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Abstract: One of the distinguishing properties of a bounded closed interval [a, b] is that every sequence in it has a subsequence 

converging to a limit in the interval. This need not happen with an unbounded interval such as [0, 1) or a bounded non closed interval 

such as (0,1]; the former contains the sequence {n}n≥1, which has no convergent subsequence, and the latter contains the sequence 

{1/n} n≥1, which has no subsequence converging to a limit belonging to the interval. In fact, it is true of any bounded closed subset of R 

that any sequence in it has a subsequence converging to a limit belonging to the subset. To see why, we first note that any sequence in a 

bounded subset must, by the Bolzano-Weierstrass theorem have a convergent subsequence with limit in R; this limit must then be in the 

closed subset by the definition of a closed subset. A compact set in R is a set E satisfying the property that if U is a collection of open sets 

in R whose union contains E, then there is a finite sub collection V of U whose union contains E. Recall that such a collection is called 

an open cover and V is called a finite sub cover of U for E. In terms of this, a set E in R is compact if every open cover of the set E has a 

finite sub cover for E. Because of these criteria, compact sets are also viewed as a generalization of finite sets. 
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1. Introduction and Concept 
 

A compact set in a metric space is a set that resembles a 

closed and bounded subset of R, it is "small" in a certain 

sense and "contains" all its adherent points. One of the main 

reasons for studying compact sets is that they are in some 

ways very similar to finite sets. In other words, there are 

many results which are easy to show for finite sets, the 

formulations as well as the proofs of which carry over with 

minimal changes to compact sets. It is often said that 

"compactness is the next best thing to finiteness". 
 

Definition: A compact set in R is a set E satisfying the 

property that if U is a collection of open sets in R whose 

union contains E, then there is a finite sub collection V of U 

whose union contains E. Recall that such a collection is 

called an open cover and V is called a finite sub cover of U 

for E. In terms of this, a set E in R is compact if every open 

cover of the set E has a finite sub cover for E. Because of 

these criteria, compact sets are also viewed as a 

generalization of finite sets. Here we try to extend this idea 

to metric spaces. For that we first introduce the concept of 

an indexed family of subsets of a set. A thorough knowledge 

of this will be needed to understand open covers in a metric 

space. 

 

Example: Let (X, d) be a metric space. For any 

ro > 0, {B(x, ro) : x ∈ X) 

 

is an open cover for X. If we fix an xo ∈ X, then {B (xo, r): r 

E [0, ∞)} is also an open cover for X. 

 

Example: Consider the interval ] 0,1 [⊂ R. The family 

 

U = {] l/n, 1[: n ∈ N, n ≥ 2} 

is an open cover for ]0, 1 [. 

 

Example: The family {] - n, n[: n ∈  N) is an open cover for 

R. Further, {(-2n, 2n): n ∈  N) is a sub cover. 

 

Proposition: A finite subset of a metric space is compact. 

 

Proof: Let (X, d) be a metric space and E be a non-empty 

finite subset of X. We denote the elements of E by 

XI,…........., XN.  

 

Let U =  {Ai}𝑖∉I   be an open cover of E. That is, E ⊂ 

⋃ 𝐴𝑖𝑖∈𝐼 . This implies that each element xj, j = 1,………… N, 

belongs i∈l to ⊂ ⋃ 𝐴𝑖𝑖∈𝐼 . That means for each j, xj ∈ Ai for 

some i ∈I. Let us denote these Ai's by  𝐴𝑖𝑘
 k, = 1, . . . , m.  

 

Let Uo = {𝐴𝑖𝑘
 : 1 ≤ k ≤ m). Then U0 is a finite sub cover of 

for E. This shows that every open cover of E admits a finite 

sub cover for E. 

 

Hence E is compact. 

 

Example: R2 with the usual metric is not a compact space. 

In fact U = {B(0, n) : n ∈ N) is an open cover for R2 which 

has no finite sub cover. 

 

Theorem: Every compact set in a metric space is closed and 

bounded. 

 

Proof: Let X be a metric space and E be a compact subset. 

To show that E is closed, it is enough to show that Ec is 

open. 

 

Let xo∈Ec. Now we apply Hausdorff property to each 

element y ∈ E. 

 

Then we get that for each y ∈ E, there exists open sets Uy 

and Vy of the points xo and y respectively such that 

Uy ∩ Vy = ∅. 
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 Then the collection 

V = {Vy: y ∈ E} 

is an open cover for E. Since E is compact, V admits a finite 

subcover for E. Then there exists sets Vy1 . . . , Vyn such that 

E ⊂ ⋃ 𝑉𝑦𝑖

𝑛

𝑖=1

 

let  V = ⋃ 𝑉𝑦𝑖

𝑛
𝑖=1   and  U =⋂ 𝑈𝑦𝑖

𝑛
𝑖=1  

 

where 𝑈𝑦𝑖
’s are the neighborhoods of xo corresponding to 

Vy1, . . . , Vyn. Since U is a intersection of finite open sets, U 

is open and xo ∈ U. Also 

 

U ∩ V = ∅ (by the choice of 𝑈𝑦𝑖
's and 𝑉𝑦𝑖

 's) 

 

which implies that  

U ∩ E = ∅. 

 

Thus U is a neighborhood of xo which is fully contained in 

Ec. Hence Ec is open. 

 

Now we have to show that E is bounded.  

 

Fix any xo ∈ E. Consider the open cover  

 

U = {B(xo, n) : n ∈ N) of E. 

 

This admits a finite sub cover for E, say,  

 

{B(xo, nj) : 1 ≤ j ≤ p), 

 

Since B (xo, m) ⊂ B(xo, n) for n ≥ m, 

 

It follows that 

E ⊂ B(xo, M) 

for M = max{nj : 1 ≤j ≤ p).  

 

Thus, E is bounded. 

 

Remark: But the converse of the above theorem is not true. 

For example, let X be an infinite set with discrete metric 

space. Then every subset of X is closed and bounded, and 

we have seen in earlier example that only the finite subsets 

of X are compact. This shows that a closed and bounded set 

need not be compact in a general metric space. 

 

Theorem: Closed subsets of compact sets in a metric space 

are compact. 

 

Proof: Let X be a metric space and K is a compact set in X. 

Suppose F is a closed subset of K. Since K is compact it is 

closed in X. Since F is closed in K, it is closed in X. Let 

{Vo} be an open cover of E. If Fc is adjoined to {Vo}, we 

obtain an open cover G of K. Since K is compact, there is a 

finite sub collection ∅ of G which covers K, and hence F. If 

Fc is a member of ∅, we may remove it from ∅ and still 

retain an open cover of F. We have, thus, shown that a finite 

sub collection of {Vo} covers F. Therefore, F is compact. 

Hence, we get the result. 

 

Theorem: If A and B are compact sets in a metric space X, 

then A ