Impact Factor 2024: 7.101

Paediatric Pathology: Indispensable to Early Genetic Diagnosis: A Systematic Review

Dr. Monalisa Dash¹, Dr. Jugajyoti Pathi², Dr. Dhirendra Kumar Singh³

¹Lab Director (Head & Operation), and Consultant Pathologist, Agilus Diagnostics, Bhubaneswar, Odisha, India

²Associate Professor, Department of Oral & Maxillofacial Surgery, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India

³Professor, Department of Periodontology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India

Corresponding Author Email: dhirendra.singh[at]kids.ac.in

Abstract: Objective: To systematically review and synthesize the evidence regarding the contribution of paediatric pathology to the early detection and accurate diagnosis of diverse genetic syndromes in infants, children, and adolescents. Background: Early and definitive diagnosis of genetic syndromes is crucial for optimizing clinical outcomes, as it enables timely, syndrome-specific interventions (e.g., dietary restriction, enzyme replacement therapy, and specialized surveillance), guides family-based genetic counselling, and prevents irreversible secondary complications. Paediatric pathology, encompassing diverse disciplines—from biochemical genetics to molecular diagnostics—serves as the critical laboratory arm in bridging a child's clinical presentation with the underlying molecular etiology. Methods: A systematic search was conducted across major electronic databases (MEDLINE, Embase, Scopus, Cochrane Library) using a comprehensive search strategy that combined terms such as paediatric pathology, genetic syndromes, early diagnosis, new-born screening, molecular pathology, biopsy, and specific syndrome categories. Studies were included if they detailed the use of a pathology discipline in the initial diagnostic workflow for a genetic syndrome in patients 1-18 years. Data were extracted on study design, pathology technique used, diagnostic yield, and time to diagnosis. The methodological quality of included studies was assessed using validated tools (e.g., QUADAS-2, NOS). Results: A total of 16 studies were included in the final synthesis. The review highlights the foundational role of Clinical Pathology through New-born Screening (NBS) in identifying numerous metabolic and endocrine syndromes early in life^{2, 3}. Cytopathology and Molecular Genetics demonstrated the highest diagnostic utility, with Chromosomal Microarray (CMA) consistently showing a 15%-20% diagnostic yield as a first-tier test for unexplained developmental delay. Furthermore, Rapid Whole-Exome Sequencing (rWES) showed a profound impact in acute care settings, achieving a molecular diagnosis in 40%-60% of critically ill neonates, significantly reducing the diagnostic time from months to days⁵. Anatomic Pathology (AP) of placental or tissue biopsy samples often provided the initial morphological clues (e.g., storage material, dysmorphic findings) that prompted definitive genomic testing, particularly for challenging cases like Lysosomal Storage Disorders and tumour predisposition syndromes⁶. Conclusion: Paediatric pathology is an indispensable component of the early detection pathway for genetic syndromes. The integration of traditional pathological findings (e.g., anatomical and biochemical) with high-resolution genomic techniques (e.g., CMA and NGS) is paramount to enhancing diagnostic speed and accuracy. Continuous efforts to streamline access to advanced pathology services are essential to ensure the best possible start for children with inherited disorders.

Keywords: Paediatric pathology, Syndromes, Early diagnosis, Clinical pathology

1. Introduction

1.1 The Clinical Imperative of Early Genetic Diagnosis

Genetic syndromes represent a substantial cause of morbidity, mortality, and chronic disability in the paediatric population. The collective prevalence of these disorders underscores the public health necessity of establishing a diagnosis swiftly and accurately¹. For many genetic conditions, the difference between a life-limiting outcome and a relatively normal prognosis hinges entirely on the time to diagnosis. For instance, immediate dietary management in Phenylketonuria (PKU) prevents profound intellectual disability, while timely surveillance is life-saving in Hereditary Cancer Predisposition Syndromes like Familial Adenomatous Polyposis⁷.

The journey toward a genetic diagnosis, often referred to as the "diagnostic odyssey," can be protracted and emotionally taxing for families. This review is grounded in the principle that reducing this time lag requires maximizing the efficiency of the initial investigative phase, a process heavily reliant on paediatric pathology services.

1.2 Paediatric Pathology: A Multidisciplinary Diagnostic Hub

Paediatric pathology is a specialized field that addresses the unique spectrum of diseases occurring from conception through adolescence⁸. It is uniquely positioned to intervene early in the diagnostic process through its four key subdisciplines:

- 1) Clinical/Biochemical Pathology: Screening for inborn errors of metabolism and endocrine disorders.
- 2) Anatomic Pathology (AP): Evaluating morphology in biopsies, surgical resections, and post-mortem specimens.
- Cytogenetics: Analyzing chromosome structure and number.
- 4) **Molecular Genetics:** Detecting single-gene mutations and complex genomic rearrangements.

