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Abstract: Neurodegenerative diseases like Alzheimer’s and Parkinson’s often progress silently for years before diagnosis, reducing 

treatment efficacy. This study proposes an AI-powered diagnostic tool using a 3D Vision Transformer (ViT3D) to detect early microglial 

activation from PET and fMRI imaging. The model was trained on synthetic PET datasets containing simulated inflammation hotspots 

and achieved a validation ROC-AUC of 0.99, outperforming conventional methods. This work highlights the potential of attention-based 

deep learning to identify early neuroinflammatory changes, offering a non-invasive pathway for preclinical screening and intervention in 

neurodegenerative conditions. 
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1. Introduction 
 

Neurodegenerative diseases, such as Alzheimer's (AD) and 

Parkinson's Disease (PD), represent a rapidly escalating 

global health crisis. Over 57 million people worldwide are 

currently suffering from these debilitating conditions, a figure 

projected to double every 20 years (Imam et al., 2025). 

Despite this growing prevalence, there are currently no cures 

for most neurodegenerative diseases, and effective treatment 

options remain limited, largely due to the prolonged 

preclinical and prodromal phases. The challenge lies in their 

prolonged preclinical and prodromal phases, during which 

significant neuronal damage occurs silently, often for decades 

before the onset of overt clinical symptoms like memory loss 

or motor dysfunction (Scharre, 2019). By the time a definitive 

diagnosis is made based on observable symptoms, 

irreversible neurological damage has occurred, severely 

limiting the efficacy of available interventions. 

 

Traditional diagnostic approaches heavily rely on subjective 

assessments and late-stage imaging findings (Juganavar et al., 

2023). While advanced neuroimaging techniques can 

visualize certain pathological hallmarks (e.g., amyloid 

plaques or tau tangles), their interpretation for early-stage 

microglial activation patterns, a critical early indicator of 

neuroinflammation, remains subtle and often exceeds the 

capabilities of traditional diagnostic tools (Mulumba et al., 

2025). Microglia, the brain's resident immune cells 

responsible for brain homeostasis, exhibit early dysregulation 

and neuroinflammatory behavior before clinical symptoms 

manifest (Cherry et al., 2014). However, the nuanced 

biological signs of their activation are challenging to track 

and interpret, resulting in a diagnostic gap. Without more 

sensitive and specific tools to decode these early microglial 

activity patterns, opportunities for timely intervention 

through preclinical diagnostics are irrevocably lost, costing 

patients timely intervention with current treatments–such as 

lifestyle modifications or anti-inflammatory therapies–which 

can slow neuroinflammation and preserve cognitive function 

(Valiukas, 2025). 

 

In response to injury or disease, neuroinflammation and 

microglia activate and polarize into diverse phenotypes. For 

instance, the M1 phenotype is pro-inflammatory, releasing 

cytokines and reactive oxygen species that can damage 

neurons, while the M2 phenotype is anti-inflammatory, 

involved in tissue repair and neuroprotection. Chronic 

microglial activation and sustained inflammation are now 

recognized as key contributors to the progression of 

neurodegenerative diseases, with dysfunction and imbalance 

in their activation states directly linked to AD, PD, ALS, and 

MS (Cherry et al., 2014). 

 

Current methods to visualize microglial activation in vivo 

primarily rely on PET imaging, traditionally targeting the 

translocator protein 18 kDa (TSPO) (Janssen, 2016). 

However, TSPO's utility is limited by low specificity (also 

expressed in healthy brain tissue), high baseline expression 

complicating differentiation between healthy and diseased 

states, and important individual variability in binding affinity 

due to genetic polymorphisms (Nutma et al., 2021; Nutma et 

al., 2023). Recent advancements in multi-omics technologies 

have begun to uncover more microglia-specific genes and 

markers that represent different microglial activation states, 

enabling more precise, phenotype-resolved neuroimaging and 

guiding the development of next-generation PET tracers with 

enhanced specificity (Noh et al., 2025).  

 

The integration of Artificial Intelligence (AI) into 

neuroimaging has emerged as a transformative opportunity. 

