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Abstract: The transfer function of an electrical network can be calculated using various techniques, including Kirchhoff's laws, two-

point network theory, nodal analysis, and the time constant method. Another approach for algebraically determining the transfer function 

is through the use of the Signal Flow Graph (SFG). An SFG consists of a directed, weighted graph made up of nodes and branches. In 

this context, we will create a signal flow graph of a nonlinear electrical network to analyze it using Mason's gain formula and the Signal 

Flow Graph's reduction rules.  
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1. Introduction 
 

One of the most significant and fascinating areas of 

mathematics is graph theory. This subfield studies networks 

of points connected by lines [1]. Graph theory [3] originated 

from number games and recreational math puzzles but has 

since evolved into a substantial area of mathematical study, 

with applications in computer science, social science, 

operational research, chemistry, and various types of 

networks [2] [17].  

 

A graph is defined as an ordered pair G = (V, E), where V is 

a finite, non-empty set of vertices, and E is the set of edges. 

In graphical representations, the vertices are depicted as dots, 

while the edges are illustrated as line segments [2]. 

Theoretical properties of graphs allow us to analyse networks 

and provide solutions to various problems.  

 

An SFG, or signal flow graph [4], is a directed, weighted 

graph in which signals are applied to nodes and functions are 

applied to edges to represent a system's signal flow. The 

transfer function of electrical circuits can be calculated using 

a number of techniques, including Kirchhoff's rules [5], two-

port network theory [6], the nodal analysis approach [7], and 

the time constant method [10]. These techniques typically 

require a lot of computation and can be time-consuming. 

Additionally, the Signal Flow Graph may be used to create a 

common graphical model that connects the state variable 

(parameters) and the transfer function and helps one grasp the 

intricate workings of a network. With the aid of mesh rules, 

node rules, and Ohm's equations, a signal flow graph can be 

created. This presentation enables a more accurate result.  

 

Furthermore, the signal flow graph can be used to create a 

common graphical model that connects state variables 

(parameters) to the transfer function, helping to clarify the 

complex workings of a network. By utilizing mesh rules, node 

rules, and Ohm's law, one can construct a signal flow graph 

more accurately.  

Signal Flow Graphs (SFG) have greatly benefited from the 

work of numerous scholars. Samuel Jefferson Mason initially 

used the phrase to refer to a specialized flow graph before 

Claude Shannon created the Signal Flow Graph, often known 

as the Mason graph. Shannon [1942] first applied the Single 

Flow Graph concept [11] to dealing with analogue computers. 

Mason [1953] [1956] deserves the most credit for creating 

signal flow graphs since he demonstrated how to apply the 

method to tackle certain challenging electronic issues 

relatively easily. The phrase "signal flow graph" was chosen 

since it was first applied to electronic problems [12] involving 

electronic signals and system flow charts. Signal Flow Graphs 

(SFG) have greatly benefitted from the contributions of many 

scholars. Samuel Jefferson Mason was the first to use the term 

to describe a specialized type of flow graph. Later, Claude 

Shannon developed what is now commonly known as the 

Signal Flow Graph, or Mason graph [8-9]. In 1942, Shannon 

applied the concept of Signal Flow Graphs to solve problems 

related to analog computers. However, it is Mason, in his 

works from 1953 and 1956, who deserves the most 

recognition for developing signal flow graphs. He 

demonstrated how this method could effectively tackle 

complex electronic issues with relative ease. The term "signal 

flow graph" was chosen because it was initially applied to 

electronic problems that involved electronic signals and 

system flow charts.  

 

The SFG (Signal Flow Graph) method, developed by J. A. 

Brzozowski and E. J. McCluskey Jr. in 1963, is designed to 

characterize sequential circuits using regular expressions 

[14]. It has been shown that state diagrams of sequential 

circuits can be accurately interpreted using methodologies 

from signal flow graph theory. After 1990, Dalibor Biolek 

and Viera Biolkova utilized signal flow graphs to explain 

linear circuits. In their 2017 work [15-16], Feim Ridvan 

Rasim and Sebastian M. Sattler evaluated the reliability of the 

SFG method [13]18]. A signal flow graph can be validated by 

generating the graph’s identity.  
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2. Preliminary 
 

Table 1: Basic definitions 

Electrical Network 
A closed electrical network connects various electrical components, including transformers, resistors, 

inductors, capacitors, and both voltage and current sources. 

Circuit A circuit is a closed electric network. 

Graph 
A graph is defined as a pair G = (V, E), where V is a collection of nodes or vertices and E is a collection 

of edges or branches. 

Node A node is a point that symbolizes a signal or variable. 

Branch A branch is a piece of a line that connects two nodes. 

Walk 
A walk is a finite alternating sequence of vertices and edges that starts and ends with vertices, 

characterized by each edge being incident to the vertices immediately before and after it. 

Path A path is a continuous route where no vertex appears more than once. 

Loop 
A loop is a closed path that starts at a vertex and ends at the same vertex or node, never passing any node 

more than once. 

Self-loop One branch makes up this feedback loop. 

Loop gain The gain achieved by following a path that starts and ends at the same node is referred to as loop gain. 

Non-touching loops 
Non-touching loops are defined as loops that do not have any nodes in common. 

 

Forward path 
If a path starts with an initial node, continues to another node, and ends at an output node, it is known as 

a forwarded path. 

Feedback path A "feedback path" is a path that begins and ends at the same node. 

Forwarded path gain 
The total of gains found by tracing a path from an input node to an output node in a signal flow graph is 

referred to as the forwarded path gain. 

Digraph A directed graph, also referred to as a digraph, is a graph where each edge has a specific direction. 

Transfer function 
The system's transfer function T (s) is defined as C (s) /R (s), where R (s) represents the system's input as 

a single flow graph. The system's output, denoted by the signal flow graph, is C (S). 

 

3. Methodology 
 

3.1 Signal Flow Graph 

 

A Signal Flow Graph (SFG) is a directed and weighted graph 

that describes a system's signal flow. A Signal Flow Graph 

(SFG) offers a set's graphical representation.  

 

3.1.1. Reduction Rule of Signal Flow Graph (SFG) 

(Modification of Signal Flow Graph):  

 

Rule 1:  

 

(a)  

 
Figure 1 

If "input" is represented as "𝑥1" and "output" as "𝑥2, " with 

"a" denoting the gain, then 𝑥2 = 𝑎𝑥1 

 

(b)  

 
Figure 2 

 

If 𝑥1 and 𝑥2 are input signals with gains 𝑎1 and 𝑎2 

respectively, then the output signal can be written as 𝑥3 =
𝑎1𝑥1 + 𝑎2𝑥2 

 

Rule2:  

 

 
Figure 3 

 

If 𝑥1, 𝑥2 ∧ 𝑥3 are nodes where 𝑥1 is input and 𝑥3is output with gains a and b. After making the adjustments, we have 𝑥2 = 𝑎𝑥1, 

𝑥3 = 𝑏𝑥2 = 𝑎𝑏𝑥1 
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Rule3:  

 
Figure 4 

 

If input is represented by𝑥1 and output by𝑥2, with gains a and b for the respective branches, then the resulting output will be 

𝑥2 = (𝑎 + 𝑏)𝑥1 = 𝑎𝑥1 + 𝑏𝑥1 

 

Rule4:  

 
Figure 5 

 

If 𝑥1, 𝑥2, 𝑥3 ∧ 𝑥4 are nodes, and a, b, and c represent the gains of branches, then the relationships can be established. Therefore, 

we can conclude 𝑥3 = 𝑎𝑥1 + 𝑏𝑥2 and 𝑥4 = 𝑐𝑥3 = 𝑐 (𝑎𝑥1 + 𝑏𝑥2). There fore 𝑥4 = 𝑎𝑐𝑥1 + 𝑏𝑐𝑥2 

 

Rule5:  

 
Figure 6 

 

If 𝑥1, 𝑥2 and 𝑥3 are nodes with a, b, and c as gains of branches, as shown in the figure, then we have 𝑥2 = 𝑎𝑥1 and 𝑥3 =

(
𝑏

1−𝑏𝑐
) 𝑥2=(

𝑏

1−𝑏𝑐
) 𝑎𝑥1=

𝑎𝑏

1−𝑏𝑐
𝑥1 

 

Rule6:  

 
Figure 7 

 

If 𝑥1, 𝑥2 and 𝑥3 are nodes with a, b (reflexive or self-referential), and c are gains of branches as shown in the figure, then 𝑥2 =
𝑎

1−𝑐
𝑥1 and 𝑥3 = 𝑏𝑥2 =𝑏

𝑎

1−𝑐
𝑥1 = 

𝑎𝑏

1−𝑐
𝑥1 

 

Rule 7: Loop reduction:  

(a) Signal loop: The transmission (𝑇𝑖𝑗) from an independent variable 𝑥𝑖 (source node) to a dependent variable 𝑥𝑗 (internal or 

sink node) In a signal flow graph containing only one loop and one path, equals 

 𝑇𝑖𝑗 =
𝑃𝑖𝑗

1−𝐿
 …………………………… (1)  

 

Where 𝑃𝑖𝑗  is the forward path transmission from 𝑥𝑖 and 𝑥𝑗 and L is the transmission of the loop.  