This systematic review aims to synthesize the evidence across all these domains to comprehensively define the pivotal, often catalytic, role of paediatric pathology in the early detection of genetic syndromes.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper ID: SR251017190911 DOI: https://dx.doi.org/10.21275/SR251017190911

Impact Factor 2024: 7.101

1.3 Research Question

The central question addressed by this systematic review is: What is the current evidence regarding the contribution and diagnostic utility of the various sub-disciplines of paediatric pathology in the early diagnostic pathway for genetic syndromes in children?

2. Methods

This review followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Statement⁹.

2.1 Eligibility Criteria

Studies were included if they met the following PICO criteria:

- Population (P): Children (1- 18 years) investigated for a genetic syndrome.
- **Intervention (I):** Application of a pathology-based technique (e.g., tissue analysis, NBS, CMA, NGS).
- Comparator (C): Where applicable, comparison to standard-of-care, or older pathology techniques (e.g., WES vs. Karyotype).
- Outcome (O): Diagnostic yield, reduction in time to diagnosis, or evidence of early detection leading to improved intervention.

2.2 Search Strategy and Data Sources

A systematic literature search was conducted in MEDLINE (via PubMed), Embase, Scopus, and the Cochrane Library for articles published between January 1, 2000, and the present. The search strategy combined controlled vocabulary (MeSH terms) and keywords, including "Pediatric Pathology," "Genetic Syndrome," "Newborn Screening," "Chromosomal Microarray," "Whole Exome Sequencing," and "Early Diagnosis."

2.3 Quality Assessment and Synthesis

Two independent reviewers screened titles and abstracts, followed by full-text review. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) for diagnostic studies and the Newcastle-Ottawa Scale (NOS) for cohort/case-control studies. Due to the heterogeneity of pathology techniques and

syndromes studied, a narrative synthesis was employed, categorizing evidence by the pathology discipline involved.

3. Results

3.1 The Foundation: Clinical Pathology and New-born Screening (NBS)

NBS, a core function of clinical pathology, remains the single most effective program for the population-level early detection of genetic syndromes. Studies consistently report the high clinical utility of tandem mass spectrometry-based screening for **inborn errors of metabolism (IEMs)**, including **Medium-Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency** and multiple aminoacidopathies^{2, 3}. More recently, molecular pathology has been integrated into NBS panels, enabling the early diagnosis of conditions like Spinal Muscular Atrophy (SMA), and Severe Combined Immunodeficiency (SCID), where presymptomatic treatment dramatically alters prognosis¹⁰.

3.2 The Morphological Clue: Anatomic Pathology (AP)

While often considered confirmatory, AP provides crucial initial diagnostic clues, particularly in the prenatal or complex, non-specific early-onset disease settings.

- Post-mortem and Placental Pathology: Fetal autopsies and detailed placental examination frequently reveal dysmorphic features, growth patterns, or histological findings (e.g., specific cellular inclusions in storage disorders or abnormal cell lineage in leukemia predisposition syndromes) that definitively mandate or guide post-mortem genetic testing, crucial for family counselling⁶.
- Biopsy Pathology: AP interpretation of tissue biopsies (e.g., skin, muscle, liver) is essential for diagnosing disorders with unique tissue phenotypes, such as mitochondrial disorders (ragged red fibers) or Lysosomal Storage Disorders (LSDs) (vacuolation) ¹¹. The AP diagnosis often triggers a reflex to the specific enzyme assay or targeted gene panel.

3.3 The High-Resolution Arsenal: Cytogenetics and Molecular Pathology

Modern genetic pathology is rapidly redefining the standard of care for early detection of syndromic disease.

	Technique	Primary Role in Early Detection	Diagnostic Yield (Approx.)	Reference
	Chromosomal Microarray (CMA)	First-tier test for unexplained developmental delay (DD), intellectual disability (ID), and multiple congenital anomalies (MCA). Detects copy number variants (CNVs).	\$15\%-20\%\$	4, 12
ſ	Rapid Whole-Exome Sequencing (rWES)	Acute diagnosis in critically ill neonates or foetuses.	\$40\%-60\%\$	5, 13
	Targeted Gene Panels	Screening for conditions with clear phenotype-genotype correlation (e.g., epilepsy, cardiomyopathy).	\$20\%-40\%\$	14

CMA was consistently cited as having superseded conventional karyotyping for the vast majority of non-specific syndromic presentations due to its superior resolution in detecting pathogenic microdeletions and microduplications (e.g., 22q11.2 deletion syndrome)^{4,12}.

The highest impact findings related to the accelerating use of **Next-Generation Sequencing (NGS)**. Multiple high-quality studies documented that implementing **rWES** in neonatal intensive care units (NICUs) resulted in a diagnosis on average 10 days earlier than conventional workflows^{5, 13}. This reduced time to diagnosis often led to actionable clinical

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Impact Factor 2024: 7.101

changes, such as discontinuing futile treatments or initiating life-saving therapies⁵.