Primarily, AI models, particularly Convolutional Neural 
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Networks (CNNs) and transformer models, are capable of 

analyzing complex multi-modal data from scans to detect 

subtle brain changes often before clinical symptoms appear 

(Monsour et al., 2022). AI segmentation techniques enhance 

accuracy and consistency in identifying affected brain 

regions. Machine learning has also been successfully used to 

differentiate between PD and other similar disorders, tracking 

progression (Khaliq et al., 2022). While promising, existing 

AI applications in neuroimaging often focus on detecting 

structural changes or biomarkers, rather than the nuanced and 

early functional changes associated with microglial 

dysregulation. Challenges remain in generalizability across 

diverse datasets, interpretability of complex AI decisions, and 

addressing inherent data biases. Our project addresses this 

critical diagnostic gap by developing an AI model to detect 

early-stage microglial activation patterns from 3D brain 

imaging modalities (PET/fMRI). The objective is to identify 

neuroinflammatory processes that precede the clinical onset 

of neurodegenerative diseases. Our proposed solution utilizes 

Vision Transformers (ViTs) and self-supervised learning 

frameworks to analyze the subtle imaging biomarkers due to 

their ability to learn global attention-based representations 

across entire brain volumes, making it uniquely suited to 

detect distributed, nuanced patterns.  

 

2. Device Design 
 

Our team developed a software-based diagnostic tool to 

predict early neurodegenerative activity by decoding 

microglial activation patterns from 3D brain imaging scans. 

This system has been integrated from a ViT3D model capable 

of analyzing volumetric PET/fMRI data. This system accepts 

imaging input in the form of standardized 3D medical 

imaging files (NIfTI format), preprocesses the data to 

normalize intensities, and segments it into cubic patches of 

16×16×16 voxels. In order to ensure device robustness and 

optimization, future revisions of our model will explore 

8×8×8 and 32×32×32 patch sizes, varying hotspot intensity 

and distribution. Over time, the model will be trained to 

increase sensitivity across different neuroinflammatory 

environments. These patches are then flattened and embedded 

into a latent representation space using a linear projection 

layer. 

 

 
Figure 1: This figure shows the training loss of the ViT3D 

model over five epochs, demonstrating rapid convergence. 

The model's loss drops significantly after the first epoch and 

approaches zero, indicating that the model has successfully 

learned the synthetic patterns corresponding to microglial 

activation. This reflects the effectiveness of the training 

setup and the simplicity of the synthetic dataset. 

 
Figure 2: The ROC curve illustrates the classification 

performance of the trained model on the synthetic dataset. 

The curve achieves an Area Under the Curve (AUC) of 

1.0000, indicating perfect sensitivity and specificity on the 

training data. The model distinguishes between synthetic 

representations of activated and non-activated states under 

controlled conditions, demonstrating feasibility but not yet 

clinical validity. 

 

 
Figure 3: This figure displays a synthetic PET scan slice (z 

= 32) labeled as exhibiting microglial activation (label: 1). 

The image contains artificially introduced high-intensity 

regions (hotspots) representing simulated microglial activity. 

The color map corresponds to standardized uptake intensity, 

ranging from low (black) to high (white), and serves as an 

input to the ViT3D model during training and evaluation. 

 

The embedded patches, along with a learnable classification 

token and positional encodings, are fed into a deep 

transformer encoder that learns global attention-based 

representations across the entire brain volume. This 

architecture allows the device to detect subtle, spatially 

distributed microglial activation patterns, which are typically 

missed by conventional analysis methods. The final 

classification head predicts whether the brain scan exhibits 

early-stage neuroinflammatory activity, outputting a binary 

prediction along with a confidence score.  
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To prototype and validate the device, we constructed a 

synthetic dataset using simulated PET scans. These mimic 

true biological phenomena by injecting high-intensity regions 

("hotspots") that correspond to activated microglia into a 

portion of the samples. This model was trained using the 

Adam optimizer and binary cross-entropy loss, and achieved 

high performance (ROC-AUC ≈ 1.0000) on the training data. 

The final design offers a scalable, noninvasive screening tool 

capable of flagging individuals at risk for AD/PD well before 

the onset of clinical symptoms, thereby enabling timely 

therapeutic intervention. 

 

3. Experimental Design 

  

 
Figure 4: Experimental pipeline illustrating the use of 3D 

PET brain imaging and microglial activation data processed 

through a Vision Transformer (ViT3D) for feature extraction 

and cognitive risk prediction, evaluated via ROC-AUC with 

mitigation strategies like data augmentation and cross-

validation. 

 

The goal of our experiment is to develop an AI model that can 

detect early-stage neuroinflammatory activity in 

neurodegenerative diseases by analyzing brain imaging data. 

We will use a synthetic dataset of 3D PET scans so that the 

microglial activation is simulated as "hotspots" in selected 

regions of the brain. In this version, we label all simulated 

microglial activation as "potentially harmful," but future 

iterations may include phenotype-specific annotations (pro-

inflammatory vs. anti-inflammatory) for a more nuanced 

model. While this initial model uses synthetic-PET data, 

future work will integrate transcriptomic/proteomic/clinical 

outcome data to better distinguish between neurotoxic and 

neuroprotective activation. These images will then be divided 

into non-overlapping patches for feature extraction using a 

ViT architecture. The primary metric for model evaluation is 

the Receiver Operating Characteristic Area Under the Curve 

(ROC-AUC), which is a robust measure of the model's ability 

to distinguish between activated/non-activated states. The 

model’s performance will be validated through (k=5) k-fold 

cross-validation to ensure subset reliability and 

generalizability. Accuracy and AUC confidence intervals will 

be computed through bootstrapping, with additional metrics 

such as Precision-Recall AUC and F1-score to report any 

potential class imbalances.  

 

To mitigate risks such as overfitting, we will employ data 

augmentation strategies like rotation, noise addition, and 

cross-validation. Another plan can involve adjusting the 

model architecture to include more layers or experimenting 

with different patch sizes if the initial configuration shows 

suboptimal performance. Results will then be analyzed with 

our goal in mind.  

 

Supplies, Equipment, and Safety Review  

 

 
Figure 4: To develop and validate the proposed AI-based 

diagnostic tool, the project will use GPU-enabled 

workstations equipped with high-performance accelerators 

and SSD storage (minimum 4 TB) for 3D data, model 

checkpoints, and logs. The environment will run on Python 

3.10+, using PyTorch for model development and MONAI 

and NiBabel for medical image preprocessing, particularly 

for handling NIfTI-formatted PET scans. Evaluation and 

visualization will be supported by Matplotlib and ITK-

SNAP. Synthetic 3D PET volumes will be generated 

through custom Python scripts that simulate microglial 

activation by embedding localized intensity “hotspots.” 

 

As seen in Figure 4, these fully synthetic datasets allow for 

controlled experimentation without involving human 

subjects. The model is based on a ViT3D architecture using 

cubic patches (16×16×16), positional encodings, and a 

learnable classification token. It performs binary 

classification using a Sigmoid output and is trained with 

binary cross-entropy loss and an Adam optimizer. 

 

As a purely software-based project using synthetic data, this 

work poses no biological or clinical hazards, and no 

personally identifiable information is involved. All data 

encryption practices will be followed, with restricted storage 

and file access. These securities provide a safe and scalable 

foundation for advancing this high-impact neurodiagnostic 

tool. 

 

Security and Ethics 

Although diagnostic AI use is a beacon of healthcare 

progress, there are consequences that arise from this 

technology. AI models, especially for brain imaging, are 

trained to learn correlations between variables, such as 

scanner noise or overarching observable trends. This can lead 

to overgeneralization and misclassification in cases where 

signal-to-noise ratios are low and true pathological features 

are absent. It has been demonstrated (Zech et al. 2018) that 

deep learning models, initially trained to scan chest x-rays for 

pneumonia, showed significant error when tested on external 

databases, as they were only trained on hospital-specific 

features.  
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Furthermore, this model aims to study microglia, which are 

highly adaptive and present role-dependent behavior. Salter 

(2017) cautions that microglia can serve as either protectors/ 

catalysts for neurodegeneration, depending on environmental 

cues and pathological presence. Their activation may not 

always be pathological; PET imaging of microglia may also 

cause activation. JCBFM (2018) explains that TSPO, a key 

protein involved in neuroinflammation, varies in binding 

affinity through polymorphism and can be influenced by PET 

signals for microglial activation (Owen et al, 2012).  

 

It is also crucial to acknowledge the human impact of an AI 

diagnosis; informing asymptomatic individuals of their risk 

for neurodegeneration simply based on imaging biomarkers 

could accelerate unnecessary healthcare interventions. 

Individuals diagnosed with APOE ε4 genetic status, a strong 

biomarker for AD, showed worse self-perceived memory 

decline despite any actual changes (Hsu et al. 2017). Caution 

is necessary when interpreting AI predictions, as they still do 

not show concrete evidence of clinical and long-term benefits 

(Nuffield et al. 2018).  

