International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

Power Division Theorem Proves Sharing Principle at a Node Disproves for Networks

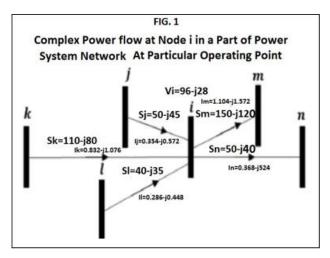
Dr. P. S. Kannan

Professor of Electrical and Electronics Engineering Fellow of the Institution of Engineers (INDIA) Former Dean & HOD of EEE Department, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

Abstract: Traditionally, Power System Engineers / Scientists apply Power Sharing Principle (PSP) for electrical tracing, determining the transmission cost and all other analysis needed in Deregulated Power Environment (DPE). This paper clearly demonstrates the innovated Power Division Theorem (PDT) proves the PSP applied at a Node in power system network and disproves for the network loads. It establishes a new Complex Power Sharing Principle (CPSP). However; the principle is not applicable for system network and valid for a Node only. The fundamental concept is the flow of current through a node or network creates power. The PDT is established by applying this concept along with the KCL The Complex Power Distribution Matrix (CPDM) generated by PDT at a node is the same created by CPSP, but invalid in the case of network. As an example, a node in a power system network with complex power flow at a particular operating point is considered in this paper for validation. In many IEEE research papers PSP is still now applied for the analysis in DPE. However, the innovated fundamental PDT which is the basis for PSP must be applied to perform any analysis and to solve all the problems related with the DPE. The PDT must be included in the curriculum of all the Universities as one of the Fundamental Circuit Theorem.

Keywords: Deregulated Power Environment, Power Sharing principle, Power Division Theorem, complex power distribution matrix, complex power sharing, Kirchhoff's Current Law, power system network, power tracing, transmission cost

1. Introduction

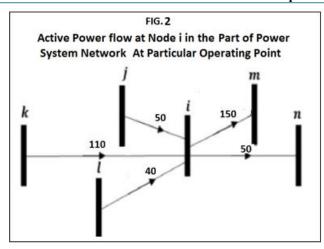

In Power Systems, proportional Power Sharing Principle is a assumption used in power tracing and transmission loss allocation that states incoming power flows at a bus are distributed proportionally among the outgoing lines. This means that at any point in the network, each outgoing line's power flow is a fraction of the total inflow. This principle while intuitive and widely used is a topological assumption. It is proved by the innovated fundamental concept of Power Division Theorem in this work. A tracing methodology based on PSP is proposed [5] for transmission pricing of crossborder trades in Europe. Electricity tracing problems are carried out [6] for allocating cost of transmission and loss allocation by modified methodology based on PSP. The paper [1] shows the development of equivalent circuit-based model by applying PSP to perform power and emission tracing in power grids.

The work [4] presented is to find the share in a consumer load by applying PSP. Impact of generators on the power system [3] in Deregulated Power Environment (DPE) has been considered. The work claims that the issues in the contribution of generators are solved by PSP. The real power transfer between individual generators and loads [7] has been performed by Graph Theory without load flow. The European zonal market design is explained [8] by a novel power flow tracing methodology. The work in the paper [2] is the determination allocation of transmission losses by tracing the reactive power flows. When networks are considered the PSP fails to give the correct shares on loads leaving from the network. The fundamental lapse is no power balance and the voltages at various load point are different. The PDT estimates the active and reactive power shares simultaneously.

The following example clarifies.

2. Example for Proving/disproving PSP

Actual complex power flow at a node **i** is shown in the **FIG.1**.The node **i** voltage Vi=96-j28 and the complex current flow in the three in feed lines {ik,il,ij} and outgoing lines (im,in) are calculated by dividing the complex powers by Vi conjugate.


TheFIG2.is considered for Power Sharing Principle (PSP).

