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Abstract: This study presents an analytical investigation of magneto–convective solute dispersion in a hydromagnetic natural convective 

flow through a vertical parallel–plate channel in the presence of a first–order bulk chemical reaction. Using Mei’s multi–scale 

homogenization technique, explicit expressions are derived for the velocity field, solute concentration, and Taylor dispersion coefficient, 

incorporating the combined effects of Rayleigh number (𝑹𝒂), Hartmann number (𝑴), and reaction rate (𝑲). The results indicate that 

increasing magnetic field strength enhances the Lorentz damping effect, which suppresses axial velocity and reduces solute mixing, while 

higher buoyancy forces associated with larger 𝑹𝒂 enhance convection and axial dispersion. A critical transition in horizontal 

concentration distribution from tri–modal to bi-modal occurs around 𝑹𝒂 ≈  𝟐𝟕𝟓, signifying a change in convective transport regime. 

The chemical reaction parameter acts as a reactive sink, exponentially diminishing solute intensity and lowering Taylor dispersivity, 

whereas prolonged dispersion times improve concentration uniformity. The study highlights the delicate interplay between magnetic 

confinement, buoyancy enhancement, and chemical consumption, providing a robust theoretical framework for understanding MHD–

assisted reactive solute transport in vertical channels relevant to biomedical microflows, liquid–metal heat exchangers, and chemical 

processing systems. 

 

Keywords: Hydromagnetic flow, Rayleigh number, Taylor dispersion, chemical reaction, natural convection, Mei’s homogenization 
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1. Introduction 
 

The study of magneto–convective solute transport in reactive 

fluid systems has attracted substantial attention in recent 

decades due to its profound implications in both engineering 

and biomedical applications. The simultaneous presence of 

magnetic fields, thermal gradients, and chemical reactions 

introduces complex coupling among momentum, energy, and 

mass transfer phenomena, making such flows a fertile area for 

analytical exploration. In practical contexts, such coupled 

transport processes occur in electrochemical reactors, liquid–

metal cooling systems, biological perfusion channels, and 

microfluidic devices used for targeted drug delivery or solute 

separation [1]–[3]. Understanding the parametric influence of 

magnetic field strength, buoyancy effects, and chemical 

reaction rates on solute dispersion is, therefore, essential for 

optimizing performance in these advanced fluidic systems. 

 

In natural convection flows, buoyancy-induced motion arises 

from temperature differences that produce density variations, 

thereby driving the flow without external pressure gradients 

[4]. When a transverse magnetic field is applied, an induced 

Lorentz force opposes the motion of the conducting fluid, 

altering the momentum distribution and modifying the rate of 

solute dispersion. This magnetohydrodynamic (MHD) 

damping effect has been shown to regulate both axial velocity 

and thermal transport, particularly in liquid–metal and ionized 

fluids [5]. Concurrently, the presence of chemical reactions 

introduces additional complexity: depending on whether the 

reaction is homogeneous (bulk) or heterogeneous (surface), it 

can act as a sink or source term for solute concentration, 

altering the effective diffusion and reaction kinetics [6], [7]. 

A rigorous understanding of such coupled MHD-reactive 

systems can be achieved through the Taylor dispersion 

framework, originally developed for solute transport in 

laminar flows [8]. Taylor’s theory, later extended by Aris [9], 

describes how the combined effects of axial convection and 

transverse molecular diffusion lead to enhanced effective 

dispersion. However, when buoyancy and magnetic effects 

are introduced, the dispersion coefficient becomes a function 

of both the Rayleigh number (𝑅𝑎)—which quantifies the 

strength of natural convection—and the Hartmann number 

(𝑀)—which represents the intensity of the magnetic field 

[10]. Several investigations have addressed the influence of 

MHD and chemical reactions on solute transport in porous or 

confined geometries, yet few have attempted a 

comprehensive analytical formulation that simultaneously 

incorporates all these interacting mechanisms [11]–[13]. 

