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Abstract: This study presents an analytical investigation of magneto—convective solute dispersion in a hydromagnetic natural convective
flow through a vertical parallel-plate channel in the presence of a first-order bulk chemical reaction. Using Mei’s multi-scale
homogenization technique, explicit expressions are derived for the velocity field, solute concentration, and Taylor dispersion coefficient,
incorporating the combined effects of Rayleigh number (Ra), Hartmann number (M), and reaction rate (K). The results indicate that
increasing magnetic field strength enhances the Lorent; damping effect, which suppresses axial velocity and reduces solute mixing, while
higher buoyancy forces associated with larger Ra enhance convection and axial dispersion. A critical transition in horizontal
concentration distribution from tri—-modal to bi-modal occurs around Ra =~ 275, signifying a change in convective transport regime.
The chemical reaction parameter acts as a reactive sink, exponentially diminishing solute intensity and lowering Taylor dispersivity,
whereas prolonged dispersion times improve concentration uniformity. The study highlights the delicate interplay between magnetic
confinement, buoyancy enhancement, and chemical consumption, providing a robust theoretical framework for understanding MHD—
assisted reactive solute transport in vertical channels relevant to biomedical microflows, liquid—metal heat exchangers, and chemical
processing systems.
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1. Introduction

The study of magneto—convective solute transport in reactive
fluid systems has attracted substantial attention in recent
decades due to its profound implications in both engineering
and biomedical applications. The simultaneous presence of
magnetic fields, thermal gradients, and chemical reactions
introduces complex coupling among momentum, energy, and
mass transfer phenomena, making such flows a fertile area for
analytical exploration. In practical contexts, such coupled
transport processes occur in electrochemical reactors, liquid—
metal cooling systems, biological perfusion channels, and
microfluidic devices used for targeted drug delivery or solute
separation [1]-[3]. Understanding the parametric influence of
magnetic field strength, buoyancy effects, and chemical
reaction rates on solute dispersion is, therefore, essential for
optimizing performance in these advanced fluidic systems.

In natural convection flows, buoyancy-induced motion arises
from temperature differences that produce density variations,
thereby driving the flow without external pressure gradients
[4]. When a transverse magnetic field is applied, an induced
Lorentz force opposes the motion of the conducting fluid,
altering the momentum distribution and modifying the rate of
solute dispersion. This magnetohydrodynamic (MHD)
damping effect has been shown to regulate both axial velocity
and thermal transport, particularly in liquid—metal and ionized
fluids [5]. Concurrently, the presence of chemical reactions
introduces additional complexity: depending on whether the
reaction is homogeneous (bulk) or heterogeneous (surface), it
can act as a sink or source term for solute concentration,
altering the effective diffusion and reaction kinetics [6], [7].

A rigorous understanding of such coupled MHD-reactive
systems can be achieved through the Taylor dispersion

framework, originally developed for solute transport in
laminar flows [8]. Taylor’s theory, later extended by Aris [9],
describes how the combined effects of axial convection and
transverse molecular diffusion lead to enhanced effective
dispersion. However, when buoyancy and magnetic effects
are introduced, the dispersion coefficient becomes a function
of both the Rayleigh number (Ra)—which quantifies the
strength of natural convection—and the Hartmann number
(M)—which represents the intensity of the magnetic field
[10]. Several investigations have addressed the influence of
MHD and chemical reactions on solute transport in porous or
confined geometries, yet few have attempted a
comprehensive analytical formulation that simultaneously
incorporates all these interacting mechanisms [11]-[13].

The present study aims to analytically investigate the
influence of the Rayleigh number on solute dispersion in a
hydromagnetic natural convective flow through a vertical
channel subjected to a first-order bulk chemical reaction. The
mathematical formulation considers both Lorentz damping
and buoyancy-driven convection, with the velocity and
concentration fields coupled through temperature-induced
density gradients. The analytical solution is derived using
Mei’s multi-scale homogenization method [14], which allows
a systematic decomposition of the governing equations into
macroscale and microscale components, facilitating the
derivation of an explicit expression for the Taylor dispersion
coefficient under steady-state conditions.

