Impact Factor 2024: 7.101

Pioneering the Quest for Economic-Environmental-Equilibrium Point for Sustainable Growth

Dr. Ravikumar Gajbiye

Marketing, Thakur Institute of Management Studies and Research, University of Mumbai, India Corresponding Author Email: ravikumar.gajbiye[at]thakureducation.org

Abstract: In order to achieve sustainable growth in the economic-environmental ecosystem, the rational utilization of natural resources of the world is necessary. The article/research paper presents an evolutionary dimension to equilibrium-based economics. Dynamic flux and stationary state in contemporary macro dynamics and macro static economics provide inadequate explanations for economic problems of the world; hence, a mechanism of macro-constancy at the equilibrium state is proposed. An integrated conceptual framework based on innovative econometric modelling and structural reforms for sustainable economic growth is highlighted in the paper. The theoretical framework is a combination of the classical, neo-classical and Keynesian economic thought to view the world economy with the vision of attaining perfect equilibrium between economic growth and environmental disruption in order to create a sustainable ecosystem. The statistical framework is based on global economic data from various sources covering key econometric parameters, with the aim of formulating a new realistic indicator for economic growth and formulating of an econometric model based on these parameters. Holistic concepts of common ownership of the world's natural resources and of the global wealth pool created out of their prudent utilization are molded into an innovative wealth distribution model for equitable growth and social justice. The research seeks to guide global institutions in their mission of achieving sustainable development. It proposes mandatory participation and collaboration of global nations. The mission is to achieve Sustainable Growth through optimal utilization of Natural Resources at the economic-environmental equilibrium point.

Key Abbreviations

EEE: Economic-Environmental Equilibrium GNRP: Gross Natural Resource Product UGDP: Universal Gross Domestic Product

UGNRP: Universal Gross Natural Resource Product

1. Introduction

Economic activity is necessary for a progressive human society. Natural resources of the planet, both subsoil and supra-soil, constitute the DNA (building blocks) of economic activity; wealth is the outcome. Wealth created through optimal utilisation of natural resources must be distributed equally among all nations in order to achieve the Sustainable Development Goals of poverty eradication, decent economic growth, reducing inequalities, sustainable communities, stronger global institutions, responsible consumption and production, and overall peace, justice and equality.

Predictive research on sustainable economic-environmental growth using forecast analysis techniques demands that variables for growth must be under the control of not just social entrepreneurs, but society as a whole. Prudent utilisation of resources and the redistribution of wealth created ensures sustainability, while social and environmental responsibility in business will help preserve our planet for future generations.

2. Objectives

1) Purpose of Research

It is observed that disruptive economic phenomena like recessions and depressions due to volatile cyclic situations adversely affect humanity across the world. A remedial solution to such economic upheavals is urgently sought.

Further study into their causes and effects reveals that the current economic indicator of economic growth, GDP, is

inadequate and inconsistent, not only in explaining the economic upheavals, but also in its very basic nature to define economic growth adequately. This research seeks to remove these inconsistencies and to redefine economic growth by proposing an alternative indicator: GNRP.

Furthermore, the research proposes a macro-constancy state of economic equilibrium necessary for sustainable growth, i.e. a balance between economic growth and resource utilization necessary for achieving that growth.

The following are the new economic concepts introduced in the paper:

- a) GNRP: Indicator of **potential** economic growth
- UGDP: Global pool of cumulative wealth productivity of nations
- UGNRP: Global pool of potential wealth productivity of nations

2) Research Notes

GNRP (Gross Natural Resource Product) is the valuation of the raw resources of an economy based on a common price mechanism. It is an aggregation of the quantity of natural resources multiplied by their (common) price.

UGDP (Universal Gross Domestic Product) is the sum of the GDP of all the nations of the world. It is calculated at the end of the economic cycle of world trade.

UGNRP (Universal Gross Natural Resource Product) is the sum of the GNRP of all the nations of the world. It is calculated at the beginning of the economic cycle of world trade.

Impact Factor 2024: 7.101

Business cycles are swings in total national output, income, and employment, causing widespread expansion or contraction in economic sectors.

Balance of Nature: The "balance of nature" is a theory that proposes that ecological systems are usually in a stable equilibrium. A small change in some particular parameter will be corrected by some negative feedback that will bring the parameter back to its original "point of balance" with the rest of the system.

