, 𝛩𝑘 are the edge functions which can be easily formulated if the edge support condition of 

the plate is known. The function 𝛩𝑘(X′, Y′) for different support conditions are summarized below  

(i)For simply supported edge 𝛩(X′, Y′)={

X′ − c , at edge X′ = c

Y′ − d , at edge Y′ = d

Y′ − tX′ − e , at edge Y′ = tX′ + e
 (17) 

 

(ii) for clamped edge 𝛩(X′, Y′)={

(X′ − c) 2 , at edge X′ = c

(Y′ − d) 2 , at edge Y′ = d

(Y′ − tX′ − e)2 , at edge Y′ = tX′ + e

 (18)  

 

 For Ф2(X′, Y′)=f2(X′, Y′)Ф1(X′, Y′)-a2,1Ф1(X′, Y′), 

∬ Фi(X′, Y′)Фj(X′, Y′)dX′dY′ = {
0 , 𝑖𝑓𝑖 ≠  𝑗 
1 , 𝑖𝑓 𝑖 = 𝑗

 (By gram 

Schmidt orthogonalization definition)  

Where 𝑎𝑚𝑖= 
∬ fm(X′,Y′)Ф1(X′,Y′)Фi(X′,Y′)dX′dY′

∬Фi(X′,Y′)Фi(X′,Y′)dX′dY′
     (19)  

 

Where fm (X′, Y′) is the generating function , r=⌈√𝑚 − 1 ⌉ 
and t = (m-1)-𝑟2 If t is even, thens=t/2;0≤ 𝑠 ≤ 𝑟 => fm 
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(X′, Y′)=X′𝑟 If t is odd, then s= (t-1)/2; 0≤ 𝑠 ≤ 𝑟 − 1 => fm 

(X′, Y′)=X′𝑟Y′𝑠 Where ⌈ ⌉ is denotes the greatest integer 

function and fm (X′, Y′) is calculated by deciding the 

parameters  

 
Boundary 

condition 

Generating 

functions 
Plate functions 

CSS f1(X′, Y′)=1 Ф1=Y′2
(X′-1)( Y′-X′) 

 f2(X′, Y′)= X′ Ф2=X′Ф1 (X′, Y′)-a2,1 Ф1 (X′, Y′) 

 

 Method of analysis: The plate geometry for thin triangular 

plate is given in fig. (a) and approximate solution is derived 

using Rayleigh’s principle, which states that  

 

 
 

 Ṽmax=T̃max (20)  

 

Here  Ṽmax is max. Strain energy and T̃max  is max. Kinetic 

energy   

  

Equation of motion:- The expression for K.E. (T) and S.E. 

(V) are T̃𝑚𝑎𝑥 =  
1

2
𝑎𝑏ʎ2 ∬[((1 + 𝛽∗X′)2 +

 (
K

K0
)2]W̃2((X′ , , Y′)𝑑X′dY′ (21)   

 Ṽ𝑚𝑎𝑥 =
1

2
𝑎𝑏 ∬{(1 + 𝛽∗X′)4 (

∂2W̃

∂X′2)
2

 +  2ʋ𝛼′2(1 +

 𝛽∗X′)4 (
∂2W̃

∂X′2

∂2W̃

∂Y′2) + 𝛼′4(1 + 𝛽∗X′)4 (
∂2W̃

∂Y′2)
2

 +  2(1 −

ʋ)(1 +  𝛽∗X′)4𝛼′2 (
∂2W̃

∂X′ ∂Y′
)

2

}dX′dY′ (22)  

 

Solution and frequency equation  
∂

∂Ai
(Ṽmax − T̃max ) (23)  

Which leads to the governing Eigen value equation ∑[𝐾𝑖𝑗 −

ʎ2𝑀𝑖𝑗]𝑐𝑖 = 0 (24)  

Kij=Pij+𝛼′4Qij + 𝛼′2 ʋ (Rij+Sij)+2(1- ʋ)𝛼′2Tij 

M𝑖𝑗 = ∬[(1 +  𝛽∗X′)2 +  (
K

K0
)2]Фi(X′, Y′)Фj(X′, Y′)dX′dY′,  

Pij=∬(1 + 𝛽∗X′)4 ∂2Фi(X′,Y′)

∂X′ ∂X′

∂2Фj(X′,Y′)

∂X′ ∂X′
dX′dY′,  

Qij= ∬(1 + 𝛽∗X′)4 ∂2Фi(X′,Y′)

∂Y′ ∂Y′

∂2Фj(X′,Y′)

