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Abstract: We present an integrated mathematical framework to design and optimize urban public-transport routes and service
firequencies while accounting for dynamic road congestion and stochastic passenger demand. The model couples a Transit Network Design
Problem (TNDP) - formulated as a mixed-integer program that selects routes and frequencies to minimize a weighted sum of operator cost
and passenger generalized travel cost - with a dynamic traffic model (Cell Transmission Model / Lighthill-Whitham—Richards family) to
capture congestion-dependent travel times. Passenger demand is treated stochastically (Poisson or time-varying origin—destination rates)
and assigned using a user-equilibrium / capacity-constrained assignment. Solution approaches combine exact MILP for small instances
and heuristics/metaheuristics (route-generation + genetic algorithms / local search + simulation-based evaluation) for large networks. We
describe model formulation, numerical solution strategy, and evaluation metrics; and provide a case study plan and recommended data
sources. The framework balances operator cost, passenger waiting and in-vehicle times, and system robustness to demand uncertainty.

Keywords: Urban transport planning, transit network design, dynamic traffic modeling, heuristic optimization, stochastic demand

1.Introduction

Urban public-transport planning faces two coupled
difficulties: combinatorial route/frequency design and
strongly time-varying travel times due to road congestion.
Designing routes in isolation can yield suboptimal
passenger outcomes when congestion increases in response
to vehicle routing and road-user behavior. To address this,
we propose a combined optimization—simulation
framework that (1) chooses a set of transit lines (sequences
of stops) and service frequencies, (2) assigns passenger
demand to the transit network (and optionally to private
modes), and (3) evaluates network performance under a
dynamic traffic model so that travel times used in planning
reflect realistic congestion feedbacks.

Key foundations for dynamic traffic modelling include the
Lighthill-Whitham—Richards (LWR) kinematic wave
framework and its discrete numerical counterpart, the Cell
Transmission Model (CTM). These models allow
translating vehicle densities into travel-time dynamics and
shock-wave propagation on links, which is crucial when
bus speeds and road capacities vary with congestion.

2.Literature review (brief)

e Transit Network Design: The Transit Route Network
Design Problem (TRNDP/TNDP) is a long-studied
combinatorial optimization problem; surveys document
a mix of exact methods and heuristics to generate route
sets and frequencies. Recent reviews recommend hybrid
approaches that combine candidate-route generation with
optimization over frequencies and passenger assignment.

e Dynamic Traffic Models: The LWR model (first-order
conservation law) and Daganzo’s Cell Transmission
Model are widely used to model link-level dynamics and
network interactions in traffic, and are amenable to
incorporating transit vehicles (buses) as mobile
bottlenecks or as part of multi-commodity flows.

o Integrated Transit Design + Congestion: Recent work
integrates route/frequency optimization with link
capacity constraints and dynamic assignment; mixed-
integer linear programming (MILP) formulations and
simulation-based optimization are common. Newer
2020s literature emphasizes data-driven route design and
joint optimization of routes and timetables.

3.Problem statement and objectives

Given:

e Urban road network G=(V,E)G=(V,E)G=(V,E) with link
lengths LeL eLe, free-flow travel times teOt e”Ote0,
capacities CeC_eCe.

o Candidate stops SCVS\subset VScV and an OD (origin—
destination) demand matrix Dod(t)D_{od}(t)Dod(t)
(time-dependent, possibly stochastic).

o A fleet and cost structure (vehicle fixed cost, per-km
cost).

Decide:

e A set of transit lines L\mathcal{L}L. Each line £€L\ell
\in \mathcal{L} €L is an ordered sequence of stops and
an associated frequency fUf \ellfl (vehicles per hour).

e Vehicle allocation and schedule (or headway
approximation).

o Assignment of passengers to routes (including transfers)
and possibly private modes.

Objectives (multi-objective / single scalarized):

Minimize
Z=a-OperatorCost(L,f)+p-PassengerCost(L,f,travel times)
+y-UnreliabilityPenaltyZ = \alpha \cdot
\text{OperatorCost}(\mathcal {L},f) + \beta \cdot
\text{PassengerCost}(\mathcal {L},f,\text{travel times}) +
\gamma \cdot
\text{UnreliabilityPenalty } Z=a-OperatorCost(L,f)+p-Pass
engerCost(L,f,travel times)+y-UnreliabilityPenalty
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where passenger cost includes expected waiting time, in-
vehicle time, transfers, and access/egress times.

Constraints:

e Fleet size and vehicle-hour limits.

e Line design constraints (max/min route length, stop
spacing).

o Link capacity constraints (through traffic model).

¢ Service frequency bounds.

4.Mathematical formulation (high-level)
4.1 Decision variables

o x0e{0,1}x_{\ell} \in \{0,1\}xL€{0,1}: whether route
L\elll is operated (we work from a generated candidate
set of feasible routes).

o f0>0f {\ell} \ge 0fC>0: frequency for route ~C\elll
(vehicles/hour).

e yp,Le{0,1}y {p,\ell} \in  \{0,1\}yp,L€{0,1}  or
continuous: assignment of passenger path ppp to route(s)
L\elll (depending on model granularity).

4.2 Operator cost

OperatorCost=) €(cfixed x{+cvh fl
t0)\text{OperatorCost} = \sum_{\ell} \big(
c_{\text{fixed}}\; x {\ell} + c_ {\text{vh}}\; f {\ell}\;
\tau_ {\ell}\big)OperatorCost=C} (cfixedx{+cvhfltl)

where cvhc_ {\text{vh}}cvh is cost per vehicle-hour,
tl\tau_{\ell}tl is round-trip time (depends on congested
link travel times from the traffic model).