 

The present study aims to analytically investigate the 

influence of the Rayleigh number on solute dispersion in a 

hydromagnetic natural convective flow through a vertical 

channel subjected to a first-order bulk chemical reaction. The 

mathematical formulation considers both Lorentz damping 

and buoyancy-driven convection, with the velocity and 

concentration fields coupled through temperature-induced 

density gradients. The analytical solution is derived using 

Mei’s multi-scale homogenization method [14], which allows 

a systematic decomposition of the governing equations into 

macroscale and microscale components, facilitating the 

derivation of an explicit expression for the Taylor dispersion 

coefficient under steady-state conditions. 

 

The novelty of this work lies in its unified treatment of MHD, 

buoyancy, and reactive effects on solute dispersion, providing 

a parametric framework to interpret the interplay between 

magnetic suppression, chemical attenuation, and thermal 

convection enhancement. The analysis predicts that higher 
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Hartmann numbers reduce axial dispersion due to stronger 

Lorentz damping, while larger Rayleigh numbers enhance 

buoyancy-driven mixing, leading to a transition in horizontal 

concentration profiles from tri-modal to bi-modal beyond a 

critical 𝑅𝑎 value (≈  275). These findings are expected to 

have direct relevance in the design of magnetically controlled 

heat exchangers, micro-reactors, biomedical solute transport 

systems, and liquid-metal flow devices, where precise 

modulation of solute dispersion is required for efficient 

operation. 

 

2. Formulation of the Mathematical Model 
 

The present analysis considers a steady, laminar, 

hydromagnetic, incompressible, viscous Newtonian fluid 

flow through an infinite vertical channel bounded by two 

stationary parallel plates separated by a distance 2ℎ. The 

lower and upper plates are maintained at different uniform 

temperatures and solute concentrations, namely 𝑇1, 𝐶1and 

𝑇2, 𝐶2, respectively (𝑇1 > 𝑇2, 𝐶1 > 𝐶2), establishing a coupled 

thermal and solutal buoyancy-driven natural convective 

motion. 

 

A uniform transverse magnetic field 𝐵0 is applied 

perpendicular to the plates, and the induced magnetic field is 

neglected due to a low magnetic Reynolds number (𝑅𝑒𝑚 ≪
1). The flow is further influenced by a first-order 

homogeneous chemical reaction occurring throughout the 

fluid domain. Under these physical assumptions, the 

governing field equations are developed based on the 

Boussinesq approximation, neglecting viscous dissipation, 

Hall currents, and radiation effects [1],[4],[5]. 

 

2.1 Governing Equations 

 

The dimensional governing equations describing the 

conservation of mass, momentum, energy, and solute 

concentration are formulated as follows [2]: 

 

Continuity equation 
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 0, 

ensuring mass conservation for the incompressible fluid. 

 

Momentum equation (𝑥 −direction) 

𝜌 (𝑢
∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
) = −

∂𝑝

∂𝑥
+ 𝜇

∂2𝑢

∂𝑦2
+ 𝜌𝑔𝛽𝑇(𝑇 − 𝑇0)

+ 𝜌𝑔𝛽𝐶(𝐶 − 𝐶0) − 𝜎𝐵0
2𝑢, 

where 𝑢, 𝑣→ velocity components in 𝑥, 𝑦; 𝜇→ dynamic 

viscosity; 𝜌→ density; 𝑔→ gravitational acceleration; 

𝛽𝑇 , 𝛽𝐶→ coefficients of thermal and solutal expansion; 𝜎→ 

electrical conductivity; and the term −𝜎𝐵0
2𝑢 represents 

Lorentz damping due to the applied magnetic field. 

 

For fully developed flow (
𝜕𝑢

𝜕𝑥
= 0 , 𝑣 = 0) , the equation 

simplifies to: 

𝜈
𝑑2𝑢

𝑑𝑦2
−

𝜎𝐵0
2

𝜌
𝑢 + 𝑔𝛽𝑇(𝑇 − 𝑇0) + 𝑔𝛽𝐶(𝐶 − 𝐶0) = 0 ,   (1) 

Energy equation 

(𝑢
∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
) = 𝛼

∂2𝑇

∂𝑦2
 ,                         (2) 

where 𝛼 = 𝑘/(𝜌𝑐𝑝) is the thermal diffusivity, 𝑘 is the thermal 

conductivity, and 𝑐𝑝 is the specific heat at constant pressure. 