Common-pool resource (CPR) is one that, if potential beneficiaries are excluded from using it, becomes too costly. Congestion or overuse causes rivalry for the resource, whereas a public good is both non-excludable and non-rivalrous

Common Pricing mechanism: The price is based on the Indices of Market Prices for Non-Fuel and Fuel Commodities, 2014-2017 (2005=100, in terms of U.S. dollars) for different units of quantity specifications

The outcome of the research process is:

- 1) Economic-Environmental Equilibrium (E3) econometric model
- 2) Wealth Redistribution model (WRM)

3. Methods

Brief Methodology

This study is an ongoing research process that aims to disrupt established norms that are inconsistent with global efforts to achieve Sustainable Development Goals. The Research follows an Inductive/Deductive approach, as it supports Positivism and Phenomenology. The "Good Fit" between Social Reality and Theory that emerges is "Grounded in Reality". It is, in principle, an Inductive Approach that builds up a theory and explores data without a predetermined framework.

Type of Research: It is an exploratory type of research using secondary data from a panel data framework.

Research Approach: This research applies an "Experimental" approach, wherein a simple model with few equations and variables is applied initially. The model is based on a priori theoretical grounds, but it is not rigid. It combines a priori theoretical considerations with empirical observations to extract maximum information from data.

Research Design: A mixed-methods design is used by integrating both qualitative and quantitative research designs to be more fixed and deductive. Descriptive quantitative research design is used to measure variables and describe relationships between them, and to describe characteristics, averages, summations and trends.

Sampling Method: Non-probability sampling method is used to collect samples selected in a non-random way without any research bias.

Data Collection Methods: Secondary data from reliable government surveys and global economic databases, which

are open source, is used. Analysis of this raw data expands the scope of the research. It is reliable as the results can be consistently reproduced, and valid as it measures the prescribed concepts.

Inclusion and Exclusion Criteria: Only 64 of 189 nations are considered, as they contribute to 96 % of the data to be measured (World GDP) consistently. Economic data irrelevant to the concept under study are excluded.

Data Analysis Strategies: Quantitative data analysis, like inferential statistics using statistical analysis, is used to summarise sample data, make estimates, and test hypotheses. Qualitative data analysis of the information and ideas in detail to interpret meanings and identify patterns and extract the most relevant parts. Thematic analysis of the content of the data is organised to identify key themes.

Variables and hypotheses are defined in advance before data collection.

Variables

GDP, Population, Agriculture revenue, Mineral output, Mineral pricing

Hypotheses/Assumptions

The following assumptions form the basis of this research:

1) Common Ownership of Resources

Natural resources are freely and abundantly provided to mankind by the benevolent planet. As such, nations cannot claim ownership of resources, and mankind is merely a custodian of these resources for its own progress.

2) Cumulative Wealth pool

Natural resources are the common property of mankind. All of mankind has equal proprietary rights to the entire wealth pool created out of the utilization of natural resources for economic growth.

3) Common Pricing mechanism

Natural resources at the extraction stage must be priced at the same level irrespective of scarcity/abundance, geographic & demographic limitations, quality & texture, and such other differentiating parameters. This will ensure the elimination of economic fluctuations caused by profit-based dynamic pricing and reinforce the quest for an equilibrium mechanism. Pricing differentiation may be applied only to finished products based on their utility to mankind.

Objectives of the Research

- 1) To propose GNRP (Gross Natural Resource Product) as an alternative to GDP
- 2) Wealth Redistribution Model- a new econometric model for sustainable growth
- 3) Predict E3 (Economic-Environmental Equilibrium) point of macroconstancy

Two-step methodology to achieve the objectives:

Step 1: Database analysis

 Macroeconomic data of 64 top GDP nations of the world from various sources over a period of 05 years from 2010 to 2014 is considered.

Impact Factor 2024: 7.101

- 2) A database of four key variables: GDP, population, agricultural income, and quantity of natural resources (minerals) extracted annually is sourced.
- A common pricing mechanism for determining the annual mineral value of a nation is applied to achieve macro stability.
- 4) Commonality of measurement units is tabulated to maintain consistency in the physical measurement of minerals extracted annually using a factor method.
- 5) The population of nations is used as a multiplicative factor, as these are internal consumers contributing to the economic growth (GDP) of a nation.
- 6) GNRP (Wealth Potential) of a nation based on valuation of mineral resources at source using common price mechanism, agriculture income and population factor is calculated using a logical common sense mathematical formula.

Step 2: Predictive analysis

- Forecast analysis is used for predicting economic growth for the year 2022 in GDP and GNRP terms. GDP indicates growth achieved by a post-economic business cycle. GNRP is a potential growth achievable before the economic business cycle.
- 2) UGDP and UGNRP are cumulative GDP and GNRP concepts. They are used to determine the excess growth achieved over the mean cumulative growth.
- 3) Excess growth (GDP mean UGDP) is ploughed back into the GNRP value of that nation for the next business cycle. This will **restrict the usage** of natural resources in the next business cycle for higher profit-based growth.
- 4) Thus, we achieve dual objectives of restricting excess wealth creation by conserving natural resources utilization at the **E3 point of macroconstancy**.

Databases used in the paper: Nations and their Economic data

- 1) GDP data of 64 Nations for period 2010-2014 and for 2017.
- 2) Database of Minerals Extracted during this period (2010-2014)

- 3) Agriculture Income during this period (2010-2014)
- 4) Population size during this period (2010-2014)

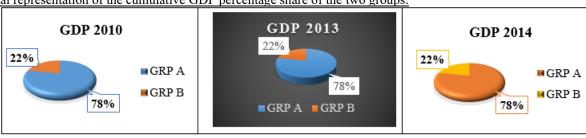
Research Phenomenon Observed

A study of the top sixty-four nations based on their GDP (in USD bn) over a period of 5 years (2010-2014) and the contribution of these 64 nations to the cumulative value of world GDP for the year 2017 is appended and tabulated below:

SN	Country Name	Cumulative	SN	Country Name	Cumulative
1	United States	951.41	17	Turkey	50.08
2	China	474.33	18	Indonesia	49.09
3	Japan	332.97	19	Switzerland	38.70
4	Germany	217.69	20	Saudi Arabia	38.68
5	France	165.43	21	Sweden	31.78
6	United Kingdom	157.70	22	Belgium	30.45
7	Brazil	138.86	23	Poland	30.18
8	Italy	129.42	24	Iran	29.83
9	Russian Federation	112.44	25	Argentina	29.11
10	India	105.23	26	Norway	28.44
11	Canada	102.33	27	Nigeria	24.95
12	Spain	84.92	28	Austria	24.91
13	Australia	80.26	29	Thailand	22.18
14	Korea, Rep.	71.39	30	South Africa	22.02
15	Mexico	68.64	31	Venezuela	21.50
16	Netherlands	51.63	32	UAE	20.63
33	Denmark	20.10	49	Iraq	11.23
34	Colombia	19.84	50	Kazakhstan	11.22
35	Malaysia	17.31	51	Romania	10.83
36	Greece	16.39	52	Peru	10.35
37	Singapore	16.04	53	New Zealand	10.04
38	Finland	15.72	54	Qatar	9.82
39	Israel	15.63	55	Ukraine	9.09
40	Hong Kong	15.21	56	Kuwait	8.86
41	Egypt	15.17	57	Vietnam	8.71
42	Chile	14.50	58	Bangladesh	8.03
43	Ireland	14.19	59	Hungary	8.02
44	Portugal	13.99	60	Angola	6.29
45	Philippines	13.99	61	Morocco	6.02
46	Czech Republic	12.65	62	Puerto Rico	5.99
47	Pakistan	12.59	63	Slovak Republic	5.69
48	Algeria	11.31	64	Ecuador	4.97

World GDP and Share of top 64 nations (Year 2017)

Aggregate Economy Unit	Cumulative GDP (USD bn)	Percentage of World GDP
TOP 64 nations	74,577	95.63 %
World GDP (UGDP)	77,988	


Source: IMF Statistics.com

Cumulative GDP (UGDP) of top 64 Nations (2010-2014)

GDP	2010	2011	2012	2013	2014
Group A total (a)	49107722	54265329	55434045	56764807	57649003
Group B total (b)	13609781	15383729	15683587	16258550	16201625
UGDP(a+b)	62717503	69649058	71117633	73023357	73850628
Mean UGDP	979961	1088267	1111213	1140990	1153916

Note: The 64 nations are divided into two distinct groups A & B, as follows: Group A consists of 15 nations whose GDPs exceed the mean UGDP Group B consists of 49 nations whose GDP is less than the mean UGDP

Graphical representation of the cumulative GDP percentage share of the two groups:

Impact Factor 2024: 7.101

Observation of Anomalous Facts:

- Group A nations ALWAYS achieve economic growth above the mean UGDP
- Group B nations NEVER achieve GDP growth equal to the mean UGDP
- The proportionate share of UGDP for A & B groups is always 22:78

Inference:

- GDP in its current form is a grossly inadequate indicator of economic growth.
- Currently, GDP indicates economic achievement in terms of wealth created *after* any economic business cycle, which is an irreversible process. This leads to a gap between factual and manipulated data at the global level.
- 3) Hence the need to redefine economic growth as "Wealth Potential" instead of "Wealth Created" by assigning value to natural resources at the extraction level before entering the pre-economic business cycle stage.
- 4) Further investigation into this irrational distribution of the UGDP of these 64 nations is necessary to study the phenomenon in detail.

4. Methodology/ Approach

The Conceptual Framework for deriving the following is presented below

Part 1: Calculate GNRP of a nation (Basic Statistical method)
Part 2: Wealth Redistribution Model (WRM- Econometric Model)

Part 3: E3 Point of macroconstancy (Forecast analysis)

Part 1: Calculate GNRP of a nation (Basic Statistical method)

GNRP of a nation is the new proposed indicator of its Wealth Potential. GNRP is the mathematical product of the Land Revenue of a nation and its population.

Land Revenue is the sum of Agricultural and Mineral revenue, while the Population parameter is adjusted for a conversion factor to simplify mathematical calculations.

GNRP of any nation is primarily based on the Valuation of its natural resources (both supra-soil and subsoil) at the extraction stage *before* they enter the business cycle for human economic activity production and consumption.

The main stages involved in calculating the GNRP of a nation are

- 1) Calculating Mineral Value of a nation
- 2) Obtaining Agriculture Income and Population Data
- 3) Deriving GNRP using a simple mathematical formula

The following database is used to derive the GNRP of a nation:

- 1) Mineral resources quantity extracted
- 2) Agriculture Income
- 3) Population of a nation

Note: To achieve commonality in quantifying values, the research uses

- 1) Common Price mechanism
- 2) Conversion factor for normalizing units of measurement

<u>Stage 1</u>: To calculate GNRP, it is necessary to understand the Mineral Value of a Nation. It is the simple product of the quantity of minerals extracted and the common price established. The conversion factor is used to normalize the units of physical measurement.

The steps involved are:

Step 1. To establish the Conversion factor

Step 2. To calculate the mineral value for the commodity

Step 3. To arrive at the aggregate value of all minerals for a particular nation

Step 1: Conversion factor

It is observed that the measuring unit for quantity and price for most minerals differ. There should be commonality in measuring the production and the pricing of minerals. A conversion factor is used to achieve this commonality.

<u>Difference in Measuring Units for Quantity and Price of Minerals</u>

Mineral Unit of Physical Quantity		Price	Unit of Pricing
Alumina	thousand metric tons	283.1	USD/T
Diamond	thousand carats	1400.0	USD/carat
Anthracite Coal	thousand metric tons	42.6	USD/T
Zirconium	metric tons	75000.0	USD/T
Talc (Pyrophyllite)	thousand metric tons	167.0	USD/mT
Natural gasoline (butane)	million 42-gallon barrels	8.1	USD/MMBtu
Gold	metric tons	1223.7	USD/oz.
Steel, crude	thousand metric tons	300.0	USD/mT
Liquefied petroleum gas	thousand 42-gallon barrels	100.2	USD/bbl.
Ferrochromium	metric tons	2480.0	USD/T
Uranium	metric tons	25.7	USD/lbs.

<u>Step 2: Mineral Value of Commodities (Economic Value of minerals)</u>

The economic value for a particular commodity (mineral) is calculated as a simple mathematical product of quantity extracted and its common price, with the conversion factor factored in to neutralize the difference in units of measurement.

Consider the following example of **Crude Steel** for 4 nations over 3 time periods

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

Economic Value of Mineral Crude Steel

Economic varie of winder Crace Section						
Commodity			Crude St	eel		
Year	Economy	Production Unit	Avg price	Conversion Factor	Mineral Value	
1 Cal	Economy	thousand mT	USD/mT	Conversion Factor	(US\$ mn)	
2012		950			285.00	
2013	Bahrain	970	300.00	1000	291.00	
2014		970			291.00	
Year	Economy	thousand mT	USD/mT	CF	(US\$ mn)	
2012		15			4.50	
2013	Zimbabwe	15	300.00	1000	4.50	
2014		15			4.50	
Year	Economy	thousand mT	USD/mT	CF	(US\$ mn)	
2012		723,880			217164.00	
2013	China	779,040	300.00	1000	233712.00	
2014		822,300			246690.00	
Year	Economy	million mT	USD/mT	CF	(US\$ mn)	
2012		88.7			48341.50	
2013	USA	86.9	545.00	1000000	47360.50	
2014		88.2			48069.00	

Step 3. Total Aggregate Mineral Value of a nation

The economic value of all minerals for a given nation is calculated as below:

- 1) Obtain the Quantity of Production (extraction) of all minerals
- 2) Establish a Common Price and Conversion factor for each mineral
- Calculate Economic value: Quantity x Common Price x Conversion Factor

Aggregate Mineral Value of 6 Afro-Asian nations (in USD mn) is tabulated below:

, ···- ··- ·· · · · · · · · · · · · ·				
Total Mineral Value	2012	2013	2014	
Australia	234806	226740	No data	
Bahrain	17523	16889	16766	
China	34635730	39740951	36818464	
Japan	430174	345223	323331	
South Africa	7315218	8195571	No data	
Zimbabwe	19582	17455	9991	

<u>Stage 2</u> involves obtaining annual macroeconomic data about agricultural income and Population for a nation.

Stage 3: **GNRP: Proposed Economic Indicator of Growth Potential**

GNRP is a simple mathematical product of the Land Revenue and the Population, adjusted for a conversion factor for simplicity of mathematical calculation purpose.

The value of population factor is 0.001 (population in mn/1000).

Thus, the formula for GNRP calculation is:

GNRP (USD mn) = Land Revenue (USD mn) *
Population (mn) * 0.001

where

GNRP: Gross Natural Resource Product (USD mn)

Land Revenue: Sum of Agriculture and Mineral revenue

(USD mn)

Population: value in million Population Factor: 0.001

Note: GNRP values for China and South Africa for 2010-2014 is given below:

GNRP Calculation for China (2010-2014)

China	Mineral	Agriculture	Land Revenue	Population	Pop Factor	GNRP
2010	34787250	581401	35368652	1337.71	0.001	47312822
2011	41075086	714433	41789519	1344.13	0.001	56170547
2012	34635730	806399	35442129	1350.70	0.001	47871506
2013	39740951	893010	40633961	1357.38	0.001	55155726
2014	36818464	949694	37768158	1364.27	0.001	51525965
	a	b	c = a + b	d	e	z = c * d * e

GNRP Calculation for South Africa (2009-2013)

South Africa	Mineral	Agriculture	Land Revenue	Population	Pop Factor	GNRP
2009	7372700	8843	7381543	50.26	0.001	295936
2010	8431704	9870	8441574	50.98	0.001	375349
2011	8307003	10563	8317565	51.73	0.001	416419
2012	7315218	9539	7324757	52.51	0.001	396328
2013	8195571	8552	8204124	53.31	0.001	366624
	a	b	c = a + b	d	e	z = c * d * e

<u>Part 2: Wealth Redistribution Model (WRM): Working of</u> the Econometric Model

Wealth inequality among nations is a global phenomenon leading to growing economic problems like poverty and underdevelopment of nations. It is also well understood and accepted that the real issue with wealth inequality is the distribution of wealth, not its creation.

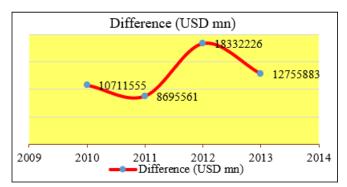
Volume 14 Issue 10, October 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Paper ID: SR251015105252

Impact Factor 2024: 7.101

Using this universal acceptance in good faith, this research proposes an innovative dynamic econometric model to redefine the distribution of wealth created out of human economic activity among the nations of the world.

This Wealth Redistribution Model (WRM) proposes to reduce inequality and promote social justice among the nations of the world using a two-fold mechanism:


- Reduction is the usage of natural resources, thereby promoting sustainable economic growth that is needbased and not greed or profit-based
- b) Distribution of any excess wealth created out of favorable economic activity back into the next economic cycle to reduce excessive cyclic profits.

The WRM mechanism follows the following cyclic steps:

- 1) Calculating the Cumulative Economic Potential of Nations (UGNRP)
- 2) UGNRP is compared with Cumulative Wealth Created (UGDP)
- 3) GDP of each nation is compared with the mean UGDP.
- 4) If GDP > mean UGDP, the excess is added to GNRP in the next business cycle
- 5) Fewer resources are utilized in the next business cycle.
- 6) Again, UGNRP is compared with UGDP in the next cycle.
- 7) Steps 2 to 5 are repeated till both values are equal. i.e. UGDP = UGNRP

This is the Economic-Environmental Equilibrium (E3) Point

Comparison between UGNRP and UGDP of 64 Nations YEAR 2010 2012 2013 2011 **UGNRP** 60955507 52787419 60269486 52007958 (US\$ mn) UGDP 62719513 69651069 71119645 73025370 (Current US\$ mn Difference 10711555 8695561 18332226 12755883 (US\$ mn)

Graph of Difference between UGDP and UGNRP

Inference

- Any state of the world economy wherein UGDP does not match UGNRP signifies a state of disequilibrium.
- 2) For the world economy to reach a state of equilibrium, both these values need to be the same consistently over a period of time.
- 3) This is the state of **macro-constancy**; the equilibrium point at which sustainable growth for both planet and mankind is attainable.

