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Abstract: We present an integrated mathematical framework to design and optimize urban public-transport routes and service 

frequencies while accounting for dynamic road congestion and stochastic passenger demand. The model couples a Transit Network Design 

Problem (TNDP) - formulated as a mixed-integer program that selects routes and frequencies to minimize a weighted sum of operator cost 

and passenger generalized travel cost - with a dynamic traffic model (Cell Transmission Model / Lighthill–Whitham–Richards family) to 

capture congestion-dependent travel times. Passenger demand is treated stochastically (Poisson or time-varying origin–destination rates) 

and assigned using a user-equilibrium / capacity-constrained assignment. Solution approaches combine exact MILP for small instances 

and heuristics/metaheuristics (route-generation + genetic algorithms / local search + simulation-based evaluation) for large networks. We 

describe model formulation, numerical solution strategy, and evaluation metrics; and provide a case study plan and recommended data 

sources. The framework balances operator cost, passenger waiting and in-vehicle times, and system robustness to demand uncertainty. 
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1.Introduction 
 

Urban public-transport planning faces two coupled 

difficulties: combinatorial route/frequency design and 

strongly time-varying travel times due to road congestion. 

Designing routes in isolation can yield suboptimal 

passenger outcomes when congestion increases in response 

to vehicle routing and road-user behavior. To address this, 

we propose a combined optimization–simulation 

framework that (1) chooses a set of transit lines (sequences 

of stops) and service frequencies, (2) assigns passenger 

demand to the transit network (and optionally to private 

modes), and (3) evaluates network performance under a 

dynamic traffic model so that travel times used in planning 

reflect realistic congestion feedbacks. 

 

Key foundations for dynamic traffic modelling include the 

Lighthill–Whitham–Richards (LWR) kinematic wave 

framework and its discrete numerical counterpart, the Cell 

Transmission Model (CTM). These models allow 

translating vehicle densities into travel-time dynamics and 

shock-wave propagation on links, which is crucial when 

bus speeds and road capacities vary with congestion.  

 

2.Literature review (brief) 
 

• Transit Network Design: The Transit Route Network 

Design Problem (TRNDP/TNDP) is a long-studied 

combinatorial optimization problem; surveys document 

a mix of exact methods and heuristics to generate route 

sets and frequencies. Recent reviews recommend hybrid 

approaches that combine candidate-route generation with 

optimization over frequencies and passenger assignment.  

• Dynamic Traffic Models: The LWR model (first-order 

conservation law) and Daganzo’s Cell Transmission 

Model are widely used to model link-level dynamics and 

network interactions in traffic, and are amenable to 

incorporating transit vehicles (buses) as mobile 

bottlenecks or as part of multi-commodity flows.  

• Integrated Transit Design + Congestion: Recent work 

integrates route/frequency optimization with link 

capacity constraints and dynamic assignment; mixed-

integer linear programming (MILP) formulations and 

simulation-based optimization are common. Newer 

2020s literature emphasizes data-driven route design and 

joint optimization of routes and timetables. 

 

3.Problem statement and objectives 
 

Given: 

• Urban road network G=(V,E)G=(V,E)G=(V,E) with link 

lengths LeL_eLe, free-flow travel times te0t_e^0te0, 

capacities CeC_eCe. 

• Candidate stops S⊂VS\subset VS⊂V and an OD (origin–

destination) demand matrix Dod(t)D_{od}(t)Dod(t) 

(time-dependent, possibly stochastic). 

• A fleet and cost structure (vehicle fixed cost, per-km 

cost). 

Decide: 

• A set of transit lines L\mathcal{L}L. Each line ℓ∈L\ell 

\in \mathcal{L}ℓ∈L is an ordered sequence of stops and 

an associated frequency fℓf_\ellfℓ (vehicles per hour). 

• Vehicle allocation and schedule (or headway 

approximation). 

• Assignment of passengers to routes (including transfers) 

and possibly private modes. 

 

Objectives (multi-objective / single scalarized): 

 

Minimize 

Z=α⋅OperatorCost(L,f)+β⋅PassengerCost(L,f,travel times)

+γ⋅UnreliabilityPenaltyZ = \alpha \cdot 

\text{OperatorCost}(\mathcal{L},f) + \beta \cdot 

\text{PassengerCost}(\mathcal{L},f,\text{travel times}) + 

\gamma \cdot 

\text{UnreliabilityPenalty}Z=α⋅OperatorCost(L,f)+β⋅Pass

engerCost(L,f,travel times)+γ⋅UnreliabilityPenalty  
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where passenger cost includes expected waiting time, in-

vehicle time, transfers, and access/egress times. 