∂Y′ ∂Y′
dX′dY′,  

Rij=∬(1 + 𝛽∗X′)4 ∂2Фi(X′,Y′)

∂Y′ ∂Y′

∂2Фj(X′,Y′)

∂X′ ∂X′
dX′dY′,  

Sij=∬(1 + 𝛽∗X′)4 ∂2Фi(X′,Y′)

∂X′ ∂X′

∂2Фj(X′,Y′)

∂Y′ ∂Y′
dX′dY′,  

Tij=∬(1 +  𝛽∗X′)4 ∂2Фi(X′,Y′)

∂X′∂Y′

∂2Фj(X′,Y′)

∂X′∂Y′
 dX′dY′ 

Fij= 𝐾𝑖𝑗 − ʎ2𝑀𝑖𝑗 , i,j=1,2  

 

On simplifying (24) one gets Fi1 A1 +Fi2 A2=0, i=1,2 (25)  

 

Where Fi1, Fi2 (i=1,2) involve parametric constant and the 

frequency parameter. 

 

For a non trivial solution, the determinant of the coefficient 

of equation (25) must be zero. So one gets the frequency 

equation as |
 F11 F12

F21 F22
| =0 (26) 

 

From equation (34), one can obtains a quadratic equation in 

ʎ2from which the two values of ʎ2 can found .After 

determining A1and A2 from equation (26), one can obtain 

deflection functionW̃. 

 

Choosing A1=1,one obtains A2=-
b11

b12
 and then W̃ comes out 

as W̃= Ф1 +(−
b11

b12
) Ф2 (27)  

 

Thus deflection w̃ may be expressed, by using equation (27) 

and (10) in equation (2), to give 

 w̃(x,y,t)= (Ф1 + (−
b11

b12
)Ф2)[ eαt {cosβt − 

α

β
sinβt}] (28) 

Time period of the vibration of the plate is given by K̃=
2Π

P
 , 

Where P is angular frequency  

Logarithmic decrement of the vibrations given by the 

standard formula ^ =
1

𝑁
𝑙𝑜𝑔𝑒(

w̃1

w̃𝑁+1
) (29) 

 

Numerical evaluations: E=7.08×1010N/M2, 

G=2.632×1010N/M2, Ƞ=14.612×105Ns/M2, 

ρ=2.80×103kg/M3, ʋ=0.3, h=0.01m. 

 

Result and discussion: Table1 constitutes 1st and 2nd 

frequency modes which are evaluated for the clamped 

simply supported visco elastic right triangular boundary 

condition for different values of damping parameter K/K0 

and taper parameter β* for Poisson ratio ʋ=0.3, thickness of 

plate h=0.01 and aspect ratio a/b=5/2. Projecting table1 

through graph fig.1 shows the behavior of frequency 

parameter ʎ with the increasing value of taper parameter 

(β*) for any fixed but arbitrary value of damping parameter 

viz. K/K0 (0.0, 0.2, 0.4, 0.6, 0.8,). 

 

Table 1: Frequency Parameter of a CSS Visco Elastic Triangular Plate For Different Values of Taper Constant, A Damping 

Factor and A Constant Aspect Ratio A/B=5/2 
β* 0.0 0.2 0.4 0.6 0.8 
𝐾

K0
 

MODE  

1st 

MODE 

2nd 

MODE 

1st 

MODE 

2nd 

MODE 

1st 

MODE 

2nd 

MODE 

1st 

MODE 

2nd 

MODE 

1st 

MODE 

2nd 

0.0 284.24 706.25 329.63 748.17 375.84 795.10 422.51 845.81 469.41 899.43 

0.2 278.72 692.53 324.84 736.44 371.62 784.84 418.71 836.68 465.96 891.19 

0.4 263.91 655.73 311.64 704.33 359.71 756.30 407.88 810.96 456.03 867.77 

0.6 243.73 605.60 292.81 659.04 342.17 714.97 391.56 772.94 440.81 832.56 

0.8 221.95 551.49 271.39 608.18 321.45 667.07 371.68 727.72 421.84 789.80 
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Figure 1: Frequency Parameter of a CSS Visco Elastic Triangular Plate for Different Values of Taper Constant, A Damping 

Factor and a Constant 

 

