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Abstract: The transfer function of an electrical network can be calculated using various techniques, including Kirchhoff's laws, two-
point network theory, nodal analysis, and the time constant method. Another approach for algebraically determining the transfer function
is through the use of the Signal Flow Graph (SFG). An SFG consists of a directed, weighted graph made up of nodes and branches. In
this context, we will create a signal flow graph of a nonlinear electrical network to analyze it using Mason's gain formula and the Signal

Flow Graph's reduction rules.
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1. Introduction

One of the most significant and fascinating areas of
mathematics is graph theory. This subfield studies networks
of points connected by lines [1]. Graph theory [3] originated
from number games and recreational math puzzles but has
since evolved into a substantial area of mathematical study,
with applications in computer science, social science,
operational research, chemistry, and various types of
networks [2] [17].

A graph is defined as an ordered pair G = (V, E), where V is
a finite, non-empty set of vertices, and E is the set of edges.
In graphical representations, the vertices are depicted as dots,
while the edges are illustrated as line segments [2].
Theoretical properties of graphs allow us to analyse networks
and provide solutions to various problems.

An SFG, or signal flow graph [4], is a directed, weighted
graph in which signals are applied to nodes and functions are
applied to edges to represent a system's signal flow. The
transfer function of electrical circuits can be calculated using
a number of techniques, including Kirchhoff's rules [5], two-
port network theory [6], the nodal analysis approach [7], and
the time constant method [10]. These techniques typically
require a lot of computation and can be time-consuming.
Additionally, the Signal Flow Graph may be used to create a
common graphical model that connects the state variable
(parameters) and the transfer function and helps one grasp the
intricate workings of a network. With the aid of mesh rules,
node rules, and Ohm's equations, a signal flow graph can be
created. This presentation enables a more accurate result.

Furthermore, the signal flow graph can be used to create a
common graphical model that connects state variables
(parameters) to the transfer function, helping to clarify the
complex workings of a network. By utilizing mesh rules, node
rules, and Ohm's law, one can construct a signal flow graph
more accurately.

Signal Flow Graphs (SFG) have greatly benefited from the
work of numerous scholars. Samuel Jefferson Mason initially
used the phrase to refer to a specialized flow graph before
Claude Shannon created the Signal Flow Graph, often known
as the Mason graph. Shannon [1942] first applied the Single
Flow Graph concept [11] to dealing with analogue computers.
Mason [1953] [1956] deserves the most credit for creating
signal flow graphs since he demonstrated how to apply the
method to tackle certain challenging electronic issues
relatively easily. The phrase "signal flow graph" was chosen
since it was first applied to electronic problems [12] involving
electronic signals and system flow charts. Signal Flow Graphs
(SFG) have greatly benefitted from the contributions of many
scholars. Samuel Jefferson Mason was the first to use the term
to describe a specialized type of flow graph. Later, Claude
Shannon developed what is now commonly known as the
Signal Flow Graph, or Mason graph [8-9]. In 1942, Shannon
applied the concept of Signal Flow Graphs to solve problems
related to analog computers. However, it is Mason, in his
works from 1953 and 1956, who deserves the most
recognition for developing signal flow graphs. He
demonstrated how this method could effectively tackle
complex electronic issues with relative ease. The term "signal
flow graph" was chosen because it was initially applied to
electronic problems that involved electronic signals and
system flow charts.

The SFG (Signal Flow Graph) method, developed by J. A.
Brzozowski and E. J. McCluskey Jr. in 1963, is designed to
characterize sequential circuits using regular expressions
[14]. It has been shown that state diagrams of sequential
circuits can be accurately interpreted using methodologies
from signal flow graph theory. After 1990, Dalibor Biolek
and Viera Biolkova utilized signal flow graphs to explain
linear circuits. In their 2017 work [15-16], Feim Ridvan
Rasim and Sebastian M. Sattler evaluated the reliability of the
SFG method [13]18]. A signal flow graph can be validated by
generating the graph’s identity.
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2. Preliminary

Table 1: Basic definitions

Electrical Network

A closed electrical network connects various electrical components, including transformers, resistors,
inductors, capacitors, and both voltage and current sources.

Circuit A circuit is a closed electric network.
Graph A graph is defined as a pair G = (V, E), where V is a collection of nodes or vertices and E is a collection
of edges or branches.
Node A node is a point that symbolizes a signal or variable.
Branch A branch is a piece of a line that connects two nodes.
A walk is a finite alternating sequence of vertices and edges that starts and ends with vertices,
Walk . o Lo . .
characterized by each edge being incident to the vertices immediately before and after it.
Path A path is a continuous route where no vertex appears more than once.
Loop A loop is a closed path that starts at a vertex and ends at the same vertex or node, never passing any node
more than once.
Self-loop One branch makes up this feedback loop.
Loop gain The gain achieved by following a path that starts and ends at the same node is referred to as loop gain.