 

(b) Multi-loop with non-touching loops: With a cascade of non-touching (loops possessing no common nodes), the overall 

transmission is the product of the individual transmissions as given by equation (1) (single loop)  

 

𝑇 =
𝑃𝑖𝑗

1−𝐿𝑗
.

𝑃𝑗𝑘

1−𝐿𝑘
… … … … … … .

𝑃(𝑛−1)𝑛

1−𝐿𝑛
 ……………(2) 
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(c) Multiloop with touching loops:  

For the case that the two loops do share at least one node, as shown in the figure below, the overall transmission is given by 

 

 
Figure 8 

 

Here, 𝑥1, 𝑥2,𝑥3, 𝑥4 ∧ 𝑥5 are nodes with a, b, c, d, e, and f are 

gains of branches as shown in the figure, then the transfer 

function between 𝑥1 ∧ 𝑥5we have as follows:  

𝑇15 =
𝑥5

𝑥1
=

𝑎𝑏𝑐𝑑

1−𝑏𝑒−𝑐𝑓
=

𝑃15

1−𝐿1−𝐿2
 ………… (3)  

 𝑥5 =
𝑎𝑏𝑐𝑑

1−𝑏𝑒−𝑐𝑓
𝑥1 

  

3.2 Mason’s Gain Formula (MGF) 

 

The Mason’s Gain Formula (MGF) is a formula for 

calculating the transfer function of a linear signal flow graph. 

Let R (S) be the system's input in the signal flow graph model. 

And C (S) represents the system's output as shown by a signal 

flow graph.  

The system's transfer function is given by 𝑇(𝑆) =
𝐶 (𝑆) 

𝑅 (𝑆) 
 

Overall gain 𝑇 = 𝑇(𝑆) = ∑
𝑃𝑘∆𝑘

∆

𝑁
𝑘=1  

 

where,  

 N Number of paths from input to output 

 𝑃𝑘 Forward path gain of the kth forward path  

 ∆ = 1- (Sum of individual loop gains) + (sum of two non 

touching loops gain)  

 - (sum of three non-touching loops gain) + (sum of four non-

touching loops gain)  

-  …………………………………………. .  

∆𝑘 = 1- (loops gain which are not touching the kth forward 

path)  

 

4. An electrical Network illustration:  
 

Graphs are useful for representing electrical networks, where 

each network [13] [16 17] node can be considered as a vertex 

and each network branch can be seen as an edge. When 

dealing with simpler circuits, it is straightforward to 

determine the loop currents and node voltages. However, as 

the complexity of the circuit increases, it can become 

challenging to solve. In such cases, using a graph to represent 

the electrical network can simplify the process. A network's 

graph is essential for understanding the circuit. Below is an 

illustration of the signal flow graph for an electrical network:  

 

4.1 A Non-linear Electrical Circuit 

 

In this section, we will analyze a non-linear electrical circuit 

by calculating the transfer function using a Signal Flow Graph 

(SFG). A diode serves as an example of a non-linear device 

because the current flowing through it is not directly 

proportional to the voltage across it; its voltage-current (V-I) 

characteristic is not a straight line.  

To describe an electrical network, we can utilize a graph, with 

nodes represented as vertices and branches represented as 

edges. In this discussion, we will focus on this electrical 

network. 

          

 
Figure 9 

  

4.2 The graphical representation of the electrical network 

(Fig.1) is illustrated using vertices and edges that cover the 

entire network.  

 

 
Figure 10 

  

4.3 A digraph representation 

 

The electrical network's graph can be depicted as a digraph by 

using vertices and edges, with specific directions for the 

edges.  
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Figure 11 

4.4 Signal Flow Graph Representations 

 

To represent the electrical networks outlined in the directed 

graph model, we use a signal flow graph. This graph will 

include vertices and directed, weighted edges that encompass 

the entire network. The signal flow graph corresponding to 

the above diagram is illustrated in Fig.12 below.  

 

 

 

 

 

 

 

 

 
Figure 12 

 

Nodes 2, 3, and 6 have been removed using Rule 2.  

 

 
Figure 13 

 

5. Calculation of Transfer Function by 

Reduction of the Signal Flow Graph:  
 

In this section, we consider the loops defined as follows: 

Loop 1 𝐿1 = C.1. R = CR 

Loop 2 𝐿2 = 𝑉𝑑C. S. 𝑅𝑠  

 

All loops are touching loops that share a common node, 

specifically nodes 4 and 7 in the figure above. To determine 

the transmittance between node 1 and node 5, we will apply 

Rule 7 (c) of loop reduction, which applies to multi-loops 

with touching loops. The resulting equation is given by:  

𝑇15 =
𝑃15

1 − 𝐿1 − 𝐿2

 

 = 
𝐶𝑉𝑑

1−𝐶𝑅−𝐶𝑆𝑅𝑠𝑉𝑑
 …………………………… (1)  

 

 

5.1 Calculation of the Transfer Function using Mason’s 

Gain Formula from the Signal Flow Graph (SFG) 

Representation 

  

We know Mason’s formula for the Transfer Function.  

𝑇(𝑆) =
1

∆
∑ 𝐹𝑘

𝑘

∆𝑘 

Where T (s) = Transfer function of the system  

𝐹𝑘 = forward path gain of the kth forward path  

∆ = 1- (Sum of individual loops gain) + (Sum of two non-

touching loops gain) – (Sum of three non-touching loops 

gain) + ………………….  

∆𝑘 = 1- (loop gain, which is not touching the kth forwarded 

path)  

 

In this particular problem, there is only one forward path, and 

it is as follows from Fig.13:  

 

𝐹1 = 𝑣𝑑 . 𝑐. 1 = 𝑐𝑣𝑑 
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Secondly, we have two separate loops here, each with its own 

gains.  

 

𝐿1 = 𝐶. 1. 𝑅 = 𝐶𝑅 

𝐿2 = 𝑉𝑑. 𝐶. 𝑆. 𝑅𝑠 = 𝐶𝑆𝑅𝑠𝑉𝑑 

Thirdly, we need to identify the gain of non-touching loops. 

In this case, there are no non-touching loops present. Thus, 

we can express the relationship as follows:  

 

∆ = 1- (Sum of individual loops gain) + (Sum of two non-

touching loops gain) – (Sum of three non-touching loops 

gain) + ………………….  

 

 There fore ∆= 1 − 𝐶𝑅 − 𝐶𝑆𝑅𝑠𝑉𝑑 

 

 Now, ∆1 = 1- (loop gain, which is not touching the kth 

forwarded path)  

 =1-0=1 

The Transfer function between nodes 1 and 5
𝐶 (𝑆) 

𝑅 (𝑆) 
 = 𝑇15 

 

Therefore 𝑇(𝑆) = 𝑇15 =
𝐹1∆1

∆
  

 =
𝐶𝑉𝑑

1−𝐶𝑅−𝐶𝑆𝑅𝑠𝑉𝑑
 ………………………………. (2)  

 

We observe that equations (1) and (2) are equal.  

 

We can calculate the transfer function, or transmittance, 

between any two nodes in the same nonlinear electrical circuit 

by using the reduction rules of signal flow graphs and Mason's 

gain formula. In this paper, we demonstrate that we can derive 

the same transfer function between nodes 1 and 5, as shown 

in Figure 13, through both the reduction of the signal flow 

graph (illustrated in equation (1)) and Mason’s gain formula 

(shown in equation (2)). Notably, both equations yield the 

same result.  

 

6. Calculation of the Transfer Function of the 

same Nonlinear circuit (Fig.9) by 

considering the direction of current reverse 

in the circuit:  
 

6.1 A Digraph Representation 

 

A digraph model is utilized to represent a graph using vertices 

and directed, weighted edges that encompass the entire 

network. Below is the digraph model of the circuit illustrated 

in Fig.9. In this model, the direction of the circuit is reversed, 

except for the section between node 1 and node 7. This 

exception is due to the presence of a diode, which is a 

nonlinear circuit element, between these two nodes.  

 

 
Figure 14 

 

6.2. Signal Flow Graph (SFG) Representation 

 

A signal flow graph (SFG) is a model that represents a 

directed graph using vertices and weighted edges to depict the 

entire network. Below is the SFG model of the network 

mentioned above.  

 

 
Figure15 

 

Nodes 2, 3, and 4 have been removed using Rule 2.  

 

 
Figure 16 

 

By using Rule-3 

 

 
Figure 17 

 

Node 7 is taken out by using Rule 2 

 

 
Figure 18 
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Transmittance between the nodes 1 and 5 

 

 𝑇15 = 𝑅𝑉𝑑 + 𝐶𝑆𝑅𝑅𝑠 ………………… (A)  

 

6.3. Calculation of the Transfer Function Using Mason’s 

Gain Formula from Signal Flow Graph (SFG) 

Representation:  

 

We know Mason’s formula for the transfer function.  

 𝑇(𝑆) =
1

∆
∑ 𝐹𝑘𝑘 ∆𝑘 

 

Where T (s) = Transfer function of the system  

𝐹𝑘 = forward path gain of the kth forward path  

∆ = 1- (Sum of individual loops gain) + (Sum of two non-

touching loops gain) – (Sum of three non-touching loops 

gain) + ………………….  

∆𝑘 = 1- (loop gain, which is not touching the kth forwarded 

path)  

 

As illustrated in Fig.14, we have gains along the forward path.  

 

𝐹1 = 𝑅𝑠. 𝑆. 1. 𝐶. 1. 𝑅 = 𝑅𝑠𝑆𝐶𝑅 

𝐹2 = 𝑉𝑑 . 1. 𝑅 

 

Secondly, we do not have any individual loops or gains.  

 

Thirdly, we must identify the gains from non-touching loops. 

However, there are no non-touching loops present. This is the 

issue.  

 

∆=1- (Sum of individual loops gain) + (Sum of two non-

touching loops gain) – (Sum of three non-touching loops 

gain) + ………………….  

=1-0+0-0 

 =1 

∆1= 1- (loops gain which does not touch the forward path 𝐹1)  

 =1-0 

 =1 

 

∆2= 1- (loops gain which does not touch the forward path 𝐹2)  

 =1-0 

 =1 

 

The Transfer function between nodes 1 and 5=
𝑐 (𝑠) 

𝑅 (𝑠) 
 =𝑇15 

Therefore T (s) =𝑇15 =
𝐹1∆1+𝐹2∆2

∆
 

 = 
(𝐶𝑆𝑅𝑅𝑆).1+(𝑅.𝑉𝑑).1

1
 

 𝑇15 = 𝑅𝑉𝑑 + 𝐶𝑆𝑅𝑅𝑠 ……………………. (B)  

From relations (A) and (B), we have seen that both are equal.  

 

Observation: We have noted that different digraphs of the 

same electrical circuit yield varying results (transfer 

functions) between the same nodes. In this paper, we have 

analyzed two digraph models, illustrated in Fig.11 and Fig.14, 

for the nonlinear electrical circuit shown in Fig.9. This 

analysis involves reversing the direction of current in the 

circuit, except for the edge between nodes 1 and 7, as there is 

a diode present between these nodes.  

 

 

 

7. Transfer Function (TF) in Electrical 

Networks 
 

In an electrical system, the Transfer Function (TF) is defined 

as the ratio of the output to the input. The Transfer Function 

provides valuable insights into the circuit's gain, frequency 

response, stability, and the range of input values for which the 

output remains stable. It also describes the circuit's behavior 

under different input types, whether alternating current (AC) 

or direct current (DC), along with its key characteristics. By 

determining the Transfer Function of a system or circuit, we 

can analyze many of its parameters and predict how the 

system will respond to various inputs. Additionally, Transfer 

Functions allow us to represent the entire system as a single 

edge between any two nodes, simplifying the study of 

complex systems.  

 

The Signal Flow Graph (SFG) is an effective tool for 

analysing electrical networks. This method serves as an 

alternative to traditional approaches, such as Kirchhoff’s rules 

and nodal analysis. While calculating the transfer function 

through the reduction of a signal flow graph can sometimes 

be challenging, Mason’s Gain Formula provides a valuable 

solution for complex network circuits. Specifically, Mason’s 

Gain Formula offers a systematic and algebraic method for 

determining the transfer function, which can be particularly 

advantageous when traditional techniques are impractical. 

Moreover, signal flow graphs and their reductions provide 

graphical representations that enhance visualization and 

deepen understanding of the network's behaviour.  

 

8. Conclusion 
 

This paper aimed to contribute to the field of electrical 

network analysis by introducing the use of Mason’s Gain 

Formula and Signal Flow Graph (SFG) to determine the 

transfer function of electrical networks. The Signal Flow 

Graph is essential for analyzing these networks. By creating 

a graphical representation of the electrical network, we could 

construct a Signal Flow Graph, which was then used to find 

the transmittance, or transfer function, between the vertices. 

To do this, we needed to determine the forward path gains and 

the various loops within the graph. A distinct edge, referred 

to as a one-edge (I-edge), can illustrate the transfer function 

or transmittance of the electrical network. Mason’s Gain 

Formula offers a systematic and algebraic method for 

calculating the transfer function. Additionally, the Reduction 

Rules of the Signal Flow Graph provide a quicker and more 

efficient alternative for network analysis. This method holds 

significant potential and offers various academic 

opportunities. However, further research is still required to 

explore the Signal Flow Graph approach.  
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