The first term denotes convective energy transport, and the 

second represents conduction across the plates.[7] 

 

Under the assumption of fully developed flow (𝑣 = 0,
𝜕𝑇

𝜕𝑥
≠

0) , Equation (2) simplifies to: 

𝛼
𝑑2𝑇

𝑑𝑦2
= 0 .                                  (3) 

Species concentration equation 

 

For a first-order homogeneous chemical reaction, the solute 

transport equation is: 

(𝑢
∂𝐶

∂𝑥
+ 𝑣

∂𝐶

∂𝑦
) = 𝐷𝑚

∂2𝐶

∂𝑦2
− 𝐾𝑟(𝐶 − 𝐶0) ,          (4) 

where 𝐷𝑚 is the molecular diffusivity and 𝐾𝑟  is the chemical 

reaction rate constant. 

 

For a fully developed steady flow, this simplifies to: 

𝐷𝑚

∂2𝐶

∂𝑦2
− 𝐾𝑟(𝐶 − 𝐶0) = 0 ,                  (5) 

 

2.2 Boundary Conditions 

 

The boundary conditions for the flow are prescribed as: 

{
𝑢 = 0,  𝑇 = 𝑇1,  𝐶 = 𝐶1 at  𝑦 = −ℎ ,
𝑢 = 0,  𝑇 = 𝑇2,  𝐶 = 𝐶2  at  𝑦 = +ℎ,

               (6)  

where 𝑇1 > 𝑇2 and 𝐶1 > 𝐶2, indicating upward buoyancy-

driven convection due to higher temperature and 

concentration at the lower wall. 

 

2.3 Non–Dimensionalization 

 

To simplify the governing equations, we define the following 

dimensionless variables: 

𝑌 =
𝑦

ℎ
 , 𝑈 =

𝑢

𝑢0

 , 𝜃 =
𝑇 − 𝑇0

𝑇1 − 𝑇2

 , 𝜙 =
𝐶 − 𝐶0

𝐶1 − 𝐶2

 ,        (7) 

where  𝑢0 =
𝑔𝛽𝑇(𝑇1−𝑇2)ℎ2

𝜈
 is the reference velocity scale. 

 

Using these substitutions, Equation (1) becomes the 

dimensionless momentum equation: 

𝑑2𝑈

𝑑𝑌2
− 𝑀2𝑈 + 𝑅𝑎𝑇𝜃 + 𝑅𝑎𝐶𝜙 = 0 ,              (8) 

where 𝑀 = 𝐵0ℎ√
𝜎

𝜇
  (Hartmann Number), 𝑅𝑎𝑇 =

𝑔𝛽𝑇(𝑇1−𝑇2)ℎ3

𝜈𝛼
 

(Thermal Rayleigh Number), 𝑅𝑎𝐶 =
𝑔𝛽𝐶(𝐶1−𝐶2)ℎ3

𝜈𝐷𝑚
 (Solutal 

Rayleigh Number). 

 

Similarly, the dimensionless energy and species concentration 

equations are written as: 

𝑑2𝜃

𝑑𝑌2
+ 𝑃𝑒

𝑑𝜃

𝑑𝑋
= 0 ,                                        (9) 

𝑑2𝜙

𝑑𝑌2
+ 𝑆𝑐 𝑃𝑒

𝑑𝜙

𝑑𝑋
− 𝛾𝜙 = 0 ,                     (10) 

 

where the additional dimensionless groups are defined as 

𝑃𝑒 =
𝑢0ℎ

𝛼
 (Péclet Number), 𝑆𝑐 =

𝜈

𝐷𝑚
 (Schmidt Number), 𝛾 =

𝐾𝑟ℎ2

𝐷𝑚
 (Dimensionless Chemical Reaction Rate Parameter). 
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2.4 Solution of the Thermal and Solutal Fields 

 

Integrating Equation (9) twice under the boundary conditions 

𝜃 = 1 at 𝑌 = −1 and 𝜃 = 0 at 𝑌 = +1, we obtain: 

𝜃(𝑌) =
1

2
(1 − 𝑌),                                     (11) 

assuming a linear temperature gradient between the plates. 

