International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

Understanding Compactness: The Harmony of Boundedness, Closedness, and Convergence in Real Analysis

Dr. Amrish Kumar Srivastav

Assistant Professor, Department of Mathematics, Araria College, Araria, Bihar, India Email: amrish112233[at]gmail.com

Abstract: One of the distinguishing properties of a bounded closed interval [a, b] is that every sequence in it has a subsequence converging to a limit in the interval. This need not happen with an unbounded interval such as [0, 1) or a bounded non closed interval such as (0, 1]; the former contains the sequence $\{n\}_n \ge 1$, which has no convergent subsequence, and the latter contains the sequence $\{1/n\}_n \ge 1$, which has no subsequence converging to a limit belonging to the interval. In fact, it is true of any bounded closed subset of R that any sequence in it has a subsequence converging to a limit belonging to the subset. To see why, we first note that any sequence in a bounded subset must, by the Bolzano-Weierstrass theorem have a convergent subsequence with limit in R; this limit must then be in the closed subset by the definition of a closed subset. A compact set in R is a set E satisfying the property that if U is a collection of open sets in R whose union contains E, then there is a finite sub collection V of U whose union contains E. Recall that such a collection is called an open cover and V is called a finite sub cover of U for E. In terms of this, a set E in R is compact if every open cover of the set E has a finite sub cover for E. Because of these criteria, compact sets are also viewed as a generalization of finite sets.

Keywords: Open cover, compactness, bounded interval, Bolzano-Weierstrass theorem, convergent subsequence and closed subset

1. Introduction and Concept

A compact set in a metric space is a set that resembles a closed and bounded subset of R, it is "small" in a certain sense and "contains" all its adherent points. One of the main reasons for studying compact sets is that they are in some ways very similar to finite sets. In other words, there are many results which are easy to show for finite sets, the formulations as well as the proofs of which carry over with minimal changes to compact sets. It is often said that "compactness is the next best thing to finiteness".

Definition: A compact set in R is a set E satisfying the property that if U is a collection of open sets in R whose union contains E, then there is a finite sub collection V of U whose union contains E. Recall that such a collection is called an open cover and V is called a finite sub cover of U for E. In terms of this, a set E in R is compact if every open cover of the set E has a finite sub cover for E. Because of these criteria, compact sets are also viewed as a generalization of finite sets. Here we try to extend this idea to metric spaces. For that we first introduce the concept of an indexed family of subsets of a set. A thorough knowledge of this will be needed to understand open covers in a metric space.

Example: Let (X, d) be a metric space. For any $r_0 > 0$, $\{B(x, r_0) : x \in X\}$

is an open cover for X. If we fix an $x_o \in X$, then $\{B(x_o, r): r \in [0, \infty)\}$ is also an open cover for X.

Example: Consider the interval] 0,1 [\subset R. The family

 $U = \{] \ 1/n, \ 1[: n \in N, \ n \ge 2\}$ is an open cover for]0, 1 [.

Example: The family $\{]$ - n, $n[: n \in N)$ is an open cover for R. Further, $\{(-2n, 2n): n \in N\}$ is a sub cover.

Proposition: A finite subset of a metric space is compact.

Proof: Let (X, d) be a metric space and E be a non-empty finite subset of X. We denote the elements of E by X_1, \ldots, X_N .

Let $U_0 = \{A_{i_k} : 1 \le k \le m\}$. Then U_0 is a finite sub cover of for E. This shows that every open cover of E admits a finite sub cover for E.

Hence E is compact.

Example: R^2 with the usual metric is not a compact space. In fact $U = \{B(0, n) : n \in N\}$ is an open cover for R^2 which has no finite sub cover.

Theorem: Every compact set in a metric space is closed and bounded.

Proof: Let X be a metric space and E be a compact subset. To show that E is closed, it is enough to show that E^c is open.

Let $x_o \in E^c$. Now we apply Hausdorff property to each element $y \in E$.