Non-touching loops

Non-touching loops are defined as loops that do not have any nodes in common.

Forward path

If a path starts with an initial node, continues to another node, and ends at an output node, it is known as
a forwarded path.

Feedback path

A "feedback path" is a path that begins and ends at the same node.

Forwarded path gain

The total of gains found by tracing a path from an input node to an output node in a signal flow graph is
referred to as the forwarded path gain.

Digraph

A directed graph, also referred to as a digraph, is a graph where each edge has a specific direction.

The system's transfer function T (s) is defined as C (s) /R (s), where R (s) represents the system's input as

Transfer function a single flow graph. The system's output, denoted by the signal flow graph, is C (S).

3. Methodology

(b)
3.1 Signal Flow Graph X4
d
A Signal Flow Graph (SFG) is a directed and weighted graph 1
that describes a system's signal flow. A Signal Flow Graph
(SFQG) offers a set's graphical representation. X5
3.1.1. Reduction Rule of Signal Flow Graph (SFG)
(Modification of Signal Flow Graph): &
X
Rule 1: 2
Figure 2
@) . . o
a If x; and x, are input signals with gains a; and a,
I respectively, then the output signal can be written as x3 =

X3 X3 a1%; + a,x,

Figure 1
If "input" is represented as "x;" and "output" as "x,, " with

"a" denoting the gain, then x, = ax;
ab
.. &
X3 X3 X5

Figure 3

Rule2:

. - »
X1 Xy

If x4, x, A x3 are nodes where x; is input and x3is output with gains a and b. After making the adjustments, we have x, = ax,,
X3 = bx, = abx;
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Rule3:

d
' a+b
xl X5 X1 xz

Figure 4

If input is represented byx; and output byx,, with gains a and b for the respective branches, then the resulting output will be
x, = (a+ b)x; = ax; + bx;

Rule4:

X

vl"!

Figure 5

If x4, x,, x5 A x, are nodes, and a, b, and c represent the gains of branches, then the relationships can be established. Therefore,
we can conclude x; = ax; + bx, and x, = cx3 = ¢ (ax; + bx,). There fore x, = acx; + bcx,

Rule5:

X1

a X b X, 'Kl a X2 " 1ne Xi ' Xq 1-bec X3
\i_/

Figure 6

If x4, x, and x5 are nodes with a, b, and ¢ as gains of branches, as shown in the figure, then we have x, = ax; and x5 =

( b )x_( b )ax_ab x
1-bc 2 1-bc 1 1-bc 1

Rule6:
c
a ab
Xy a b x * Xy 1-c X, b X3 * Xq T-c X,
x!

Figure 7

If x,, x, and x5 are nodes with a, b (reflexive or self-referential), and c are gains of branches as shown in the figure, then x, =

a ax_ab
11—

x; and x; = bx, =b
1 3 2 1—c

x
1-c 1

Rule 7: Loop reduction:
(a) Signal loop: The transmission (7;;) from an independent variable x; (source node) to a dependent variable x; (internal or
sink node) In a signal flow graph containing only one loop and one path, equals

Where P;; is the forward path transmission from x; and x; and L is the transmission of the loop.

(b) Multi-loop with non-touching loops: With a cascade of non-touching (loops possessing no common nodes), the overall
transmission is the product of the individual transmissions as given by equation (1) (single loop)

Pij Pjk Pn-1)n
T o= ke 2)
1-Lj 1-Lg 1-Lyp
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(c) Multiloop with touching loops:

For the case that the two loops do share at least one node, as shown in the figure below, the overall transmission is given by

e f
L, L,
- - -
X a Xy b X3 C X, d X5

Figure 8

Here, x4, x, x3, x4 A x5 are nodes with a, b, ¢, d, e, and f are
gains of branches as shown in the figure, then the transfer

function between x; A xs;we have as follows:
X5 abcd P;is
TlS = == =
X1 1-be—cf 1-Li—L,

_ abcd
57 1-be—cf 1

3.2 Mason’s Gain Formula (MGF)

The Mason’s Gain Formula (MGF) is a formula for
calculating the transfer function of a linear signal flow graph.
Let R (S) be the system's input in the signal flow graph model.
And C (S) represents the system's output as shown by a signal
flow graph.