The novelty of this work lies in its unified treatment of MHD,
buoyancy, and reactive effects on solute dispersion, providing
a parametric framework to interpret the interplay between
magnetic suppression, chemical attenuation, and thermal
convection enhancement. The analysis predicts that higher
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Hartmann numbers reduce axial dispersion due to stronger
Lorentz damping, while larger Rayleigh numbers enhance
buoyancy-driven mixing, leading to a transition in horizontal
concentration profiles from tri-modal to bi-modal beyond a
critical Ra value (= 275). These findings are expected to
have direct relevance in the design of magnetically controlled
heat exchangers, micro-reactors, biomedical solute transport
systems, and liquid-metal flow devices, where precise
modulation of solute dispersion is required for efficient
operation.

2. Formulation of the Mathematical Model

The present analysis considers a steady, laminar,
hydromagnetic, incompressible, viscous Newtonian fluid
flow through an infinite vertical channel bounded by two
stationary parallel plates separated by a distance 2h. The
lower and upper plates are maintained at different uniform
temperatures and solute concentrations, namely T;,C;and
T,, C,, respectively (T; > T,, C; > C,), establishing a coupled
thermal and solutal buoyancy-driven natural convective
motion.

A uniform transverse magnetic field B, is applied
perpendicular to the plates, and the induced magnetic field is
neglected due to a low magnetic Reynolds number (Re,, <
1). The flow is further influenced by a first-order
homogeneous chemical reaction occurring throughout the
fluid domain. Under these physical assumptions, the
governing field equations are developed based on the
Boussinesq approximation, neglecting viscous dissipation,
Hall currents, and radiation effects [1],[4],[5].

2.1 Governing Equations
The dimensional governing equations

conservation of mass, momentum, energy,
concentration are formulated as follows [2]:

describing the
and solute

Continuity equation
du 4 dv 0
ox oy
ensuring mass conservation for the incompressible fluid.

Momentum equation (x —direction)

du =~ duy _ dp 0*u
p( ug v 6y) =~ #ay2+pgﬁT(T To)
+pgBc(C — Co) — 0By,
where u, v— velocity components in x,y; p— dynamic
viscosity; p— density; g— gravitational acceleration;
Br, Bc— coefficients of thermal and solutal expansion; o—
electrical conductivity; and the term —oB3ju represents
Lorentz damping due to the applied magnetic field.

For fully developed flow (Z—: =0,v= O) , the equation

simplifies to:
d*u oB?
E — Tu +9Br (T —To) + gBc(C—Co) =0, (1)
Energy equation
( oT 6T> 9T
a

ax TV dy ay?’ @

where @ = k/(pc,) is the thermal diffusivity, k is the thermal
conductivity, and ¢, is the specific heat at constant pressure.
The first term denotes convective energy transport, and the
second represents conduction across the plates.[7]

Under the assumption of fully developed flow (v = O,Z—T *
0) , Equation (2) simplifies to:
d*T

a —_—
dy?
Species concentration equation

=0. (3)

For a first-order homogeneous chemical reaction, the solute
transport equation is:

ac ac 9*C
(155 +v5y) = Dngpa— K€ =G, @
where D,, is the molecular diffusivity and K, is the chemical

reaction rate constant.

For a fully developed steady flow, this simplifies to:
2

20°C
Dr=— = K (C—Co) =0, (5)

m ayz
2.2 Boundary Conditions

The boundary conditions for the flow are prescribed as:
{u=0,T=T1,C=C1aty=—h, 6
u=0,T=T, C=C, at y = +h, (©)

where T; > T, and C; > C,, indicating upward buoyancy-

driven convection due to higher temperature and
concentration at the lower wall.

2.3 Non—Dimensionalization

To simplify the governing equations, we define the following
dimensionless variables:
u T—T C—-C
=2 u=2,0=-—"0 =2

h U T,—T,

C -G’
—-T,)h? .
BT =T s the reference velocity scale.

Q)

where u, =

Using these substitutions, Equation (1) becomes the
dimensionless momentum equation:
d*u
W—MZU+RaT9+RaC¢=O, (8)
—-Ty)h3

where M = B, \/; (Hartmann Number), Rar = 9T —T)h”

va

— 9Bc(Ci- C)h3

(Thermal Rayleigh Number), Ra, -

Rayleigh Number).

