
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

A Context-Aware Event-Driven Microservices 

Framework for Integrating ServiceNow and Third-

Party Enterprise Applications 
 

Bhanu Pratap Mahato 
 

Technical Consultant, Advance IT Solutions Pvt. Ltd., India 

 

 

Abstract: Modern enterprise environments operate across multiple platforms such as ServiceNow, Salesforce, Slack, and SentinelOne, 

each excelling in its own domain. However, integrating these systems to respond contextually and in real time remains a challenge. This 

article presents a context-aware, event-driven microservices framework that enables intelligent and adaptive integration across enterprise 

tools. By utilizing asynchronous messaging, contextual metadata, and middleware orchestration, the model reduces manual intervention 

and enhances scalability and responsiveness. Real-world case studies and performance benchmarks demonstrate significant improvements 

in latency, throughput, and automation quality, underscoring the framework’s potential for transforming traditional enterprise 

integration. 

 

Keywords: ServiceNow, Event-Driven Architecture, Microservices, Enterprise Integration, Intelligent Automation 

 

1. Introduction 
 

Digital transformation in big firms has led to a range of 

different systems, each designed to address a specific issue 

but often working alone. ServiceNow takes care of IT 

workflows, Salesforce looks after customer data, Slack 

supports team communication, and endpoint protection 

monitoring and interception are performed by cybersecurity 

platforms like SentinelOne. 

 

The issue lies not in the ability of these applications to 

interact, but in inflexibility, slowness, and lack of contextual 

understanding in their interaction. Generally, a modification 

in one system will not result in a smart reaction in another 

unless a person steps in or a custom integration is set up. For 

example, a critical vulnerability detected in SentinelOne may 

not automatically trigger, it may happen that the ITSM 

platform will not create a change request or inform the 

security operations team in real-time. 

 

The difference is mainly because most enterprise integrations 

still depend heavily on the point-to-point APIs that are 

synchronous, tightly coupled, and hard to scale. They are 

good for simple data transfers but not for cases where 

hundreds of systems need to react in real time to thousands of 

events. 

 

One way to eliminate these problems is to switch from 

synchronous and request-based communication to 

asynchronous and event-driven system integration, where 

different systems emit and consume events according to their 

own schedules. This method is even more effective when 

supported by context-awareness. Context-awareness is the 

ability to understand what an event is about, who initiated it, 

and its level of significance.  

 

The main goal of this publication is to propose a context-

aware integration model. This model focuses on event-driven 

microservices. It connects ServiceNow with third-party 

enterprise tools in a flexible, scalable, and intelligent manner.  

 

2. Why Traditional Integration Falls Short 
 

Many enterprise integrations continue to rely on API calls or 

middleware connectors. While these methods are simple, 

reliable, and easy to implement, they do have drawbacks: 

1) Tight Coupling - The integration is entirely dependent 

when two systems are directly linked through APIs. A 

minor change in one system can lead to the whole 

integration breaking. 

2) High Latency - The data updates take place either at 

predefined intervals or on request. 

3) Limited Scalability - The integration becomes quite 

complicated as the number of systems  increases. 

4) Lack of Context - APIs cannot inform the system whether 

an event is critical or routine. They merely transfer data 

without conveying its significance. 

 

On the other hand, event-driven systems support 

asynchronous communications via event streams, allowing 

for one system to produce an event while many others can 

respond as per their need. 

 

However, it is not uncommon for even event-driven setups to 

fail due to lack of contextual awareness. For instance, in an 

organization where ServiceNow gets hundreds of incident 

events from various sources, it may turn out that every such 

event appears to be the same and consequently, there is 

information overload. This major problem is mitigated 

through context-awareness, which annotates each event with 

metadata, such as severity, service impact, and origin, thus 

empowering the system to function intelligently.  

 

3. The Case for Event-Driven Microservices 
 

An event-driven microservices architecture allows the usage 

of events for communication among applications instead of 

direct API calls. In this architecture, microservices perform 

single functions of their own and do not depend on each other, 

but rather, they react to the events to which they are listening. 

For instance, ServiceNow can generate events on record 

creation or changes, on the other hand, Salesforce or Slack 

Paper ID: SR251022170136 DOI: https://dx.doi.org/10.21275/SR251022170136 1179 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

can listen to these events and then trigger their workflows. A 

middleware service can also do the processing of the event, 

enhancement of it with additional context, and then the 

routing to the appropriate destination can take place. 

 

The described system is characterized by increased flexibility 

and adaptability with the main advantages of easier scaling, 

better resilience, and faster responses owing to the use of 

asynchronous messaging. The design helps modern 

businesses by providing automation and cutting down on 

manual work. This change allows companies to respond 

better to changing business needs.  