Note that only active power flows are considered.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

The calculation and the results of Sharing of active and reactive power on each outgoing lines are shown in the Table 1a. and 1b

Table 1a (PSP) Active Power Sharing				
	OUT			
l .	m=150	n=50	.	
k=110	Pkm=150×110/200=82.5	Pkn=50×110/200=27.5	110	
IN I=40	Plm=150×40/200=30	Pln=50×40/200=10	40	
j=50	Pjm=150×50/200=37.5	Pjn=50×50/200=12.5	50	
	150	50	_	

	Table 1b (PSP) React m=120		
k=80	Qkm=120×80/160=60	Qkn=40×80/160=20	80
IN I=35	Qlm=120×35/160=26.25	Qln=40×35/160=8.75	35
j=:45	Qjm=120×45/160=33.75	Qjn=40×45/160=11.25	45
	120	40	

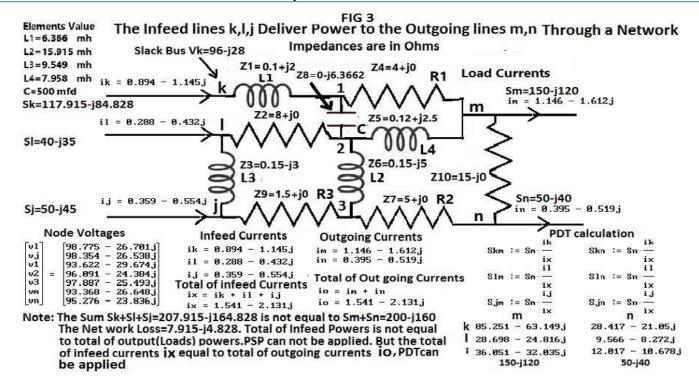
The FIG1.is considered for Power Division Theorem (PDT). Note that Currents through in feed lines (Source currents) are used for calculation. The results of Sharing of Each in feed line on each outgoing line are shown in the Table 2., is the Complex Power Distribution Matrix. The Results are the same as in Table 1a and 1b. PDT proved the PSP.

		Table 2 (PDT) Results OUT		
	_	Sm=150-j12 0	Sn=50-j 40	_
Sk=1	L10-j80	Skm=Sm ik/io= 82.5-j60	Skn=Sn ik/io=27.5-j20	110-j80
IN SI=4	0-j35	Slm=Sm il/io=30-j26.25	Sln=Sn il/io=10-j8.75	40-j35
Sj=5	0-j45	Sjm=Sm ij/io=37.5-j33.75	Sjn=Sn ij/io=12.5-j11.25	50-j45
		150-j12 0	50-j 40	•

Since the total of Complex Power inputs is equal to the total of Complex Outgoing Powers as shown in the FIG1, the complex Power Sharing Principle (CPSP) results the same Sharing as in the case of PDT (Table 2) as shown in the Table 3.

	Table 3 (CPSP) Results S=Sk+SI+Sj=Sm+Sn=200-j160				
	Sm=150-j120 OUT Sn=50-j40				
	Sk=110-j80	Skm=Sm Sk/S= 82.5-j60	Skn=Sn Sk/S =27.5-j20	110-j80	
IN	SI=40-j35	Slm=Sm Sl/S=30-j26.25	SIn=Sn SI/S=10-j8.75	40-j35	
	Sj=50-j45	Sjm=Sm Sj/S=37.5-j33.75	Sjn=Sn Sj/S=12.5-j11.25	50-j45	
		150-j12 0	50-j 40	•	

FIG 3 shows the delivering of power by three in feed lines at the nodes k,l,j to the outgoing lines from m,n through a network. The in feed powers of the lines at 1 and j are the same as in FIG1. (40-j35, 50-j45). The node k is considered as slack bus. The slack bus voltage is 96-j28 as in FIG.1. After finding the solution the slack bus current ik and power Sk are calculated. The slack bus power Sk=117.915- j84.828. The **network loss** = 7.915-j4.828. The value of in feed line currents ik=0.894-j1.145, il=0.288-j432, ij=0.359-j554.The load currents im=1.146-j1.612, in=0.395-j0.519. All are shown in the FIG3 and it is self explanatory. Since total of in feed Power (207.915-j164.828) is not equal to total of outgoing power (200-j160), PSP will not give correct results. But the total of input currents (1.541-j2.131) in to the network is equal to the total of outgoing currents; PDT establishes correct sharing and disproved the PSP. It indicates that the source currents scheduling is the correct approach instead of Powers scheduling in Power Systems.