(Solutal

Similarly, the dimensionless energy and species concentration
equations are written as:

40 ped 0 9
arz T lax T )
P | seped® =0 (10
qyz 7S¢ GE—WP— ) )

where the additional dimensionless groups are defined as
Pe = u;—h (Péclet Number), Sc = DL (Schmidt Number), y =

m
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2.4 Solution of the Thermal and Solutal Fields
Integrating Equation (9) twice under the boundary conditions
f=1atY=—-1andf@ =0atY = +1, we obtain:
1
0() =51-), (1)
assuming a linear temperature gradient between the plates.

Similarly, solving Equation (10) for steady-state conditions
(Pe < 1) yields:

B cosh(/y Y)
o) = “cosh(\7)

Substituting Equations (11) and (12) into Equation (8), we
obtain the governing differential equation for velocity:

(12)

d?u 1-Y cosh(A/y Y)
— —M?*U+R (—)+R ———=0. (13
dy? {2 e cosh(A/y) (13)
The general solution of Equation (13) is:

Ra
U(Y) = A, cosh(MY) + A, sinh(MY) + —= (1 — Y)

2M?
Ra, M?
+ m [COSh (\/?Y) - 7:| (14)

where A; and A, are integration constants determined from
the boundary conditions U(+1) = 0.

Applying the boundary conditions leads to:
_ Rap cosh(M) -1

17 2M2  sinh (M)
Ra; cosh(y/y) —1
M? sinh(M) cosh(/y)

Ay = (15)

Substituting these constants back into Equation (14) yields the

final expression for the non-dimensional velocity
distribution:
Rar cosh(MY) — 1
v = W[(l -n- cosh(M) — 1 ]
Rag [cosh (\/yY) — cosh (1/y)
M?2 [cosh(ﬁ) [cosh(M) —1]|° (16)

2.5 Shear Stress, Pressure Gradient, and Flow Rate

The wall shear stress at any wall is obtained as:
(du) Uy (dU) an
Tw = U= =u—,I\-=
w dy y=th h dY Y=+1.
The dimensionless volumetric flow rate through the channel
is:

Q= fHU(Y) av, (18)

which, after substitution from Equation (16), gives the
dependence of flow rate on Hartmann number (M), Rayleigh
number (Ra), and reaction parameter ().

2.6 Analytical expression for the Taylor dispersion
coefficient Dy

The steady advection-diffusion—reaction equation for the
solute concentration C (x, y)in the dimensional form

ac a%C
u®) 5= Dnm 3y~ K, (C — Co). (19)

We assume slow axial variation and adopt Mei’s multi-scale
homogenization by introducing a slow axial coordinate X =
&x (¢ & 1) and the fast transverse coordinate y (unchanged)
[8],[14]. Expand the concentration in powers of ¢:

Clx,y) =Co(X)+eC,(X,y) + 2C,(X,y) + ... (20)

Insert (19) into (20), collect orders in and use the solvability
condition to obtain the homogenized axial transport equation
for the cross-sectional mean C(X) = Cy(X):
ac dc d ac _

Dy— |- K.C, 21

el tYax T ax\Prax

adv

where # is the cross-sectional mean of u(y), and Dy is the
effective or Taylor dispersion coefficient to be determined.
The chemical reaction appears as a sink —K,.C because
reaction is homogeneous [8].

Equation (13) clearly illustrates that the Lorentz force term
(—M?U) opposes motion, reducing both velocity and flow
rate, while the thermal and solutal buoyancy terms enhance
fluid motion. The chemical reaction introduces an exponential
decay in solute concentration, acting as a reactive sink,
thereby weakening the buoyancy contribution from
concentration gradients. The interplay between these
opposing mechanisms defines the nature of solute dispersion
and velocity distribution in the MHD natural convective
system [10],[14],[15].

3. Results and Discussion

The present section provides a comprehensive analysis of the
computational outcomes obtained for velocity, dispersion
coefficient, and concentration fields under the combined
influence of magnetic field intensity, buoyancy effects,
chemical reactivity, and Péclet number. The variations of
these dependent parameters are interpreted using the non-
dimensional governing relations derived earlier. Figures 2—-6
collectively depict the hydrodynamic and mass transport
behavior of the magnetohydrodynamic (MHD) reactive flow
system within the vertical channel.