Conclusion

- The ideal equilibrium is the stage where UGDP = UGNRP.
- It is proposed to devise a methodology by which the difference between UGDP and UGNRP is zero.

Part 3: E3 Point of Economic Macroconstancy using Forecast analysis

Economic-Environmental Equilibrium is achieved under perfect "market clearance conditions", when factors of production (natural resources utilized) equal the wealth produced, i.e. when UGDP equals UGNRP

- 1) The Economic-Environmental Equilibrium point can be achieved in two ways:
 - a) Preventing cyclic fluctuations using the Wealth Distribution model
 - b) Common ownership of natural resources and UGDP
- 2) Sustainable Growth is proposed to be achieved in two ways:
 - a) Optimal utilization of natural resources through the proposed WRM
 - b) Sufficing growth based on the Malthusian principle of minimum growth

Stage 1: Achieving the Equilibrium Point using Forecast Analysis

To achieve the EEE point for sustainable growth, the following steps are proposed:

- 1) Pre-determine the value of UGNRP to be achieved.
- Target the deadline for achieving this predetermined value of UGNRP.
- 3) Control and regulate utilization of natural resources to evaluate the UGNRP value.
- 4) At the targeted timeline, economic aggregates must be equal i.e. UGDP = UGNRP

Stage 2: Operationalising the EEE Point through Forecast Analysis

"Forecast Analysis" as a tool is proposed to be employed in two stages:

Step 1: An intermediate "preparatory" stage (year 2017) Step 2: The terminal "implementation" stage (year 2022)

Forecasting the Aggregate Economic Growth (UGDP) Value

GDP forecast by *Statistics Times.com* for 2017 and 2022. The GDP values (nominal and PPP) projected for the world economy are as follows:

 World GDP (nominal and PPP) – year 2017

 World economy (UGDP)
 GDP Nominal (USD bn)
 GDP PPP (USD bn)

 2017
 2022
 2017
 2022

 126,688
 168,202

GDP forecast for the 64-nation Aggregate level based on the share of world GDP

The nominal GDP forecast at the aggregate level of the economy for the world and the cumulative aggregate of the GDP values forecast for the 64 sample nations for the years 2017 and 2022 are tabulated below:

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Impact Factor 2024: 7.101

World and 64-nation Aggregate UGDP (forecast)

A severation I seed of Francisco	GDP (USD bn)		
Aggregation Level of Economy	2017		2022
Cumulative 64	74,577		95,287
World (UGDP)	77,988		99,956

Source: StatisticsTimes.com

5. Observation

It is observed that the cumulative GDP value for the 64 nations for the period 2010-2014 is 95.63 % of the world's UGDP. For the research, the cumulative GDP forecast for the 64 nations is also considered as 95.63 % of the projected World GDP value for 2017 and 2022, respectively.

GDP forecast table

Economy	2017 GDP	% of Total	2022 GDP	% of Total
World	77,988		99,956	
Cumulative 64	74,577	95.63	95,287	95.33

Note: UGNRP (O) is the original cumulative GNRP values of the 64 nations before using the WRM working for ploughing back excess wealth into successive years' GNRP values. UGNRP (R) is the revised value after adding excess GDP values.

UGNRP (O and R) and UGDP values							
YEAR UGNRP (O) UGNRP (R) UGDP							
2010	52005948	52005948	62717503				
2011	60053406	05361804	606/10058				

2010	52005948	52005948	62717503
2011	60953496	95361804	69649058
2012	52785407	90726738	71117633
2013	60267473	99033324	73023357
2014	56432279	96082237	73850628

Note: all values in USD mn

Achieving Forecast Value

The forecast of nominal GDP for the world economy is made for the years 2017 and 2022. The growth rate achieved in the years 2017 and 2022 is calculated over the base year 2014. The UGDP values and the growth rate achieved is tabulated as follows:

UGDP values for the 64 nations for 2017 and 2022

YEAR	UGDP	Growth Rate
2014	73850628	base year
2017 (forecast)	74579924	1.0099
2022 (forecast)	95587923	1.2943

GDP Forecast of Top 3 Economies						
2023 2024 2025 2026 2027						
China	32,529.20	34,705.70	36,988.50	39,427.30	42,050.20	
United States	26,185.20	27,057.20	28,045.30	29,165.50	30,281.50	
India	12,813.10	13,972.90	15,196.80	16,497.40	17,854.70	
	GDP, current prices, PPP, billion \$U			billion \$US		

Stage 3: Concept of Zero Difference

The final aim of the research is to achieve zero difference between UGDP and UGNRP values. This **most critical stage** is proposed to be achieved in the year 2022.