Then we get that for each $y \in E$, there exists open sets U_y and V_y of the points x_o and y respectively such that $U_y \cap V_y = \emptyset$.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

Then the collection

$$V = \{V_y : y \in E\}$$

is an open cover for E. Since E is compact, V admits a finite subcover for E. Then there exists sets $V_{y1} \dots, V_{yn}$ such that

$$\mathsf{E} \subset \bigcup_{i=1}^n V_{y_i}$$

$$\mathbf{E} \subset \bigcup_{i=1}^n V_{y_i}$$
 let $\mathbf{V} = \bigcup_{i=1}^n V_{y_i}$ and $\mathbf{U} = \bigcap_{i=1}^n U_{y_i}$

where U_{y_i} 's are the neighborhoods of x_0 corresponding to V_{v1}, \ldots, V_{vn} . Since U is a intersection of finite open sets, U is open and $x_0 \in U$. Also

$$U \cap V = \emptyset$$
 (by the choice of U_{y_i} 's and V_{y_i} 's)

which implies that

$$U \cap E = \emptyset$$
.

Thus U is a neighborhood of xo which is fully contained in E^c. Hence E^c is open.

Now we have to show that E is bounded.

Fix any $x_o \in E$. Consider the open cover

$$U = \{B(x_0, n) : n \in N\} \text{ of } E.$$

This admits a finite sub cover for E, say,

$$\{B(x_0, n_j) : 1 \le j \le p\},\$$

Since B $(x_0, m) \subset B(x_0, n)$ for $n \ge m$,

It follows that

$$E \subset B(x_0, M)$$

for $M = \max\{n_i : 1 \le i \le p\}$.

Thus, E is bounded.

Remark: But the converse of the above theorem is not true. For example, let X be an infinite set with discrete metric space. Then every subset of X is closed and bounded, and we have seen in earlier example that only the finite subsets of X are compact. This shows that a closed and bounded set need not be compact in a general metric space.

Theorem: Closed subsets of compact sets in a metric space are compact.

Proof: Let X be a metric space and K is a compact set in X. Suppose F is a closed subset of K. Since K is compact it is closed in X. Since F is closed in K, it is closed in X. Let $\{V_o\}$ be an open cover of E. If F^c is adjoined to $\{V_o\}$, we obtain an open cover G of K. Since K is compact, there is a finite sub collection Ø of G which covers K, and hence F. If F^{c} is a member of \emptyset , we may remove it from \emptyset and still retain an open cover of F. We have, thus, shown that a finite sub collection of {V_o} covers F. Therefore, F is compact. Hence, we get the result.

Theorem: If A and B are compact sets in a metric space X, then $A \cup B$ and $A \cap B$ are compact sets in X.

Proof: We shall first consider A U B. Let U be an open cover for A U B. Then U is an open cover for A as well as for B. Since A is compact, U admits a finite cover, say U₁. for A. Since B is compact, U admits a finite sub cover, say U₂, for B. Then the collection obtained by adjoining the sets in U2 to U1, becomes a finite sub cover for A U B. This shows that $A \cup B$ is compact.

Since A and B are compact sets, by Theorem state earlier, they are closed. So, $A \cap B$ is closed, and it is a subset of A. Since any closed subset of a compact set is compact, it follows that $A \cap B$ is compact. Hence, we get the result.

Theorem: If S is an infinite subset of a compact metric space X, then S has a limit point in X.

Proof: We prove this by a contradiction argument. Let, if possible, S has no limit point in X. Then given any point x in X, there exists U_x open in X such that $x \in U_x$ and U_x contains no points of S except possibly x itself. The family $\{U_x : x \in X\}$ is an open cover for X and, since X is compact, has a finite subcover, say

$$\{U_{x_1}, U_{x_2}, \dots U_{x_n}\}$$

So,

$$S = S \cap X \subseteq S \cap (\bigcup_{i=1}^n U_{x_i}) \subseteq \bigcup_{i=1}^n (S \cap U_{x_i}).... \quad (1)$$

Each of the sets U_{x_i} contains almost one point of S. So the R. H. S. of equation (1) has almost n point which in turns implies that S is finite set. This is contradiction. Therefore, S has limit point in X.

Theorem: Let X be a metric space. Then the following are equivalent.

- 1) X is compact.
- 2) Every sequence in X has a convergent subsequence.

Proof: We shall first show that $1 \Rightarrow 2$

Suppose X is compact. We have to show that every sequence in X has a convergent subsequence. On the contrary, assume that it is not so. Then there exists a sequence {x_n} such that it has no subsequence which converges in X. This implies that each $x \in X$, there is some $r_x > 0$ and a positive integer n_x such that

$$x_n \notin B(x, r_x)$$
 for $n \ge n_x$.

To see this let us assume that it is not true.

Then, $\exists x \in X$, $\forall r > 0$ and $j \in N \exists m_{j,r} \ge j$ with $x_{m_{j,r}} \in B$ (x, r)

Let us take $r_1 = 1$ and $j_1 = 1$, Then $\exists n_1 \ge j$ with $x_{n_1} \in B$ (x,1), Note $n_1 \ge 1$, Now we take $r_2 = \frac{1}{2}$, $j_2 = n_1 + 1$. Note that $j_2 > n_1$. Then $\exists n_2 \ge j_2$ with $x_{n_2} \in B(x, 1/2)$. Note that $n_2 \ge n_1$

Thus, we take $r_3 = 1/3$, $j_3 = n_2 + 1$. Note that $j_3 > n_2$. Then \exists

 $n_3 \ge j_3$ with $x_{n_3} \in B$ (x,1/3). Note that $n_3 \ge n_2$ Proceeding like this we get an increasing sequence $\{n_i\}_{i=1}^{\infty}$ for which

Volume 14 Issue 10, October 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Paper ID: SR251012102742 DOI: https://dx.doi.org/10.21275/SR251012102742

International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

$$x_{n_i} \in \mathcal{B}(x,1/i) \ \forall i \in \mathcal{N}. \{x_{n_i}\}_{i=1}^{\infty}$$

is subsequence of the sequence $\{x_n\}$ and $x_{n_i} \to x$ as $i \to \infty$. This is not possible by our assumption. Therefore, we got that for each $x \in X$, there is some $r_x > 0$ and a positive integer n, such that $x_n \notin B(x, r_x)$ for $n \ge n_x$.

Then $\{B(x, r_x): x \in X\}$ is an open cover for X. Since X is compact, there exist $y_1, y_2, y_3, \dots, y_m \in X$ such that $X \subset \bigcup_{i=1}^m B(y_i, r_{x_i})$

Let,
$$n_0 = \max [n_{x_1}, n_{x_2}, n_{x_3}, \dots, n_{x_i}] B(y_i, r_{x_i})$$

Then $x_{n_o} \notin \bigcup_{i=1}^m \mathrm{B}(y_i, r_{x_j})$ so that $x_{n_o} \notin X$. which is impossible. Therefore, our assumption is wrong. Hence we get the claim.

Next, we shall show that (ii) \Rightarrow (i)

Suppose that every sequence in X has a convergent subsequence we have to show that X is compact. We shall prove this in three steps.

Step 1: We shall first claim that given any open cover U of X, there exists a number $\delta > 0$ such that for each subset B of X having diameter less than δ , there exists an element of U containing B. We shall refer to such a number δ as a Lebesgue number for U.

Let, if possible, there be no such δ for some open cover U. That means for any $\delta > 0$, there exists a subset, whose diameter is less than δ , and this subset does not lie inside any element of U. In particular, for each $n \in N$, we can choose a set C_n , having diameter less than 1/n which is not contained in any element of U. Now for each n, choose an element $x_n \in C_n$. Then $\{x_n\}$ so obtained has a convergent subsequence $\{x_{n_j}\}$ converging to x, say, in view of the fact that (ii) holds. Now, x belongs to some element x of x of x of x one can be cause x is open, there is an x of such that x of x of x choose i large enough that satisfies

$$d(x_{n_i}, x) < r/2 \text{ and } 1/n_i < r/2$$

Because the diameter of C_{n_j} is less than $1/n_i$ we have

$$C_{n_j} \subseteq B(x_{n_j}, \frac{1}{n_j})$$

which in turn is contained in $B(x_{n_j}, \frac{r}{2})$. It follows then, that $C_{n_j} \subset B(x, r)$

Therefore, $C_{n_i} \subset A$ this is not so. Hence, we get the claim.