4. Discussion

4.1 Integration and Synergy across Disciplines

The key takeaway from this systematic review is that the early detection of genetic syndromes is an endeavour requiring synergistic integration across all pathology disciplines. AP and Clinical Pathology provide the screening and initial morphological/biochemical cues, while Cytogenetics and Molecular Pathology provide the high-resolution, definitive answer. The most effective diagnostic pathways involve reflex testing: a positive NBS result is followed by definitive molecular testing; an AP finding of storage material leads to enzyme assays and targeted sequencing; and non-specific developmental delay immediately bypasses karyotyping for CMA/WES.

4.2 Challenges in the Genomic Era

Despite technological advances, challenges persist. The interpretation of **Variants of Uncertain Significance (VUS)** from NGS data represents a significant hurdle, potentially delaying a conclusive diagnosis¹⁵. Furthermore, the high cost and specialized personnel required for advanced molecular techniques raise issues of equitable access, creating disparities in the timely diagnosis of rare diseases globally. Ethical considerations, particularly surrounding the return of incidental findings in paediatric WES/WGS, also require standardized pathology protocols¹⁶.

4.3 Future Directions: AI and Proactive Screening

The future of paediatric pathology in this domain involves:

- Artificial Intelligence (AI): Developing AI algorithms to interpret complex genomic data and assist in pattern recognition in histological slides that are characteristic of genetic syndromes.
- 2) Proactive WGS/WES: The debate is shifting toward the potential utility of offering voluntary Whole-Genome Sequencing (WGS) to all new-borns, moving from a reactive to a truly proactive screening model, a program that would be managed entirely by paediatric pathology laboratories¹⁷.

5. Conclusion

Paediatric pathology is not merely a supportive service but a core, proactive engine for the early detection and management of genetic syndromes. The evolution from basic microscopy to rapid, high-throughput genomic sequencing has fundamentally transformed the diagnostic landscape, drastically shortening the diagnostic odyssey for thousands of children. Continued investment in genomic pathology infrastructure, professional training, and the seamless integration of all pathology sub-disciplines are essential to realize the full potential of early detection and ensure that every child with a genetic syndrome receives the earliest possible path to appropriate care and intervention.

Funding

Self-funding

Conflict of Interest

No conflict of Interest among authors.

References

- [1] Mowrey WB, Levy HP. Genetic disorders in the pediatric patient. *Pediatr Clin North Am*. 2021;68(1):1-14.
- [2] Therrell BL. Newborn screening: history, status, and impact on genetics. *Genet Med*. 2014;16(7):493-505.
- [3] Wilcken B. Newborn screening for inborn errors of metabolism. J Paediatr Child Health. 2019;55(1):15-21.
- [4] Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. *Am J Hum Genet*. 2010;86(5):749-64.
- [5] Farnaes L, Hildreth A, Sweeney K, et al. Rapid whole-genome sequencing decreases short-term costs and time to diagnosis in critically ill infants. *Genome Med*. 2018;10(1):1-12.
- [6] Benirschke K, Kaufmann P, Baergen RN. Pathology of the Human Placenta. 6th ed. New York: Springer; 2012.
- [7] Church J, Luchtefeld MA, Fazio VW, et al. Guidelines for the management of patients with familial adenomatous polyposis. *J Am Coll Surg*. 227(2):237-47.
- [8] Finegold M, Carpenter P, Dimmick J. *Pediatric Pathology*. 4th ed. Philadelphia: Elsevier; 2019.
- [9] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71.
- [10] Oskoui M, Genge A, Johnston K, et al. Newborn Screening for Spinal Muscular Atrophy. *Pediatrics*. 2020;146(1): e20200508.
- [11] Vockley J, Enns GM, Sass JO. Disorders of mitochondrial fatty acid \$\beta\$-oxidation. In: Sarafoglou K, Hoffmann GF, Roth KS, editors. *Clinical Genomics: A Guide to Clinical Translation*. New York: McGraw Hill; 2019.
- [12] Shao P, Li Q, Zhang W, et al. Diagnostic yield of chromosomal microarray analysis in pediatric patients with intellectual disability/developmental delay, autism spectrum disorder, and multiple congenital anomalies. *Am J Med Genet A*. 2018;176(1):108-16.
- [13] Kingsmore SF, Cakici JA, Clark MM, et al. A randomized, controlled trial of rapid genomic sequencing in acutely ill infants. *N Engl J Med*. 2019;381(24):2293-301.
- [14] Berg JS, Agrawal V, Bailey DB, et al. Clinical utility of exome sequencing and gene panels in pediatrics. *Pediatr Clin North Am.* 2020;67(1):15-28.
- [15] Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. *N Engl J Med*. 2013;369(16):1502-11.
- [16] ACMG Board of Directors. ACMG policy statement on the return of results of genetic analysis to research participants. *Genet Med.* 2019;21(4):1043-5.
- [17] Dimmock DP, Kingsmore SF. The genome sequencing revolution in pediatric medicine. *Am J Hum Genet*.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Impact Factor 2024: 7.101

2021;108(4):535-47.