Working module: Calculating Projected Values of UGDP and UGNRP

Projected for 2022 (USD mn)		Projected for 2022 (USD mn)			
Projected UGDP 2022	95287011	Projected U	<mark>JGDP</mark>	95287011	
Current UGDP 2014	73850628	Projected U	<mark>JGNRP</mark>	72812695	
Rate of Growth	29.0%				
Current UGNRP 2014	56432279				
Projected UGNRP 2022	72812695				

Stage 4: Achieving Zero difference: Methodology adopted

- 1) E3 Point is operationally possible when UGDP equals UGNRP, i.e. when there is *zero difference* between the two values.
- 2) For the year 2022, either UGDP or UGNRP must be a fixed value
- 3) Zero difference (UGNRP UGDP) is achieved by two different methods.

Method 1: UGNRP value in 2022 must equal the projected UGDP value. Economic growth (UGDP) is planned first.

Method 2: UGDP in 2022 must be equal to the projected UGNRP value. UGNRP value is determined first by planning the natural resource allocation.

Detailed working of the two methods follows

Method 1: UGNRP value equals the projected UGDP value

Year	UGDP (USD bn)	Year	UGDP (USD bn)
2010	62718	2017	74577
2011	69649	2018	
2012	71118	2019	
2013	73023	2020	
2014	73851	2021	
2015		2022	95287
2016			

Method 2: UGDP value equals the projected UGNRP value

YEAR	UGNRP (USD bn)	YEAR	UGNRP (USD bn)
2010	52006	2017	97027
2011	95362	2018	
2012	90727	2019	
2013	99033	2020	
2014	96082	2021	
2015		2022	72813
2016			

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 **Impact Factor 2024: 7.101**

6. Results

In order to plan for achieving the Economic-Environmental Equilibrium point in the year 2022, two possible scenarios under which the "Projected" values are fixed, while the "Planned "values are to be manipulated, are presented below: Scenario 1: UGNRP value in 2022 must equal the projected UGDP value. UGDP values are fixed; natural resource allocation is controlled periodically.

Projected UGDP = 95287011 USD mn. = Planned UGRNP

Scenario 2: UGDP in year 2022 must be equal to the projected UGNRP value. UGNRP value is fixed; economic activity is controlled periodically.

Projected UGNRP = 72812695 USD mn. = Planned UGDP

Conclusion

It is easier to control and manipulate the allocation of natural resources than to control the economic activity at micro or macro level.

Working Model for Forecasting UGDP values

Trend or	fUGDP		Trend:	UGDP			
YEAR	UGDP		Year	(USD mn)			
2010	62717503		2010	62717503			
2011	69649058		2011	69649058			
2012	71117633		2012	71117633			
2013	73023357		2013	73023357			
2014	73850628		2014	73850628			
YEAR	UGDP		2015	74093727			
2014	73850628		2016	74215276			
2017	74579924		2017	74579924			
Growth Rate	1.0099		2018	78198087			
2022	95587923		2019	79284952			
Growth Rate	1.2943		2020	81096393			
			2021	84719276			
			2022	95587923			
Working for	Working for Prediciting UGDP Yearwise based on						
	Forec	ast					
0.336625095	0.003291761	1.003291761	74093727				
0.504937642	0.004937642	1.004937642	74215276				
1.009875284	0.009875284	1.009875284	74579924				
	0.058868272	1.058868272	78198087				
	0.073585340	1.073585340	79284952				
	0.098113786	1.098113786	81096393				
	0.147170679	1.147170679	84719276				
1.294341358	0.294341358	1.294341358	95587923				

Note: Trend Analysis of UGDP and UGNRP can be utilized to determine the various checkpoints for the coming years from 2017 based on the projected growth rate.

7. Discussion

Planning Equilibrium Growth

UGDP values (actual, forecast, and calculated) for each year for a twelve-year period from 2010 till 2022 is given below.