The system's transfer function is given by T(S) = %
Overall gain T = T(S) = ZﬁzlkaAk

where,

N Number of paths from input to output

P, Forward path gain of the k™ forward path

A = 1- (Sum of individual loop gains) + (sum of two non
touching loops gain)

- (sum of three non-touching loops gain) + (sum of four non-
touching loops gain)

path)
4. An electrical Network illustration:

Graphs are useful for representing electrical networks, where
each network [13] [16 17] node can be considered as a vertex
and each network branch can be seen as an edge. When
dealing with simpler circuits, it is straightforward to
determine the loop currents and node voltages. However, as
the complexity of the circuit increases, it can become
challenging to solve. In such cases, using a graph to represent
the electrical network can simplify the process. A network's
graph is essential for understanding the circuit. Below is an
illustration of the signal flow graph for an electrical network:

4.1 A Non-linear Electrical Circuit

In this section, we will analyze a non-linear electrical circuit
by calculating the transfer function using a Signal Flow Graph
(SFG). A diode serves as an example of a non-linear device
because the current flowing through it is not directly
proportional to the voltage across it; its voltage-current (V-I)
characteristic is not a straight line.

To describe an electrical network, we can utilize a graph, with
nodes represented as vertices and branches represented as
edges. In this discussion, we will focus on this electrical
network.

P>

s@

Figure 9

4.2 The graphical representation of the electrical network
(Fig.1) is illustrated using vertices and edges that cover the
entire network.

Vd 7 1

1 6

RS
c

2 R

S

3

1 4 1 5
Figure 10

4.3 A digraph representation

The electrical network's graph can be depicted as a digraph by
using vertices and edges, with specific directions for the
edges.
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Vd 7 1

1 > < 6

Rg
Y

2 e R

5

3 < >

1 4 1 5
Figure 11

4.4 Signal Flow Graph Representations

To represent the electrical networks outlined in the directed
graph model, we use a signal flow graph. This graph will
include vertices and directed, weighted edges that encompass
the entire network. The signal flow graph corresponding to
the above diagram is illustrated in Fig.12 below.

Figure 12

Nodes 2, 3, and 6 have been removed using Rule 2.

SRg

Figure 13

5. Calculation of Transfer Function by
Reduction of the Signal Flow Graph:

In this section, we consider the loops defined as follows:
Loop 1 L; =C.1.R=CR
Loop 2 L, =V,;C. S. R,

All loops are touching loops that share a common node,
specifically nodes 4 and 7 in the figure above. To determine
the transmittance between node 1 and node 5, we will apply
Rule 7 (c) of loop reduction, which applies to multi-loops
with touching loops. The resulting equation is given by:

CVq

5.1 Calculation of the Transfer Function using Mason’s
Gain Formula from the Signal Flow Graph (SFG)
Representation

We know Mason’s formula for the Transfer Function.

1
T(S) = sz: Fi A

Where T (s) = Transfer function of the system

F,, = forward path gain of the k™ forward path

A = 1- (Sum of individual loops gain) + (Sum of two non-
touching loops gain) — (Sum of three non-touching loops
gain)+ ...

A, = 1- (loop gain, which is not touching the k™ forwarded
path)

In this particular problem, there is only one forward path, and
it is as follows from Fig.13:

Fi, =v4.c.1 =cvyy
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Secondly, we have two separate loops here, each with its own
gains.

L =C.1.R=CR
L, =V;.C.S.R; = CSR,V,;
Thirdly, we need to identify the gain of non-touching loops.
In this case, there are no non-touching loops present. Thus,
we can express the relationship as follows:

A = 1- (Sum of individual loops gain) + (Sum of two non-
touching loops gain) — (Sum of three non-touching loops
gain)+ ...,

There fore A= 1 — CR — CSR,V,

Now, A; = 1- (loop gain, which is not touching the k"

forwarded path)

=1-0=1

The Transfer function between nodes 1 and S% =T,s
Therefore T(S) = Tys = FlAAl

CVgq
1-CR—CSRsV 4

We observe that equations (1) and (2) are equal.

We can calculate the transfer function, or transmittance,
between any two nodes in the same nonlinear electrical circuit
by using the reduction rules of signal flow graphs and Mason's
gain formula. In this paper, we demonstrate that we can derive
the same transfer function between nodes 1 and 5, as shown
in Figure 13, through both the reduction of the signal flow
graph (illustrated in equation (1)) and Mason’s gain formula
(shown in equation (2)). Notably, both equations yield the
same result.

6. Calculation of the Transfer Function of the
same Nonlinear circuit (Fig.9) by
considering the direction of current reverse
in the circuit:

6.1 A Digraph Representation

A digraph model is utilized to represent a graph using vertices
and directed, weighted edges that encompass the entire
network. Below is the digraph model of the circuit illustrated
in Fig.9. In this model, the direction of the circuit is reversed,
except for the section between node 1 and node 7. This
exception is due to the presence of a diode, which is a
nonlinear circuit element, between these two nodes.