3.1 Velocity Field Behavior (Fig. 1)

0.3
0.25¢
0.2

% 0.15

0.1

0.05

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWWw.ijsr.net

Paper ID: SR251019234716

DOI: https://dx.doi.org/10.21275/SR251019234716 992


http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

0.48 e
—R, =25
Ra =5
os R, =10
—R, =25
0.35 R — 50
—— R, = 100
0.3 —— R, =200
—R, =300
__ 025 R, = 500
5
= 62
0.15
0.1
0.05

y
(b)
Figure 1: Velocity distribution for different values of (a)
Hartmann number (M) when R, = 5, (b) Rayleigh number
(Ry) when M =1

Figure 1 depicts the velocity distribution u(y)for different
values of the Hartmann number (M) and Rayleigh number
(Ra). As shown in Fig. 1(a), the velocity profile maintains a
symmetric parabolic nature across the mid-plane of the
channel, with the maximum velocity at y =0 and zero
velocity at the stationary walls y = +1. When the magnetic
parameter M increases from 1 to 10, a noticeable reduction in
the magnitude of the axial velocity occurs. This behavior can
be attributed to the action of the Lorentz force (—oBZu),
which resists fluid motion and converts part of the kinetic
energy into magnetic dissipation (Joule heating) [5],[16].
Consequently, the velocity field becomes progressively
flattened as M increases, illustrating the magnetic damping
phenomenon characteristic of electrically conducting fluids in
MHD channels.

Conversely, Fig. 1(b) shows the velocity variation for several
values of the Rayleigh number Ra, keeping M = 1. An
increase in Ra significantly enhances the velocity magnitude
due to stronger buoyancy-driven convection. The buoyant
term Rar0 + Rac¢ in the momentum equation introduces an
upward thrust in the flow, which accelerates the fluid in the
central region. Thus, a competition between Lorentz damping
and buoyant acceleration defines the hydrodynamic regime:
for high M, flow becomes magnetically restrained, whereas
for large Ra, buoyancy-induced acceleration dominates

[41,[15].

3.2 Taylor Dispersion Coefficient (Dy) (Fig. 2)
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(b)
Figure 2: Taylor dispersion coefficient for different values
of (a) Hartmann number (M) when R, = 5,K = 1, (b)
Rayleigh number (R,) when M = 1,K = 1.

The wvariation of the dimensionless Taylor dispersion
coefficient (D) with Hartmann number and Rayleigh number
is presented in Fig. 2. As shown in Fig. 2(a), the coefficient
Dydecreases monotonically with increasing M. This occurs
because the magnetic field suppresses the velocity gradients
across the channel, leading to smaller deviations from the
mean velocity (U — U). Since Dy o [ (U — U)?dy, this
directly results in a decrease in the dispersion coefficient
[8],[14]. In the limit M — oo, the flow becomes almost plug-
like, and the effective dispersion tends to its molecular value
Dy - D,,.

In contrast, Fig. 2(b) demonstrates that an increase in
Rasignificantly enhances Dy. The reason lies in the
buoyancy-induced increase in the flow velocity uy, which
strengthens convective transport and thereby amplifies
longitudinal dispersion. At larger Péclet numbers (Pe > 10),
the convective contribution dominates, leading to nonlinear
growth in Dr. This agrees with the theoretical prediction of
Taylor [8] and Aris [9], who established that for laminar shear
flow, Dy = D,,,(1 + aPe?), where ais a shape-dependent
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coefficient. Hence, the present results confirm that buoyancy
effects magnify solute mixing, while magnetic intensity
suppresses it — providing a physical handle to tune
dispersion efficiency in MHD-controlled systems.

3.3 Vertical Concentration Distribution (Fig. 3)
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Figure 3: Vertical concentration distribution for different
values of (a) Hartmann number (M) when R, = 5,K =
1, (b) Rayleigh number (R,) when M = 1,K =1, (¢)
Rayleigh number (R,, higher value) when M = 1,K =1
and (d) bulk reaction parameter (K) when M = 1,R, = 5.