 

Constraints: 

 

• Fleet size and vehicle-hour limits. 

• Line design constraints (max/min route length, stop 

spacing). 

• Link capacity constraints (through traffic model). 

• Service frequency bounds. 

 

4.Mathematical formulation (high-level) 
 

4.1 Decision variables 

 

• xℓ∈{0,1}x_{\ell} \in \{0,1\}xℓ∈{0,1}: whether route 

ℓ\ellℓ is operated (we work from a generated candidate 

set of feasible routes). 

• fℓ≥0f_{\ell} \ge 0fℓ≥0: frequency for route ℓ\ellℓ 

(vehicles/hour). 

• yp,ℓ∈{0,1}y_{p,\ell} \in \{0,1\}yp,ℓ∈{0,1} or 

continuous: assignment of passenger path ppp to route(s) 

ℓ\ellℓ (depending on model granularity). 

 

4.2 Operator cost 

 

OperatorCost=∑ℓ(cfixed  xℓ+cvh  fℓ 

 τℓ)\text{OperatorCost} = \sum_{\ell} \big( 

c_{\text{fixed}}\; x_{\ell} + c_{\text{vh}}\; f_{\ell}\; 

\tau_{\ell}\big)OperatorCost=ℓ∑(cfixedxℓ+cvhfℓτℓ) 

 

where cvhc_{\text{vh}}cvh is cost per vehicle-hour, 

τℓ\tau_{\ell}τℓ is round-trip time (depends on congested 

link travel times from the traffic model). 

 

4.3 Passenger cost (expected) 

 

Using standard transit choice models, approximate 

expected waiting time as 1/(2fℓ)1/(2f_{\ell})1/(2fℓ) 

(Poisson arrivals) and in-vehicle time as sum of congested 

link travel times along ℓ\ellℓ. For passenger class kkk: 

 

PassengerCost=∑k∑p∈Pkλk,p(waitp+invehiclep+θ⋅transf

ersp)\text{PassengerCost} = \sum_{k}\sum_{p\in P_k} 

\lambda_{k,p}\big( \text{wait}_p + \text{invehicle}_p + 

\theta \cdot \text{transfers}_p \big)PassengerCost=k∑

p∈Pk∑λk,p(waitp+invehiclep+θ⋅transfersp) 

 

Stochastic demand: λk,p\lambda_{k,p}λk,p may be 

expected demand or a distribution; robust/objective can 

minimize expected or CVaR cost. 

 

4.4 Congestion coupling (dynamic) 

 

Travel time on link eee at time ttt, Te(t)T_e(t)Te(t), is 

produced by a dynamic traffic model. We adopt the Cell 

Transmission Model (CTM) for discrete-time link 

evolution: 

 

ρen+1=ρen+ΔtLe(qin,en−qout,en)\rho_e^{n+1} = 

\rho_e^{n} + \frac{\Delta t}{L_e} \big( q_{in,e}^n - 

q_{out,e}^n \big)ρen+1=ρen+LeΔt(qin,en−qout,en) 

 

with flow demands and supplies computed via 

sending/receiving functions derived from the fundamental 

diagram; bus vehicles contribute to link usage and reduce 

effective capacity when stopped/boarding. See Daganzo 

(1994) for CTM formulation. 

 

4.5 Integrated MILP (sketch) 

 

When link travel times are approximated as piecewise-

linear functions of flow (or precomputed scenarios), the 

model can be linearized and written as a Mixed-Integer 

Linear Program: 

 

• Linear objective (operator + passenger travel-time costs 

via linear approximations), 

• Integer route activation variables, 

• Continuous frequencies and passenger flows, 

• Capacity constraints approximated per time-slice. 

 

For exact dynamic coupling, the problem becomes a mixed-

integer nonlinear problem (MINLP) or bilevel formulation 

(upper level: route design; lower level: dynamic 

assignment/traffic), often solved by decomposition (outer-

loop search over route sets; inner-loop simulation for travel 

times). 

 

Demand uncertainty and stochastic modeling 

 

• Model arrival processes at stops with Poisson processes; 

waiting-time expectation 1/(2f)1/(2f)1/(2f) holds under 

Poisson arrival assumptions. 