4.3 Passenger cost (expected)

Using standard transit choice models, approximate
expected waiting time as 1/(2f0)1/(2f {\ell})1/(2ft)
(Poisson arrivals) and in-vehicle time as sum of congested
link travel times along {\ell(. For passenger class kkk:

PassengerCost=) kY pePkAk,p(waitp+invehiclep+0-transf
ersp)\text{PassengerCost} = \sum_{k}\sum_ {p\in P k}
\lambda_{k,p}\big( \text{wait} p + \text{invehicle} p +
\theta \cdot \text{transfers} p \big)PassengerCost=k}
pEPKLY Ak,p(waitp+invehiclep+6-transfersp)

Stochastic demand: Ak,p\lambda {k,p}Ak,p may be
expected demand or a distribution; robust/objective can
minimize expected or CVaR cost.

4.4 Congestion coupling (dynamic)

Travel time on link eee at time ttt, Te(t)T e(t)Te(t), is
produced by a dynamic traffic model. We adopt the Cell
Transmission Model (CTM) for discrete-time link
evolution:

pen+1=pen+AtLe(qin,en—qout,en)\rho_e"{n+1} =
\rho e"{n} + \frac{\Delta t}{L e} \big( q {in,e}"n -
q_{out,e}”"n \big)pen+1l=pen+LeAt(qin,en—qout,en)

with flow demands and supplies computed via
sending/receiving functions derived from the fundamental
diagram; bus vehicles contribute to link usage and reduce
effective capacity when stopped/boarding. See Daganzo
(1994) for CTM formulation.

4.5 Integrated MILP (sketch)

When link travel times are approximated as piecewise-
linear functions of flow (or precomputed scenarios), the
model can be linearized and written as a Mixed-Integer
Linear Program:

e Linear objective (operator + passenger travel-time costs
via linear approximations),

o Integer route activation variables,

¢ Continuous frequencies and passenger flows,

o Capacity constraints approximated per time-slice.

For exact dynamic coupling, the problem becomes a mixed-
integer nonlinear problem (MINLP) or bilevel formulation
(upper level: route design; lower level: dynamic
assignment/traffic), often solved by decomposition (outer-
loop search over route sets; inner-loop simulation for travel
times).

Demand uncertainty and stochastic modeling

e Model arrival processes at stops with Poisson processes;
waiting-time expectation 1/(2f)1/(2f)1/(2f) holds under
Poisson arrival assumptions.

o Incorporate day-to-day demand variation by scenario
sampling: evaluate candidate network on a set of demand
scenarios, and optimize for expected or risk-averse
objective (e.g., CVaR).

e Optionally treat bus travel-time variability by adding
stochastic perturbations to link free-flow times or arrival
rates and evaluate robustness.

5.Solution approach

1. Candidate route generation: generate feasible route
pool using heuristics (k-shortest paths with stop spacing
rules, corridor-based generation).

2.Frequency discretization: restrict frequencies to
discrete levels to reduce search space.

3.Master MILP / heuristic search:

o For small networks: solve MILP with off-the-shelf
solvers (CPLEX/Gurobi).

o For city-scale: use metaheuristics - genetic algorithms,
large neighborhood search, or simulated annealing -
each solution evaluated by a traffic simulator (CTM-
based) that returns link travel times and passenger
costs. Recent works use data-driven and hybrid
methods for scalability.

4.Simulation-based evaluation: run CTM (or
microscopic simulator if required) to compute congested
travel times and vehicle round-trip times; iterate until
convergence or budget exhaustion.
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6.Validation & performance metrics

e System metrics: total operator cost, total passenger
generalized travel cost, vehicle-hours, fleet utilization,
system-wide delay.

o Passenger metrics: average waiting time, average in-
vehicle time, average transfers, % demand served within
X minutes.

o Network metrics: link-level travel times, queue lengths,
congestion hotspots.

e Robustness metrics: objective variance across
scenarios, CVaR at 90% level.

Use cross-validation withhold-out demand days or
bootstrapped demand realizations.

Case study plan (suggested workflow)

1.Data collection: road graph (OSM), bus stop locations,
historical OD matrices (smartcard/Census/survey), link
capacities, fleet costs.

2.Preprocessing: generate candidate routes, discretize
time-of-day into intervals (e.g., 15-min).

3.Modeling: implement CTM for dynamic link travel
times; implement MILP/heuristics in Python + Gurobi /
OR-Tools.

4. Calibration: calibrate fundamental diagram parameters
using observed speed—flow data.

5. Experiments: baseline network vs. optimized networks;
stress test under peak demand and incident scenarios.

6. Policy analysis: explore trade-offs (operator subsidy vs.
passenger time reduction), evaluate targeted
improvements (priority lanes, stop consolidation).
Relevant methodologies and examples are documented
in TNDP surveys and practical works.

7.Discussion

The main challenge is the computational coupling between
combinatorial route choice and nonlinear, time-dependent
congestion. Practical deployments rely on candidate-route
sets plus simulation-based evaluation and heuristics.
Incorporating realistic passenger behavior (non-Poisson
arrivals, smartcard variability), operator constraints (driver
shifts, depot locations), and multimodal integration (walk,
bike, microtransit) improves realism but increases
complexity. Data availability (high-resolution OD and link
counts) markedly improves solution quality; recent data-
driven frameworks scale TNDP solutions to city-scale
problems.

8.Conclusion

We proposed an integrated modeling framework that
couples a mixed-integer transit network design model with
dynamic traffic (CTM/LWR) and stochastic passenger
demand. The approach is flexible: MILP/heuristic solution
pipelines can be tailored to network size and data
availability. Future extensions include explicit timetable
optimization, real-time adaptive routing, and inclusion of
priority measures (bus lanes) as decision variables.
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