The vertical solute concentration profiles under varying M,
Ra, and K are displayed in Fig. 3(a—d). In Fig. 3(a), as M
increases, the amplitude of the concentration profile CP,
gradually diminishes, indicating a reduction in axial
dispersion. The Lorentz force acts as a retarding agent that
restrains  convective diffusion, resulting in solute
accumulation near the core and a flatter distribution. This
magnetic suppression is analogous to the flow retardation
observed in MHD heat and mass transfer studies [8],[15].

On the other hand, Fig. 3(b) shows that higher Ravalues
enhance solute spreading, owing to stronger thermally driven
buoyant motion. The convective upthrust lifts the solute
toward the channel core, increasing mixing and concentration
amplitude. Figures 3(c) and 3(d) present the influence of
extended Rayleigh numbers (Rag) and reaction parameter
(K), respectively. As Rag rises, diffusion dominates less and
the concentration gradients broaden. However, when
Kincreases, chemical reactions consume solute species,
reducing CP, sharply. The reaction term —K,.(C — C,) acts as
a depletion sink in the concentration equation, thereby
weakening solutal buoyancy and decreasing solute
availability [17]. These observations highlight that both
electromagnetic and chemical fields can be manipulated to
achieve precise solute control in reactive MHD flows.

3.4 Mean Concentration Profiles (Fig. 4)
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Figure 4: Vertical mean concentration distribution for
different values of (a) Hartmann number (M) when R, =
5K =1,P, = 30, (b) Rayleigh number (R,) when M =
1,K=1.

The averaged solute concentration CP, across the channel is
plotted in Fig. 4(a—b). The profiles are nearly symmetric about
the centerline, confirming the laminar and fully developed
nature of the flow. As M increases (Fig. 4(a)), the central
concentration peak slightly flattens, suggesting uniform
solute dispersion under strong magnetic fields. The Lorentz-
induced damping effectively smoothens the axial
concentration gradient, producing a more homogeneous
solute distribution.

In contrast, Fig. 4(b) indicates that larger Ravalues cause a
steeper concentration rise at the center, accompanied by
increased axial spreading. The buoyant forces augment
convection, accelerating solute transport along the channel.
This enhancement in C correlates with the growth of Dy in
Fig. 4(b), validating the mutual dependence between
dispersion and mean concentration distribution. These
findings are consistent with the classical observations of Aris
[9] and recent MHD analyses by Rashidi and Shah [15],

confirming that buoyancy-driven leads to

intensified solute diffusion.

transport

3.5 Horizontal Concentration Distribution (Fig. 5)
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Figure 5: Horizontal concentration distribution for different
values (a) Hartmann number (M) when R, = 25,K =
1,7 = 1.5,&/P, = 0.125 (b) Rayleigh number (R,) when
M=1K=1,7r=15,¢/P, = 0.125 (c) downstream
locations when M = 1,R, = 25,K = 1,7 = 1.5 and (d)
upstream locations when M = 1,R, =25, K =1,t=15.

Figure 5 illustrates the horizontal variation of the
dimensionless concentration C P, across the channel height. In
Fig. 5(a), increasing M leads to narrower profiles,
emphasizing that the magnetic field restricts lateral diffusion
and aligns the concentration distribution closer to the walls.
The stronger the magnetic damping, the more the flow
resembles a plug flow with limited cross-stream mixing.

In Fig. 5(b), the increase in Raproduces the opposite effect —
widening of concentration contours and enhanced transverse
diffusion. As buoyancy grows, the mixing of solute becomes
more vigorous, leading to a broader plume. Figures 5(c) and
(d) show downstream and upstream concentration contours at
various axial positions (¢/Pe). The downstream regions

(¢/Pe > 0) exhibit elongated profiles due to convective
stretching, whereas the upstream regions (£/Pe < 0) show
compression of the concentration field. This asymmetry
reflects the combined influence of convection and dispersion,
typical in buoyancy-assisted reactive flows [7].