Va 7 1 "
1 > —
Y Rs
2 AC YR
Y S
> <
3 1 4 1 5
Figure 14

6.2. Signal Flow Graph (SFG) Representation

A signal flow graph (SFG) is a model that represents a
directed graph using vertices and weighted edges to depict the
entire network. Below is the SFG model of the network
mentioned above.

. L
1 Rs 2 s 3 1 7 1 R 5
Figurel5
Nodes 2, 3, and 4 have been removed using Rule 2.
Va4
vd"‘CSRS R
/b—\ . > -+ o0
> > i
1 CSR; 7 R 5 Figure 17
Figure 16 Node 7 is taken out by using Rule 2
By using Rule-3
R(V4+CSRg)
- .
1
Figure 18
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Transmittance between the nodes 1 and 5
T15 == RVd + CSRRS ..................... (A)

6.3. Calculation of the Transfer Function Using Mason’s
Gain Formula from Signal Flow Graph (SFG)
Representation:

We know Mason’s formula for the transfer function.
1
T(S) = 2 Xk Fie Ay

Where T (s) = Transfer function of the system

F,, = forward path gain of the k™ forward path

A = 1- (Sum of individual loops gain) + (Sum of two non-
touching loops gain) — (Sum of three non-touching loops
gain)+ ...

Ay = 1- (loop gain, which is not touching the k™ forwarded
path)

As illustrated in Fig.14, we have gains along the forward path.

F, =R,.5.1.C.1.R = R,SCR
F,=V,.1.R

Secondly, we do not have any individual loops or gains.

Thirdly, we must identify the gains from non-touching loops.
However, there are no non-touching loops present. This is the
issue.

A=1- (Sum of individual loops gain) + (Sum of two non-
touching loops gain) — (Sum of three non-touching loops
gain)+ ...

=1-0+0-0

=1

A;=1- (loops gain which does not touch the forward path F;)
=1-0

=1

A,= 1- (loops gain which does not touch the forward path F,)
=1-0

=1
The Transfer function between nodes 1 and 5—; ((":)) =Tis
Therefore T (s) =Ty5 = FlAlZ—FZAZ
_ (CSRRs).1+(RVg).1
1
Tis =RV4+CSRRg ...covviiiiiiin, B)

From relations (A) and (B), we have seen that both are equal.

Observation: We have noted that different digraphs of the
same electrical circuit yield varying results (transfer
functions) between the same nodes. In this paper, we have
analyzed two digraph models, illustrated in Fig.11 and Fig.14,
for the nonlinear electrical circuit shown in Fig.9. This
analysis involves reversing the direction of current in the
circuit, except for the edge between nodes 1 and 7, as there is
a diode present between these nodes.

7. Transfer in Electrical

Networks

Function (TF)

In an electrical system, the Transfer Function (TF) is defined
as the ratio of the output to the input. The Transfer Function
provides valuable insights into the circuit's gain, frequency
response, stability, and the range of input values for which the
output remains stable. It also describes the circuit's behavior
under different input types, whether alternating current (AC)
or direct current (DC), along with its key characteristics. By
determining the Transfer Function of a system or circuit, we
can analyze many of its parameters and predict how the
system will respond to various inputs. Additionally, Transfer
Functions allow us to represent the entire system as a single
edge between any two nodes, simplifying the study of
complex systems.

The Signal Flow Graph (SFG) is an effective tool for
analysing electrical networks. This method serves as an
alternative to traditional approaches, such as Kirchhoff’s rules
and nodal analysis. While calculating the transfer function
through the reduction of a signal flow graph can sometimes
be challenging, Mason’s Gain Formula provides a valuable
solution for complex network circuits. Specifically, Mason’s
Gain Formula offers a systematic and algebraic method for
determining the transfer function, which can be particularly
advantageous when traditional techniques are impractical.
Moreover, signal flow graphs and their reductions provide
graphical representations that enhance visualization and
deepen understanding of the network's behaviour.

8. Conclusion

This paper aimed to contribute to the field of electrical
network analysis by introducing the use of Mason’s Gain
Formula and Signal Flow Graph (SFG) to determine the
transfer function of electrical networks. The Signal Flow
Graph is essential for analyzing these networks. By creating
a graphical representation of the electrical network, we could
construct a Signal Flow Graph, which was then used to find
the transmittance, or transfer function, between the vertices.
To do this, we needed to determine the forward path gains and
the various loops within the graph. A distinct edge, referred
to as a one-edge (I-edge), can illustrate the transfer function
or transmittance of the electrical network. Mason’s Gain
Formula offers a systematic and algebraic method for
calculating the transfer function. Additionally, the Reduction
Rules of the Signal Flow Graph provide a quicker and more
efficient alternative for network analysis. This method holds
significant potential and offers various academic
opportunities. However, further research is still required to
explore the Signal Flow Graph approach.
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