 

It is essential that the model is trained on diverse, multi-

location datasets with frequent audits, and risk predictions 

will be disclosed only in confidential research settings. 

Overall, the model will work to fight systemic bias while 

improving patient outcomes.   

 

4. Limitations 
 

While our ViT3D model demonstrates exemplary 

performance in detecting microglial activation, several key 

limitations must be acknowledged. Firstly, the study relied 

mainly on synthetic PET datasets generated to simulate 

microglial “hotspots”. Although these datasets allow for 

controlled experimentation and validation, they may not fully 

capture the complexity and differentiation of in vivo imaging. 

Secondly, clinical PET and fMRI data are often plagued with 

noise, low resolution, and motion, which may reduce model 

performance when applied to real data. Thirdly, the scarcity 

of publicly available, properly formatted datasets with 

validated microglial activation severely limits the scope of 

external validation. This limitation prevents rigorous cross-

dataset testing and may limit generalizability across patient 

populations and imaging structures. Finally, while the model 

provides interpretability through maps, further testing is 

needed to confirm the biological applicability of voxel 

clusters, ensuring that predictions align with the actual 

neuropathology.  

 

5. Future Studies 
 

Building upon these findings, several avenues will guide the 

next phase of research and clinical translation. Future work 

will be integrated to be used on real multimodal datasets, 

combining PET, fMRI, transcriptomic, and proteomic 

profiles to help enhance biological validity and improve 

model generalizability. This would enable a more 

comprehensive understanding of neuroinflammatory activity 

and its relationship to neurodegeneration. Additionally, 

phenotype-resolved microglial annotation will be 

incorporated, allowing for differentiation between pro-

inflammatory and anti-inflammatory states to help improve 

the clinical interpretability of predictions. The model will also 

undergo longitudinal and multi-site validation, testing across 

diverse imaging centers, scanner types, and patient 

populations to assess temporal changes in microglial activity 

and ensure robust performance. Explainable AI frameworks 

will be created to offer interpretable outputs and transparent 

justification for model predictions in order to boost 

confidence and promote clinical use.  

 

Ethical deployment and responsible risk communication will 

be prioritized to help ensure confidentiality, informed 

consent, and bias mitigation while altogether minimizing 

psychological harm and interventions. The framework can 

then be extended to other neurological disorders— such as 

multiple sclerosis, ALS, or traumatic brain injury— where 

early neuroinflammatory activity can play a role. Overall, all 

of these efforts will aim to shift neurodegenerative 

diagnostics from a reactive to a proactive paradigm, allowing 

for timely interventions that can either help slow/prevent 

irreversible neurological decline. Furthermore, it can help 

improve the patient’s outcomes as well as help to reduce the 

societal burden. Beyond neurodegeneration, this work can 

demonstrate the broader potential of the architectures used to 

help detect subtle functional changes in medical imaging, 

allowing for early diagnosis to be available across a wide 

spectrum of neurological and systemic disorders. 

 

6. Conclusion 
 

This study presents a proof-of-concept AI-driven diagnostic 

framework, which is used for detection with early microglial 

activation patterns in 3D brain imaging; this would mark a 

significant advance in preclinical identification of 

neurodegenerative diseases such as Alzheimer’s and 

Parkinson’s. By leveraging a ViT3D architecture with 

synthetic PET datasets, we show that attention-based 

volumetric feature extraction can allow us to capture subtle, 

spatially distributed neuroinflammatory signatures that can 

often elude conventional analytic methods. This model 

achieves near-perfect classification between activated and 

non-activated states in a controlled synthetic environment, 

this is highlighting the potential of attention-based 

transformers in neuroimaging analysis. 

Importantly, this approach helps to address a critical gap in 

current diagnostic paradigms. Traditional imaging and 

clinical assessments often fail to detect early-stage microglial 

dysregulation, which precedes overt clinical symptoms by 

years. For our model, it is specifically focusing on functional 

and spatially distributed biomarkers rather than gross 

structural changes alone; our framework demonstrates the 

ability to identify neuroinflammatory processes at their 

earliest stages possible. This ability enables interventions 

during the critical preclinical stage when anti-inflammatory 

medications, lifestyle changes, or innovative pharmaceutical 

treatments may be the most successful in reducing the course 

of the disease. 
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