Frequency parameter ʎ shows increments in its value with 

increase in value of taper parameter for the both modes of 

vibration w.r.t distinct value of damping parameter. Also 

table 1 and figure 1, provide us the inference of damping 

parameter K/K0 on frequency parameter for two modes of 

vibration, if we take any fixed but arbitrary value of taper 

parameter β* (0.0,0.2,0.4,0.6,0.8) that there is decrement in 

value of ʎ with the increase of damping parameter K/K0 and 

this decrement is linear in nature. Table 2 and Figure 2 

explain the importance of frequency parameter for the first 

two modes of Vibration at different a/b ratios in the 

following three cases: 

(i) β*=0.2, 
K

K0
=0.2,(ii) β*=0.6, 

K

K0
=0.6 ,(iii) β*=0.8, 

K

K0
=0.8 

we observe that as value of a/b increases for different 

β*(0.0,0.2,0.4,0.6,0.8) these is parabolic increment in 

frequency parameter ʎ. 

 

Table 2: Frequency Parameter of a CSS Visco Elastic Right Triangular Plate for Different Aspect Ratio (a/b) 

a/b 
β*=0.2, K/K0=0.2 β*=0.6, K/K0=0.6 β*=0.8, K/K0=0.8 

MODE 1st MODE 2nd MODE 1st MODE 2nd MODE 1st MODE 2nd 

0.5 85.6522 223.5754 101.1533 279.3438 107.8517 304.6686 

1 123.2963 264.2706 145.1654 316.6385 154.3210 341.0806 

1.5 183.8450 354.9676 212.1673 403.7523 227.0462 425.1705 

2 242.1672 518.6366 293.2695 556.5276 315.7926 574.6746 

2.5 324.8414 736.4421 391.5597 772.9385 421.8376 789.8044 

 

 
Figure 2: Frequency Parameter of a CSS Visco Elastic Right Triangular Plate For n different Aspect Ratio (a/b) 

 

From table 3 and figure 3, for aspect ratio a/b=5/2 the time 

period K̃ have been computed for CSS right triangular plate 

for two modes of vibrations with different edge restrictions 

for variation in different value of taper constant β* and 

damping parameter K/K0. It can be seen from table 3 that as 

taper constant increases for any fixed but arbitrary value of 

damping parameter K/K0(0.0,0.2,0.4,0.6,0.8),the time period 

decreases.Table3 and figure 3 also provide the result that if 

we take any fixed value of taper parameter β* and value of 

damping parameter K/K0 increases frequency parameter 

increases and the increment is parabolic for 1st mode and 

linear for 2nd mode 

 

Table 3: Time Period (K̃×10-5) of a CSS Visco Elastic Triangular Plate for Different Values of Taper Constant, A Damping 

Factor and a Constant Aspect Ratio a/b=5/2 
𝛽* 0.0 0.2 0.4 0.6 0.8 

K/K

0 

MODE  

1st 

MODE 

2nd 

MODE  

1st 

MODE 

2nd 

MODE  

1st 

MODE 

2nd 

MODE  

1st 

MODE 

2nd 

MODE  

1st 

MODE 

2nd 

0.0 145.26 58.46 125.26 55.19 109.86 51.93 97.73 48.82 87.96 45.91 

0.2 148.14 59.62 127.11 56.07 111.11 52.61 98.61 49.35 88.61 46.33 

0.4 156.45 62.96 132.49 58.62 114.79 54.59 101.23 50.91 90.54 47.58 

0.6 169.40 68.18 141.01 62.65 120.67 57.75 105.45 53.42 93.67 49.59 

0.8 186.03 74.87 152.14 67.89 128.45 61.89 111.09 56.74 97.88 52.28 

1.0 205.43 82.68 165.36 74.08 137.81 66.85 117.95 60.74 103.04 55.53 
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Figure 3: Time Period of a CSS Visco Elastic Triangular Plate for Different Values of Taper Constant, A Damping Factor 

and a Constant Aspect Ratio a/b=5/2 

 

Table 4: Time Period (K̃×10-5) of a CSS Visco Elastic Right Triangular Plate for Different Aspect Ratio (a/b) 

a/b 
β*=0.2 K/K0=0.2 β*=0.6 K/K0=0.6 β*=0.8 K/K0=0.8 

MODE 1st MODE 2nd MODE 1st MODE 2nd MODE 1st MODE 2nd 

0.5 482.08 184.68 408.20 147.81 382.85 135.53 

1 334.89 156.24 284.44 130.40 267.56 121.06 

1.5 224.59 116.33 194.61 102.27 181.86 97.16 

2 170.50 79.61 140.79 74.19 130.75 71.85 

2.5 127.11 56.07 105.45 53.42 97.88 52.27 

 

 
Figure 4: Time Period of a CSS Visco Elastic Right Triangular Plate For Different Aspect Ratio (a/b) 

 

Table 4 and figure4 depicts value of time period K̃ for first 

two modes of vibration for different values of aspect ratio 

a/b for the following three cases: (i) β* =0.2, 
K

K0
 =0.2, (ii) 

β*=0.6, 
K

K0
=0.6, (iii) β* =0.8, 

K

K0
=0.8 

 

It is important to observe that when aspect ratio increases, 

time period reduces in the preceding three situations for 

both modes of vibration. This reduction is again parabolic 

in nature.  