This establishes the claim made in the beginning of Step 1.

Step 2: We now claim that for every $\epsilon > 0$, there exists a finite covering of X by ϵ - balls.

Let, if possible, there be an $\epsilon > 0$ for which such a covering does not exist. Now, we construct a sequence $\{x_n\}$ in X. Choose an element $x_1 \in X$. Since $B(x_1, \epsilon)$ is not all of X (otherwise X could be covered by a single ϵ ball), \exists an $x_2 \in$

X such that $x_2 \notin B(x_1, \epsilon)$. So $d(x_2, x_1) \ge \epsilon$. Then B (x_1, r) U $B(x_2, \epsilon)$ is not all of X. So there exists $x_3 \in X$ with

$$x_3 \notin B(x_1, \epsilon) \cup B(x_2, \epsilon).$$

Therefore,

$$d(x_2, x_1), d(x_3, x_2) \ge \epsilon$$
.

We already have $d(x_1, x_2) \ge \epsilon$.

Proceeding similarly, we get that given $x_1, x_2, x_3, \dots x_n \in X$ with $d(x_j, x_k) \ge \epsilon$. for $1 \le j \ne k \le n$, there exists $x_{n+1} \in X$ such that

 $x_{n+1} \notin \bigcup_{i=1}^{m} \mathrm{B}(x_i, \epsilon)$ Therefore, $\mathrm{d}(x_j, x_{n-1}) \ge \epsilon$. for $1 \le j \le n$, Thus by induction we get a sequence (x_n) for which

d(x_j , x_k) $\geq \epsilon$ for $j \neq k$.

Thus $\{x_n\}$ can have no convergent subsequence. This is a contradiction because (ii) holds. Hence we get the claim.

Step 3: Now we claim that X is compact.

Let U be an open covering of X. Then the covering U has a Lebesgue number δ as specified in Step 1. Corresponding to this δ , using Step 2 $\epsilon = \frac{\delta}{3}$ there exists using with $\epsilon = \frac{\delta}{3}$ a finite covering. F of X by balls of radius $\frac{\delta}{3}$. Then each of these balls has diameter at most $\frac{2\delta}{3}$. So, we can choose, for each of these balls, t an element of V containing it using the fact that $\frac{2\delta}{3} < \delta$ a Lebesnue number for V, as in Step 1. If U' denote this collection, then U' becomes a finite sub cover of U for X. Thus, we get that every open covering of X has a finite sub cover. Hence X is compact.

2. Conclusion

The property of compactness holds significant importance as it extends the concepts of boundedness and closedness, ensuring that continuous functions attain their maximum and minimum values within a compact domain. This characteristic facilitates the proof of theorems, aids in solving optimization problems and offers a method for managing infinite sets by transforming them into finite, more manageable subsets, as demonstrated by the existence of finite sub covers. The concept of compactness permits the reduction of infinite collections of open sets to finite ones, thereby simplifying numerous proofs in topology and analysis, making them considerably more "constructive".

References

- [1] Taylor, A. (1985). A Study of Maurice Fréchet: II. Mainly about his Work on General Topology 1909-1928. Archive for History of Exact Sciences 34 (3), 269-392
- [2] Rudin, M.E. (1972) The box product of countably many compact metric spaces, Gen. Top. Appl. 2, 283-258.
- [3] V. Renuka Devi, D. Sivraj, A generalization of Normal Spaces, Archivum Mathematicum, 44, 4 (2008), 255-280
- [4] T.R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator, Boll. Un. Mat. Ita.,7, (1990), 853-894.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net