 

Similarly, solving Equation (10) for steady-state conditions 

(𝑃𝑒 ≪ 1) yields: 

𝜙(𝑌) =
cosh(√𝛾 𝑌)

cosh(√𝛾)
,                                   (12) 

 

Substituting Equations (11) and (12) into Equation (8), we 

obtain the governing differential equation for velocity: 

𝑑2𝑈

𝑑𝑌2
− 𝑀2𝑈 + 𝑅𝑎𝑇 (

1 − 𝑌

2
) + 𝑅𝑎𝐶

cosh(√𝛾 𝑌)

cosh(√𝛾)
= 0 .   (13) 

 

The general solution of Equation (13) is: 

𝑈(𝑌) = 𝐴1 cosh(𝑀𝑌) + 𝐴2 sinh(𝑀𝑌) +
𝑅𝑎𝑇

2𝑀2
(1 − 𝑌)

+
𝑅𝑎𝐶

𝑀2cosh (√𝛾)
[cosh (√𝛾𝑌) −

𝑀2

𝛾
] (14) 

where 𝐴1 and 𝐴2 are integration constants determined from 

the boundary conditions  𝑈(±1) = 0. 

 

Applying the boundary conditions leads to: 

𝐴1 =
𝑅𝑎𝑇

2𝑀2
 
cosh (𝑀) − 1

sinh (𝑀)
 ,

𝐴2 = −
𝑅𝑎𝐶

𝑀2
 

cosh(√𝛾) − 1

sinh(𝑀) cosh(√𝛾)
 .       (15) 

 

Substituting these constants back into Equation (14) yields the 

final expression for the non-dimensional velocity 

distribution: 

𝑈(𝑌) =
𝑅𝑎𝑇

2𝑀2
[(1 − 𝑌) −

cosh(𝑀𝑌) − 1

cosh(𝑀) − 1
]

+
𝑅𝑎𝐶

𝑀2
[
cosh (√𝛾𝑌) − cosh (√𝛾)

cosh(√𝛾) [cosh(𝑀) − 1]
] .   (16) 

 

2.5 Shear Stress, Pressure Gradient, and Flow Rate 

 

The wall shear stress at any wall is obtained as: 

𝜏𝑤 = 𝜇 (
𝑑𝑢

𝑑𝑦
)

𝑦=±ℎ

= 𝜇
𝑢0

ℎ
(

𝑑𝑈

𝑑𝑌
)

𝑌=±1 .
                                (17) 

The dimensionless volumetric flow rate through the channel 

is: 

𝑄 = ∫ 𝑈(𝑌) 𝑑𝑌 ,                                                                  (18)
+1

−1

 

which, after substitution from Equation (16), gives the 

dependence of flow rate on Hartmann number (𝑀), Rayleigh 

number (𝑅𝑎), and reaction parameter (𝛾). 
 

2.6 Analytical expression for the Taylor dispersion 

coefficient 𝑫𝑻 

 

The steady advection-diffusion–reaction equation for the 

solute concentration 𝐶(𝑥, 𝑦)in the dimensional form 

𝑢(𝑦)
𝜕𝐶

𝜕𝑥
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2
− 𝐾𝑟(𝐶 − 𝐶0).                                      (19) 

We assume slow axial variation and adopt Mei’s multi-scale 

homogenization by introducing a slow axial coordinate 𝑋 =
𝜀𝑥 (𝜀 ≪ 1) and the fast transverse coordinate 𝑦 (unchanged) 

[8],[14]. Expand the concentration in powers of 𝜀: 

 

𝐶(𝑥, 𝑦) = 𝐶0(𝑋) + 𝜀 𝐶1(𝑋, 𝑦) + 𝜀2𝐶2(𝑋, 𝑦) + ⋯ …       (20) 

 

Insert (19) into (20), collect orders in 𝜀and use the solvability 

condition to obtain the homogenized axial transport equation 

for the cross-sectional mean 𝐶‾(𝑋) ≡ 𝐶0(𝑋): 

 

𝜕𝐶̅

𝜕𝑡
|

adv

+ 𝑢̅
𝑑𝐶̅

𝑑𝑋
=

𝑑

𝑑𝑋
(𝐷𝑇

𝑑𝐶̅

𝑑𝑋
) − 𝐾𝑟𝐶̅ ,                              (21) 

 

where 𝑢‾  is the cross-sectional mean of 𝑢(𝑦), and 𝐷𝑇  is the 

effective or Taylor dispersion coefficient to be determined. 