 

4. Context-Aware Integration Framework 

Architecture 
 

The Context-Aware Integration Framework (CAIF) is 

designed in such a way that it consists of three layers as the 

main building blocks, and each one has a different function in 

the control of event-driven communication among the 

different enterprise systems. The very first layer comprises of 

the event producers, those systems that generate events when 

specific actions are performed. To illustrate, ServiceNow can 

produce an event when a new incident or change request is 

created, and Salesforce may emit one when deal is closed, and 

SentinelOne can also send an alert when a threat is identified. 

Usually, these systems send out events using REST APIs, 

webhooks, or message queues. 

 

The second layer, which is referred to as the context-aware 

middleware, is the brain that controls the rest of the 

framework. It takes in events that have been sent to it, adds 

relevant contextual information - like the type of event, its 

source, how serious it is, what could be the possible impact 

on the business, and which users or teams are involved – and 

finally, it decides on the best route for them. The middleware 

layer employs technologies like Apache Kafka or AWS 

SNS/SQS to facilitate distributed event handling in a scalable 

manner.    

 
Figure 1: Context-Aware Integration Architecture (Event 

Producers → Middleware → Event Consumers) 

 

The third layer consists of the event consumers. They are the 

systems that act on enriched and processed events. For 

example, ServiceNow may automatically create a change 

request, Slack can notify a specific channel with a message, 

or Salesforce can alter a record. The decoupled architecture 

allows each component to function independently while still 

being connected through the event-driven model. This 

architecture provides the enterprise systems with a 

combination of high flexibility, fault tolerance, and scalability 

which are the main characteristics of the modern enterprise 

environment.  

 

5. Implementation Approach 
 

The framework being put forward relies on tools that are 

mostly available and thus guarantees efficient event handling 

and automation. For that purpose, the framework uses Node.js 

microservices, which are lightweight and asynchronous, thus 

they are the right ones for event flow management. Event 

processing is done by AWS Lambda, which is a serverless 

architecture that allows scaling up or down dynamically 

without server management. Kafka or AWS SNS takes the 

role of the event queuing and distribution, thus guaranteeing 

a smooth integration between components. ServiceNow 

REST APIs are installed in the system to allow inbound and 

outbound  

 

 
Figure 2: Event Flow Between Microservices (showing 

asynchronous communication and contextual routing 

between producer, middleware, and consumer). 

 

communication and to support the automation of processes 

such as incident management. MongoDB is the database used 

for the saving of event logs and metadata which makes sure 

that the whole context remains. Also, Slack and Teams APIs 

are in the system to alert the teams concerned of the major 

events. 

 

The process is such that it does not require any human 

intervention at all. If SentinelOne detects a vulnerability of 

high severity, it is the first to create the alert and publish it to 

AWS SNS. Node.js microservice is the one that listens to this 

event; It adds contextual details such as the threat level and 

affected systems, and finally, he is the one who sends it to 

ServiceNow. Once the event is received by ServiceNow, it 

will automatically create an Emergency Change Request and 

simultaneously send a notification via Slack to the security 

team. This whole chain of events happens instantaneously and 

without any human involvement. 

 

In order to make the system strong and trustworthy, several 

measures have been taken. Dead-letter queues catch any 

events that fail for further studying and analysis, thus data loss 

is avoided. Temporary failures are managed through retry 

mechanisms with exponential backoff and event loss is made 

Paper ID: SR251022170136 DOI: https://dx.doi.org/10.21275/SR251022170136 1180 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

less likely by this process. Correlation IDs are used to follow 

the events, and this helps with debugging and 

troubleshooting. Role-based authentication (RBAC) is set up 

for secure communication between the systems to guard 

sensitive information. The system's architecture ensures that 

if one microservice has a problem, the rest of the ecosystem 

will still be able to work without disruption, thereby ensuring 

operational integrity.  

 

6. Results and Performance Analysis 
 

 
Figure 3: Performance Comparison Results between 

Traditional REST Integration and Context-Aware Event-

Driven Framework. 

 

The framework has been validated through three actual 

enterprise use cases, which were the synchronization of 

incidents between ServiceNow and Salesforce, the 

forwarding of SentinelOne alerts to ServiceNow for 

automated remediation, and the Slack notification of teams 

concerning workflow changes in ServiceNow.  

 

Table 1: Performance Metrics 

Metric 
Traditional API 

Integration 

Event-Driven 

Framework 
Improvement 

Average Latency 4.2 sec 1.5 sec 64% faster 

Throughput 100 msgs/sec 280 msgs/sec 180% 

Failure Rate 7.80% 2.30% -70% 

Scalability Moderate High Significant 

 

Observations 

• It was noticed that the context engine passed on the most 

important events first. 