3. Conclusion

Power Division Theorem (PDT) is a fundamental circuit theorem proves the existing Power Sharing Principle (PSP). The theorem is established based on KCL, exhibits many significant concepts of Back Power Flow (BPF), finding direct expression for Kirchmayer's Hypothetical Load point Voltage (HLPV) and the independent sharing of loads from the network. It proves the PSP for a node and disproves for networks. The PDT expression is simple, powerful and common for a node, network and part of a network. It is shown in this work finding active power and Reactive power sharing calculated separately by PSP are the same as the results obtained by PDT. The Complex Power Sharing Principle (CPSP) also demonstrated and validated by PDT. The PSP and (CPSP) are applicable for a Node only. So far there is no strict prove for PSP. Now, it is proved by PDT. The power balance is the base for (PSP). PDT disproved the PSP for networks by considering a network of having 8 nodes with three in feed lines and two out going lines as an example. The existing circuit theorems are having restriction in application to networks.PDT is not having any restriction and brought out many new concepts. The Theorem is a most fundamental theorem must be included by all the Universities in the topic of circuit theory like maximum power transfer theorem. This is a very important responsibility/duty of universities to promote the innovated fundamental theorem for reorganization.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

Acknowledgement:

The author thanks the Management, Principal and Staff of EEE, Thiagarajar College of Engineering, Madurai for providing research facilities.

References

- [1] An Equivalent Circuit-Based Approach for Power and Emission Tracingin Power Networks, Caisheng Wang, Senior Member, IEEE, Yang Wang, Senior Member, IEEE, Mahdi Rouholamini, Senior Member, IEEE, and Carol Miller, IEEE System Journal 2021.
- [2] A. Enshaee and G. R.Yousefi, "Tracing reactive power flows and allocating transmission lines losses: An analytical method," *IEEE Syst. J.*, vol. 13, no. 1, pp. 783–791, Mar. 2019
- [3] A. Singh, S. Saha, P. Das, S. Chatterjee, P. Chandrakar, and S. Debbarrna, "Power tracing in distribution network in deregulated power environment, "in *Proc. Int. Conf. Comput. Power, Energy, Inf. Commun.*, Chennai, India,2018, pp.442–448.
- [4] F. Gubina, D. Grgic, and I. Banic, "A method for determining the generator's share in a consumer load," *IEEE Trans. Power Syst.*, vol. 15, no. 4, pp. 1376–1381, Nov. 2000
- [5] W. Bialek and P. A. Kattuman, "Proportional sharing assumption in tracing methodology," *IEE Proc. Gener., Transmiss., Distrib.*, vol. 151, no. 4, pp. 526–532, 2004
- [6] M. Narimani, S. H. Hosseinian, and B. Vahidi, "A modified methodology in electricity tracing problems based on Bialek's method," *Int. J. Elect. Power Energy Syst.*, vol. 60, pp. 74–81, 2014.
- [7] F. F. Wu, Y. Ni, and P. Wei, "Power transfer allocation

for open access using graph theory-fundamentals and applications in systems without loop flow," *IEEE Trans. Power Syst.*, vol. 15, no. 3, pp. 923–929, Aug. 2000.

[8] D. Vlaisavljevic, I. M. Vlaisavljevic, M. Vukasovic, and Z. Vujasinovic, "Power flow coloring: A novel power flow tracing methodology tailored for the European zonal electricity market design," in *Proc. IEEE PES, Innov. Smart Grid Technol. Eur.*, Bucharest, Romania, 2019, pp. 1–5

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net