• Incorporate day-to-day demand variation by scenario 

sampling: evaluate candidate network on a set of demand 

scenarios, and optimize for expected or risk-averse 

objective (e.g., CVaR). 

• Optionally treat bus travel-time variability by adding 

stochastic perturbations to link free-flow times or arrival 

rates and evaluate robustness. 

 

5.Solution approach 
 

1. Candidate route generation: generate feasible route 

pool using heuristics (k-shortest paths with stop spacing 

rules, corridor-based generation). 

2. Frequency discretization: restrict frequencies to 

discrete levels to reduce search space. 

3. Master MILP / heuristic search: 

o For small networks: solve MILP with off-the-shelf 

solvers (CPLEX/Gurobi). 

o For city-scale: use metaheuristics - genetic algorithms, 

large neighborhood search, or simulated annealing - 

each solution evaluated by a traffic simulator (CTM-

based) that returns link travel times and passenger 

costs. Recent works use data-driven and hybrid 

methods for scalability.  

4. Simulation-based evaluation: run CTM (or 

microscopic simulator if required) to compute congested 

travel times and vehicle round-trip times; iterate until 

convergence or budget exhaustion.  
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6.Validation & performance metrics 
 

• System metrics: total operator cost, total passenger 

generalized travel cost, vehicle-hours, fleet utilization, 

system-wide delay. 

• Passenger metrics: average waiting time, average in-

vehicle time, average transfers, % demand served within 

X minutes. 

• Network metrics: link-level travel times, queue lengths, 

congestion hotspots. 

• Robustness metrics: objective variance across 

scenarios, CVaR at 90% level. 

 

Use cross-validation withhold-out demand days or 

bootstrapped demand realizations. 

 

Case study plan (suggested workflow) 

 

1. Data collection: road graph (OSM), bus stop locations, 

historical OD matrices (smartcard/Census/survey), link 

capacities, fleet costs. 

2. Preprocessing: generate candidate routes, discretize 

time-of-day into intervals (e.g., 15-min). 

3. Modeling: implement CTM for dynamic link travel 

times; implement MILP/heuristics in Python + Gurobi / 

OR-Tools. 

4. Calibration: calibrate fundamental diagram parameters 

using observed speed–flow data. 

5. Experiments: baseline network vs. optimized networks; 

stress test under peak demand and incident scenarios. 

6. Policy analysis: explore trade-offs (operator subsidy vs. 

passenger time reduction), evaluate targeted 

improvements (priority lanes, stop consolidation). 

Relevant methodologies and examples are documented 

in TNDP surveys and practical works. 

 

7.Discussion 
 

The main challenge is the computational coupling between 

combinatorial route choice and nonlinear, time-dependent 

congestion. Practical deployments rely on candidate-route 

sets plus simulation-based evaluation and heuristics. 

Incorporating realistic passenger behavior (non-Poisson 

arrivals, smartcard variability), operator constraints (driver 

shifts, depot locations), and multimodal integration (walk, 

bike, microtransit) improves realism but increases 

complexity. Data availability (high-resolution OD and link 

counts) markedly improves solution quality; recent data-

driven frameworks scale TNDP solutions to city-scale 

problems. 

 

8.Conclusion 
 

We proposed an integrated modeling framework that 

couples a mixed-integer transit network design model with 

dynamic traffic (CTM/LWR) and stochastic passenger 

demand. The approach is flexible: MILP/heuristic solution 

pipelines can be tailored to network size and data 

availability. Future extensions include explicit timetable 

optimization, real-time adaptive routing, and inclusion of 

priority measures (bus lanes) as decision variables. 

 

References 
 

[1] Lighthill, M. J., & Whitham, G. B. (1955). On 

kinematic waves. II. A theory of traffic flow on long 

crowded roads. Proceedings of the Royal Society A.  

[2] Richards, P. I. (1956). Shock waves on the highway. 

Operations Research, 4(1), 42–51. (Foundational 

LWR complement).  

[3] Daganzo, C. F. (1994). The cell transmission model: A 

dynamic representation of highway traffic consistent 

with the hydrodynamic theory. Transportation 

Research Part B: Methodological, 28(4), 269–287. 

Paper ID: SR251017172248 DOI: https://dx.doi.org/10.21275/SR251017172248 1050 

http://www.ijsr.net/