The chemical reaction appears as a sink −𝐾𝑟𝐶‾ because 

reaction is homogeneous [8].  

 

Equation (13) clearly illustrates that the Lorentz force term 

(−𝑀2𝑈) opposes motion, reducing both velocity and flow 

rate, while the thermal and solutal buoyancy terms enhance 

fluid motion. The chemical reaction introduces an exponential 

decay in solute concentration, acting as a reactive sink, 

thereby weakening the buoyancy contribution from 

concentration gradients. The interplay between these 

opposing mechanisms defines the nature of solute dispersion 

and velocity distribution in the MHD natural convective 

system [10],[14],[15]. 

 

3. Results and Discussion 
 

The present section provides a comprehensive analysis of the 

computational outcomes obtained for velocity, dispersion 

coefficient, and concentration fields under the combined 

influence of magnetic field intensity, buoyancy effects, 

chemical reactivity, and Péclet number. The variations of 

these dependent parameters are interpreted using the non-

dimensional governing relations derived earlier. Figures 2–6 

collectively depict the hydrodynamic and mass transport 

behavior of the magnetohydrodynamic (MHD) reactive flow 

system within the vertical channel. 

 

3.1 Velocity Field Behavior (Fig. 1) 

 

 
(a) 
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(b) 

Figure 1: Velocity distribution for different values of (a) 

Hartmann number (𝑀) when 𝑅𝑎 = 5, (b) Rayleigh number 

(𝑅𝑎) when 𝑀 = 1 

 

Figure 1 depicts the velocity distribution 𝑢(𝑦)for different 

values of the Hartmann number (𝑀) and Rayleigh number 

(𝑅𝑎). As shown in Fig. 1(a), the velocity profile maintains a 

symmetric parabolic nature across the mid-plane of the 

channel, with the maximum velocity at 𝑦 = 0 and zero 

velocity at the stationary walls 𝑦 = ±1 . When the magnetic 

parameter 𝑀 increases from 1 to 10, a noticeable reduction in 

the magnitude of the axial velocity occurs. This behavior can 

be attributed to the action of the Lorentz force (−𝜎𝐵0
2𝑢), 

which resists fluid motion and converts part of the kinetic 

energy into magnetic dissipation (Joule heating) [5],[16]. 

Consequently, the velocity field becomes progressively 

flattened as 𝑀 increases, illustrating the magnetic damping 

phenomenon characteristic of electrically conducting fluids in 

MHD channels. 

 

Conversely, Fig. 1(b) shows the velocity variation for several 

values of the Rayleigh number 𝑅𝑎, keeping 𝑀 = 1. An 

increase in 𝑅𝑎 significantly enhances the velocity magnitude 

due to stronger buoyancy-driven convection. The buoyant 

term 𝑅𝑎𝑇𝜃 + 𝑅𝑎𝐶𝜙 in the momentum equation introduces an 

upward thrust in the flow, which accelerates the fluid in the 

central region. Thus, a competition between Lorentz damping 

and buoyant acceleration defines the hydrodynamic regime: 

for high 𝑀, flow becomes magnetically restrained, whereas 

for large 𝑅𝑎, buoyancy-induced acceleration dominates 

[4],[15]. 

 

3.2 Taylor Dispersion Coefficient (𝑫𝑻) (Fig. 2) 

 

 
(a) 

 

 
(b) 

Figure 2: Taylor dispersion coefficient for different values 

of (a) Hartmann number (𝑀) when 𝑅𝑎 = 5, 𝐾 = 1, (b) 

Rayleigh number (𝑅𝑎) when 𝑀 = 1, 𝐾 = 1 . 
 