Table 5: Logarithmic Decrement If a CSS Visco Elastic Triangular Plate for Different Values of Taper Constant, A Damping 

Factor and A Constant Aspect Ratio a/b=5/2 
β 0.0 0.2 0.4 0.6 0.8 

K/K0 
MODE 

1st 

MODE 

2nd 

MODE 

1st 

MODE 

2nd 

MODE 

1st 

MODE 

2nd 

MODE 

1st 

MODE 

2nd 

MODE 

1st 

MODE 

2nd 

0.0 -0.754 -1.874 -0.875 -1.986 -0.997 -2.110 -1.121 -2.245 -1.246 -2.387 

0.2 -1.996 -3.094 -2.025 -3.118 -2.069 -3.166 -2.125 -3.234 -2.189 -3.317 

0.4 -3.213 -4.253 -3.154 -4.196 -3.121 -4.174 -3.109 -4.179 -3.114 -4.207 

0.6 -4.416 -5.377 -4.267 -5.239 -4.158 -5.147 -4.079 -5.091 -4.026 -5.066 

0.8 -5.615 -6.490 -5.374 -6.268 -5.186 -6.104 -5.040 -5.985 -4.927 -5.904 

 

Table 5 contains the results of the logarithmic decrement of 

the ratio a / b = 5/2 for the first two types of vibration for 

different values of the taper constant and damping 

parameter, respectively. It is observed from the table that the 

logarithmic decrement decreases as the damping parameter 

increases. 
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Table 6: Deflection (𝑤̃) of a CSS Right Triangular Plate for Different Values of X′ and Y′, A Constant Aspect Ratio (a/b=5/2) 

and β*=0.4, K/K0=0.4 and Time T̃ =0K̃ AND 5K̃ 
X′ 0.2 0.4 0.6 

Y′ MODE 1st MODE 2nd MODE 1st MODE 2nd MODE 1st MODE 2nd 

0.2 
0 

0 

0 

0 

0.000514283 

0.857955× 𝟏𝟎−𝟏𝟎 

0.035374471 

0.305718× 𝟏𝟎−𝟏𝟎 

0.00417777645 

14.0197× 𝟏𝟎−𝟏𝟎 

0.022253429914 

0.386865× 𝟏𝟎−𝟏𝟎 

0.4 
0.01122541 

8.39392× 𝟏𝟎−𝟏𝟎 

-0.288319 

-1.11688× 𝟏𝟎−𝟏𝟎 

0 

0 

0 

0 

0.00835555291 

28.0394× 𝟏𝟎−𝟏𝟎 

0.04450685982 

0.773731× 𝟏𝟎−𝟏𝟎 

0.6 
0.05051438 

37.7727× 𝟏𝟎−𝟏𝟎 

-1.2974129 

-5.02585× 𝟏𝟎−𝟏𝟎 

-0.00462854 

-7.72159× 𝟏𝟎−𝟏𝟎 

-0.318370247 

-2.75146× 𝟏𝟎−𝟏𝟎 

0 

0 

0 

0 

0.8 
0.134705024 

100.727× 𝟏𝟎−𝟏𝟎 

-3.4597677 

-13.4023× 𝟏𝟎−𝟏𝟎 

-0.01645706 

-27.4546× 𝟏𝟎−𝟏𝟎 

-1.131983103 

-9.78297× 𝟏𝟎−𝟏𝟎 

-0.0334222116 

-112.158× 𝟏𝟎−𝟏𝟎 

-0.1780274393 

-3.09492× 𝟏𝟎−𝟏𝟎 

 

Table6 contains the deflection function values (i.e. the 

amplitude of the vibration modes )for the first two vibration 

modes with aspect ratios a/b = 5/2, respectively, for distinct 

values of X′ and Y′.The following parameter are used to 

calculate 𝑤̃. 

Table 6: β*=0.4, K/K0=0.4, time T̃ =0K̃ , time T̃=5K̃ and 

values in bold indicate deflection at T̃ =5K̃ 
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