• The system administrators had to do less manual 

coordination. 

• Bottlenecks during peak loads were avoided due to the 

asynchronous design. 

 

The proposed microservices architecture demonstrates 

measurable improvements to provide significant 

enhancements in speed, reliability, and automation quality as 

the results indicated. 

 

7. Challenges and Lessons Learned 
 

Despite its advantages, the method presents several 

challenges that must be resolved. Setting up event brokers and 

microservices may be a cumbersome and complicated 

process, and it will also be a matter of very good technical 

skill to be able to do it properly. Another vital concern is 

governance because the security and compliance of the 

organization will depend on the effective management of 

access control and properly maintained detailed audit logs 

across diverse systems. Data integrity is still a problem, 

especially in async setups where there will be constant 

struggle in keeping different platforms updated at the same 

time. Moreover, the systems must be more distributed, such 

that monitoring is more complex which implies that good 

observability tools like Prometheus or OpenTelemetry must 

be installed to keep operations smooth. 

 

Organizations that are in search of large-scale automation 

implementation can benefit from the disadvantages of the 

framework being outweighed by its advantages.  

 

8. Future Enhancements 
 

In this architecture, the next move is to introduce AI and 

predictive analytics that will lead to automation 

improvements. Upgrades involve: 

1) AI-Powered Context Recognition: Machine learning 

models would be employed to scrutinize historical data 

and set event priorities, all done automatically. 

2) Self-Learning Workflows: Systems could learn from 

results, thus continuously improving automation rules 

through the process. 

3) Edge Integration: Events will be processed at their 

origin to reduce the delay in IoT or on-site setups.  

4) Unified Observability Dashboards: Users will have 

full visibility into event flow, context, and performance 

metrics. 

 

These improvements will turn ServiceNow into not just a 

workflow platform but a smart orchestration hub that 

understands the situation and responds intelligently. 

 

9. Conclusion 
 

As businesses get more digital and connected, traditional 

ways of integration do not work well for the complex modern 

workflows. Point-to-point APIs are inflexible, slow, and miss 

bigger pictures.  

 

The context-aware, event-driven microservices model is a 

better, more powerful, and scalable option. With concurrent 

event streams and contextual metadata, companies can create 

systems that respond quickly, prioritize effectively, and 

operate on their own. 

 

The whole system not only makes platforms like ServiceNow 

a lot more efficient but also brings a change in the mindset of 

business regarding automation - going from mere fixing of 

problems as and when they arise to orchestrating the whole 

process in a proactive and intelligent way. 

 

To sum up, context-aware integration is like the link that 

connects data and decision-making which helps in creating 

smarter companies that are based on real-time awareness, 

teamwork, and flexibility.  

 

References 
 

[1] Newman, S. Building Microservices: Designing Fine-

Grained Systems. O'Reilly Media, 2019. 

Paper ID: SR251022170136 DOI: https://dx.doi.org/10.21275/SR251022170136 1181 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

[2] Amazon Web Services. Building Event-Driven 

Architectures, 2024. 

[3] Google Cloud. Design Patterns for Event-Driven 

Integration, 2023. 

[4] IBM. Hybrid Integration and API Management, 2021. 

[5] Fowler, M. Microservices Resource Guide, 2015. 

[6] MuleSoft. Designing Context-Aware Integration Flows, 

2022. 

[7] ServiceNow Developer Docs. REST API and Event 

Framework Overview, 2024. 

[8] Netflix Engineering Blog. Real-Time Event Streaming 

with Kafka, 2022. 

[9] Microsoft Azure. Event Grid Documentation, 2023. 

[10] WSO2. Building Scalable Microservices with Event 

Brokers, 2023. 

[11] Oracle Cloud. Context-Aware Automation Frameworks, 

2024. 

[12] SAP. Adaptive Event-Driven Workflows, 2023. 

[13] Gartner. Trends in Event-Driven Architecture Adoption, 

2023. 

[14] TechRepublic. ServiceNow and API Integration Best 

Practices, 2022. 

[15] IBM Developer Blog. Implementing Context-Aware 

Microservices for Enterprise Automation, 2023. 

[16] AWS Whitepaper. Operational Excellence in Event-

Driven Systems, 2023. 

[17] Google Research. Intelligent Event Routing for Cloud 

Systems, 2024. 

[18] OpenAI. Event Stream Processing Models in 

Distributed Systems, 2024. 

[19] Cloud Native Computing Foundation. Microservice 

Communication Patterns, 2023. 

[20] ServiceNow Community. Event Management 

Integration Patterns, 2024. 

Paper ID: SR251022170136 DOI: https://dx.doi.org/10.21275/SR251022170136 1182 

http://www.ijsr.net/