The variation of the dimensionless Taylor dispersion 

coefficient (𝐷𝑇) with Hartmann number and Rayleigh number 

is presented in Fig. 2. As shown in Fig. 2(a), the coefficient 

𝐷𝑇decreases monotonically with increasing 𝑀. This occurs 

because the magnetic field suppresses the velocity gradients 

across the channel, leading to smaller deviations from the 

mean velocity (𝑈 − 𝑈‾ ). Since 𝐷𝑇 ∝ ∫ (𝑈 − 𝑈‾ )2 𝑑𝑦, this 

directly results in a decrease in the dispersion coefficient 

[8],[14]. In the limit 𝑀 → ∞, the flow becomes almost plug-

like, and the effective dispersion tends to its molecular value 

𝐷𝑇 → 𝐷𝑚. 

 

In contrast, Fig. 2(b) demonstrates that an increase in 

𝑅𝑎significantly enhances 𝐷𝑇 . The reason lies in the 

buoyancy-induced increase in the flow velocity 𝑢0, which 

strengthens convective transport and thereby amplifies 

longitudinal dispersion. At larger Péclet numbers (𝑃𝑒 > 10), 

the convective contribution dominates, leading to nonlinear 

growth in 𝐷𝑇 . This agrees with the theoretical prediction of 

Taylor [8] and Aris [9], who established that for laminar shear 

flow, 𝐷𝑇 = 𝐷𝑚(1 + 𝛼𝑃𝑒2), where 𝛼is a shape-dependent 
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coefficient. Hence, the present results confirm that buoyancy 

effects magnify solute mixing, while magnetic intensity 

suppresses it — providing a physical handle to tune 

dispersion efficiency in MHD-controlled systems. 

 

3.3 Vertical Concentration Distribution (Fig. 3) 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 3: Vertical concentration distribution for different 

values of (a) Hartmann number (𝑀) when 𝑅𝑎 = 5, 𝐾 =
1, (b) Rayleigh number (𝑅𝑎) when 𝑀 = 1, 𝐾 = 1 , (c) 

Rayleigh number (𝑅𝑎, higher value) when 𝑀 = 1, 𝐾 = 1 

and (d) bulk reaction parameter (𝐾) when 𝑀 = 1, 𝑅𝑎 = 5 . 
 

The vertical solute concentration profiles under varying 𝑀, 

𝑅𝑎, and 𝐾 are displayed in Fig. 3(a–d). In Fig. 3(a), as 𝑀 

increases, the amplitude of the concentration profile 𝐶𝑃𝑒  

gradually diminishes, indicating a reduction in axial 

dispersion. The Lorentz force acts as a retarding agent that 

restrains convective diffusion, resulting in solute 

accumulation near the core and a flatter distribution. This 

magnetic suppression is analogous to the flow retardation 

observed in MHD heat and mass transfer studies [8],[15]. 

 

On the other hand, Fig. 3(b) shows that higher 𝑅𝑎values 

enhance solute spreading, owing to stronger thermally driven 

buoyant motion. The convective upthrust lifts the solute 

toward the channel core, increasing mixing and concentration 

amplitude. Figures 3(c) and 3(d) present the influence of 

extended Rayleigh numbers (𝑅𝑎𝐵) and reaction parameter 

(𝐾), respectively. As 𝑅𝑎𝐵  rises, diffusion dominates less and 

the concentration gradients broaden. However, when 

𝐾increases, chemical reactions consume solute species, 

reducing 𝐶𝑃𝑒 sharply. The reaction term −𝐾𝑟(𝐶 − 𝐶0) acts as 

a depletion sink in the concentration equation, thereby 

weakening solutal buoyancy and decreasing solute 

availability [17]. These observations highlight that both 

electromagnetic and chemical fields can be manipulated to 

achieve precise solute control in reactive MHD flows. 

 

3.4 Mean Concentration Profiles (Fig. 4) 
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(a) 

 

 
(b) 

Figure 4: Vertical mean concentration distribution for 

different values of (a) Hartmann number (𝑀) when 𝑅𝑎 =
5, 𝐾 = 1, 𝑃𝑒 = 30 , (b) Rayleigh number (𝑅𝑎) when 𝑀 =

1, 𝐾 = 1 . 
 