Final UGDP values

UGDP Values					
Year	(USD mn)	Year	(USD mn)		
2010	62717503	2017	74579924		
2011	69649058	2018	78198087		
2012	71117633	2019	79284952		
2013	73023357	2020	81096393		
2014	73850628	2021	84719276		
2015	74093727	2022	95587923		
2016	74215276				

Plan of Action

The graphs give us an idea of the UGDP value at periodic intervals. All that needs to be done is to ensure that the UGNRP values at the corresponding intervals match the UGDP values. The close match of UGNRP value with UGDP value will ensure that the "zero difference" mission is well on course.

8. Conclusions

The outcome of this empirical research is threefold:

1) New economic concepts:

- GNRP: Economic growth potential indicator based on natural resource evaluation
- UGDP: Cumulative wealth productivity of nations
- UGNRP: Cumulative resource-based valuation of nations

2) New Mechanisms:

- Common Pricing Mechanism
- Conversion factor for physical measurement parity

3) New Innovative Systems:

- Economic-Environmental Equilibrium point of macro-constancy
- Wealth Redistribution model

Source of Data

- World Economic Outlook Update. Rapid Weakening Prospects Call for New Policy Stimulus, IMF, Nov 2008
- Nations of the World.xlsx from the United Nations Department of Economic and Social Affairs database (https://www.un.org/development/desa/en)
- National Accounts Main Aggregate database of the United Nations National Accounts - Statistics Division
- Database of Minerals.xlsx: Information about the U.S. Geological Survey's National Minerals Information Centre, including minerals information, commodity statistics information (https://minerals.usgs.gov/minerals/)
- Development Economics http://en.wikipedia.org/wiki/ Dev Economics
- 6) Stats.oecd.org
- Worldbank.org 7)
- United Nations Commodity Trade Statistics Database

References

Aguado, R.; Martinez, J. (2012), "GDP and Beyond: [1] Towards New Measures of Sustainability based on

Impact Factor 2024: 7.101

- Catholic Social Thought", Asia-Pacific Journal of Business Administration, Vol. 4 Issue. 2, pp.124
- [2] Aguado Muñoz, Ricardo; Martinez Lopez, Jabier (2011), "An alternative proposal to GDP as an indicator of sustainability and development", *Social Development Magazine*, 2011, Volume. 66, Journal number 262, Pgs. 219-249
- [3] Bernard Keys, Robert Wells, (1992) "A Global Management Development Laboratory for a Global World", *Journal of Management Development*, Vol. 11 Issue: 1, pp.4 11
- [4] Charles Perrings (1998), "Resilience in the Dynamics of Economy-Environment Systems", *Environmental and Resource Economics*, April 1998, Vol. 11, Issue. 3-4, pp 503-520
- [5] Dominique Guégan, Patrick Rakotomarolahy (2010), "Alternative Methods for Forecasting GDP", in Fredj Jawadi, William A. Barnett (ed.) Nonlinear Modelling of Economic and Financial Time-Series, (International Symposia in Economic Theory and Econometrics, Vol. 20), Emerald Group Publishing Ltd.
- [6] Fleurbaey, Marc (2009), "Beyond GDP: The quest for a measure of social welfare", *Journal of Economic Literature*, Volume 47, Issue 4, Dec 2009
- [7] Laszlo Zsolnai, (1993) "A Framework of Alternative Economics", *International Journal of Social Economics*, Vol. 20 Issue: 2, pp.65–75
- [8] Pushpam Kumar (2010, Ed.), "The Economics of Ecosystems and Biodiversity: Economic and Ecological Foundations", Management of Environmental Quality: An International Journal, Vol. 22, Issue. 2, Oct 2010
- [9] Sachs, Jeffrey D. and Andrew M. Warner. "The Big Rush, Natural Resource Booms and Growth", *Journal* of Development Economics, 1999, vol 59, Issue. 1
- [10] Sardas M.N. Islam (2001), "Optimal National Economic Growth", in Sardas M.N. Islam (ed.) Optimal Growth Economics: An Investigation of the Contemporary Issues and the Prospect for Sustainable Growth (Contributions to Economic Analysis, Vol. 252), Emerald Group Publishing Ltd. pp.201–236
- [11] Zsolnai, L. (1993) "A Framework of Alternative Economics", *International Journal of Social Economics*, Vol. 20 Issue.: 2, pp.65-75
- [12] Lovrinčević, Ž., Mikulić, D., & Nagyszombaty, A.G. (2013), "Is GDP an Appropriate Indicator of Sustainable Economic Development", *Econometric Reviews*, 64, 474-493