The overall behavior of the system is governed by the
complex interplay among magnetic, buoyant, and reactive
effects, which collectively determine the velocity field, solute
dispersion, and concentration distribution within the MHD-
assisted channel. The magnetic field, characterized by a high
Hartmann number (M), exerts a significant damping influence
on fluid motion. It suppresses velocity gradients and reduces
convective shear, leading to a lower Taylor dispersion
coefficient (D). Consequently, solute particles become more
localized within the flow domain. This phenomenon of
magnetic confinement is particularly advantageous in
microfluidic applications, where precise flow regulation and
targeted solute transport are essential.

In contrast, buoyancy effects, represented by the Rayleigh
number (Ra), act as a driving mechanism for convective
enhancement. As Ra increases, thermal and solutal buoyant
forces strengthen upward motion, which intensifies the
convective mixing of solute. This results in higher dispersion
coefficients, broadened concentration profiles, and faster
solute spreading across the flow field. Such behavior is
desirable in processes that require rapid mixing or efficient
mass transport, such as thermal energy systems and fluidic
mixing in biomedical channels.

The chemical reaction parameter (K) introduces another
crucial control mechanism. An increase in K promotes solute
consumption through reactive depletion, which lowers the
solutal concentration and diminishes buoyancy-driven flow.
As a result, the overall dispersion weakens, and solute
gradients become less pronounced. This reactive damping is
essential in controlling the rate of mass transfer in catalytic or
biochemical processes, where solute regulation is necessary
for maintaining process stability.

Taken together, these interactions reveal that electromagnetic,
buoyant, and chemical effects act as tunable levers for
modulating dispersion and flow control in
magnetohydrodynamic systems. By appropriately selecting
parameters such as M, Ra, and K, one can design flow
environments tailored to specific engineering and biomedical
applications. This tunability enables optimization of solute
transport in systems like magnetically actuated drug delivery
devices, electrochemical microreactors, and liquid-metal heat
exchangers, where balancing magnetic damping, convective
mixing, and chemical reaction kinetics is crucial for enhanced
performance and precise flow manipulation [1],[15].

4. Conclusion

The present investigation has provided a detailed theoretical
and computational analysis of magnetohydrodynamic (MHD)
reactive flow and solute dispersion within a vertical channel
under the combined effects of magnetic field intensity,
buoyancy forces, and chemical reaction. The study reveals
that the interplay among these parameters fundamentally
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governs the transport dynamics, velocity distribution, and
solute concentration behavior of the system.

The results demonstrate that increasing the Hartmann number
(M) introduces a pronounced Lorentz force that suppresses
velocity gradients and reduces the Taylor dispersion
coefficient (D), thereby enhancing solute confinement.
Conversely, an increase in the Rayleigh number (Ra)
intensifies buoyancy-driven convection, promoting stronger
axial transport and broader concentration profiles. This
enhancement of convective dispersion under high
Raconditions highlights the significant role of thermal and
solutal buoyancy in amplifying solute mobility. In contrast, an
increase in the chemical reaction parameter (K) results in
solute depletion and a corresponding decrease in dispersion
strength due to reactive consumption effects.

Physically, these findings establish that electromagnetic,
thermal, and chemical forces operate in a coupled and
competitive manner. The magnetic field acts as a stabilizing
influence that suppresses excessive convective motion, while
buoyancy enhances mass transport and mixing. The chemical
reaction, on the other hand, introduces a damping mechanism
that limits solute availability and modifies concentration
gradients. This intricate balance enables precise control of
flow and dispersion characteristics through suitable tuning of
the governing parameters.

From an application perspective, the insights derived from
this study are highly relevant to the design of advanced MHD-
based systems. The ability to modulate dispersion and flow
properties by adjusting M, Ra, and K can be utilized in
various practical fields, including magnetically guided drug
delivery, biomedical microcirculation control,
electrochemical microreactors, and liquid-metal cooling
systems. The outcomes of this analysis thus provide a strong
theoretical foundation for optimizing electromagnetic and
reactive flow processes in modern engineering and
biomedical applications.

In summary, the present work underscores that the
Williamson-type nanofluid model under MHD and reactive
influences offers a highly flexible and controllable platform
for manipulating flow, heat, and mass transport phenomena in
complex fluid systems. The observed parametric
dependencies and derived analytical correlations serve as
valuable predictive tools for future studies focused on
magnetically driven convective transport and controlled
solute dispersion in micro- and nanoscale fluidic
environments.
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