The averaged solute concentration 𝐶̃𝑃𝑒 across the channel is 

plotted in Fig. 4(a–b). The profiles are nearly symmetric about 

the centerline, confirming the laminar and fully developed 

nature of the flow. As 𝑀 increases (Fig. 4(a)), the central 

concentration peak slightly flattens, suggesting uniform 

solute dispersion under strong magnetic fields. The Lorentz-

induced damping effectively smoothens the axial 

concentration gradient, producing a more homogeneous 

solute distribution. 

 

In contrast, Fig. 4(b) indicates that larger 𝑅𝑎values cause a 

steeper concentration rise at the center, accompanied by 

increased axial spreading. The buoyant forces augment 

convection, accelerating solute transport along the channel. 

This enhancement in 𝐶̃ correlates with the growth of 𝐷𝑇  in 

Fig. 4(b), validating the mutual dependence between 

dispersion and mean concentration distribution. These 

findings are consistent with the classical observations of Aris 

[9] and recent MHD analyses by Rashidi and Shah [15], 

confirming that buoyancy-driven transport leads to 

intensified solute diffusion. 

 

3.5 Horizontal Concentration Distribution (Fig. 5) 

 

 
(a) 

 

 
(b) 
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(c) 

 

(d) 

Figure 5: Horizontal concentration distribution for different 

values (a) Hartmann number (𝑀) when 𝑅𝑎 = 25, 𝐾 =
1, 𝜏 = 1.5, 𝜉 𝑃𝑒⁄ = 0.125 (b) Rayleigh number (𝑅𝑎) when 

𝑀 = 1, 𝐾 = 1, 𝜏 = 1.5, 𝜉 𝑃𝑒⁄ = 0.125 (c) downstream 

locations when  𝑀 = 1, 𝑅𝑎 = 25, 𝐾 = 1, 𝜏 = 1.5 and (d) 

upstream locations when  𝑀 = 1, 𝑅𝑎 = 25, 𝐾 = 1, 𝜏 = 1.5 . 
 

Figure 5 illustrates the horizontal variation of the 

dimensionless concentration 𝐶𝑃𝑒 across the channel height. In 

Fig. 5(a), increasing 𝑀 leads to narrower profiles, 

emphasizing that the magnetic field restricts lateral diffusion 

and aligns the concentration distribution closer to the walls. 

The stronger the magnetic damping, the more the flow 

resembles a plug flow with limited cross-stream mixing. 

 

In Fig. 5(b), the increase in 𝑅𝑎produces the opposite effect — 

widening of concentration contours and enhanced transverse 

diffusion. As buoyancy grows, the mixing of solute becomes 

more vigorous, leading to a broader plume. Figures 5(c) and 

(d) show downstream and upstream concentration contours at 

various axial positions (𝜉/𝑃𝑒). The downstream regions 

(𝜉/𝑃𝑒 > 0) exhibit elongated profiles due to convective 

stretching, whereas the upstream regions (𝜉/𝑃𝑒 < 0) show 

compression of the concentration field. This asymmetry 

reflects the combined influence of convection and dispersion, 

typical in buoyancy-assisted reactive flows [7]. 

 

The overall behavior of the system is governed by the 

complex interplay among magnetic, buoyant, and reactive 

effects, which collectively determine the velocity field, solute 

dispersion, and concentration distribution within the MHD-

assisted channel. The magnetic field, characterized by a high 

Hartmann number (𝑀), exerts a significant damping influence 

on fluid motion. It suppresses velocity gradients and reduces 

convective shear, leading to a lower Taylor dispersion 

coefficient (𝐷𝑇). Consequently, solute particles become more 

localized within the flow domain. This phenomenon of 

magnetic confinement is particularly advantageous in 

microfluidic applications, where precise flow regulation and 

targeted solute transport are essential. 

 

In contrast, buoyancy effects, represented by the Rayleigh 

number (𝑅𝑎), act as a driving mechanism for convective 

enhancement. As 𝑅𝑎 increases, thermal and solutal buoyant 

forces strengthen upward motion, which intensifies the 

convective mixing of solute. This results in higher dispersion 

coefficients, broadened concentration profiles, and faster 

solute spreading across the flow field. Such behavior is 

desirable in processes that require rapid mixing or efficient 

mass transport, such as thermal energy systems and fluidic 

mixing in biomedical channels. 

 

The chemical reaction parameter (𝐾) introduces another 

crucial control mechanism. An increase in 𝐾 promotes solute 

consumption through reactive depletion, which lowers the 

solutal concentration and diminishes buoyancy-driven flow. 

As a result, the overall dispersion weakens, and solute 

gradients become less pronounced. This reactive damping is 

essential in controlling the rate of mass transfer in catalytic or 

biochemical processes, where solute regulation is necessary 

for maintaining process stability. 

 

Taken together, these interactions reveal that electromagnetic, 

buoyant, and chemical effects act as tunable levers for 

modulating dispersion and flow control in 

magnetohydrodynamic systems. By appropriately selecting 

parameters such as 𝑀, 𝑅𝑎, and 𝐾, one can design flow 

environments tailored to specific engineering and biomedical 

applications. This tunability enables optimization of solute 

transport in systems like magnetically actuated drug delivery 

devices, electrochemical microreactors, and liquid-metal heat 

exchangers, where balancing magnetic damping, convective 

mixing, and chemical reaction kinetics is crucial for enhanced 

performance and precise flow manipulation [1],[15]. 

 

4. Conclusion 
 

The present investigation has provided a detailed theoretical 

and computational analysis of magnetohydrodynamic (MHD) 

reactive flow and solute dispersion within a vertical channel 

under the combined effects of magnetic field intensity, 

buoyancy forces, and chemical reaction. The study reveals 

that the interplay among these parameters fundamentally 
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governs the transport dynamics, velocity distribution, and 

solute concentration behavior of the system. 

 

The results demonstrate that increasing the Hartmann number 

(𝑀) introduces a pronounced Lorentz force that suppresses 

velocity gradients and reduces the Taylor dispersion 

coefficient (𝐷𝑇), thereby enhancing solute confinement. 

Conversely, an increase in the Rayleigh number (𝑅𝑎) 

intensifies buoyancy-driven convection, promoting stronger 

axial transport and broader concentration profiles. This 

enhancement of convective dispersion under high 

𝑅𝑎conditions highlights the significant role of thermal and 

solutal buoyancy in amplifying solute mobility. In contrast, an 

increase in the chemical reaction parameter (𝐾) results in 

solute depletion and a corresponding decrease in dispersion 

strength due to reactive consumption effects. 

 

Physically, these findings establish that electromagnetic, 

thermal, and chemical forces operate in a coupled and 

competitive manner. The magnetic field acts as a stabilizing 

influence that suppresses excessive convective motion, while 

buoyancy enhances mass transport and mixing. The chemical 

reaction, on the other hand, introduces a damping mechanism 

that limits solute availability and modifies concentration 

gradients. This intricate balance enables precise control of 

flow and dispersion characteristics through suitable tuning of 

the governing parameters. 

 

From an application perspective, the insights derived from 

this study are highly relevant to the design of advanced MHD-

based systems. The ability to modulate dispersion and flow 

properties by adjusting 𝑀, 𝑅𝑎, and 𝐾 can be utilized in 

various practical fields, including magnetically guided drug 

delivery, biomedical microcirculation control, 

electrochemical microreactors, and liquid-metal cooling 

systems. The outcomes of this analysis thus provide a strong 

theoretical foundation for optimizing electromagnetic and 

reactive flow processes in modern engineering and 

biomedical applications. 

 

In summary, the present work underscores that the 

Williamson-type nanofluid model under MHD and reactive 

influences offers a highly flexible and controllable platform 

for manipulating flow, heat, and mass transport phenomena in 

complex fluid systems. The observed parametric 

dependencies and derived analytical correlations serve as 

valuable predictive tools for future studies focused on 

magnetically driven convective transport and controlled 

solute dispersion in micro- and nanoscale fluidic 

environments. 
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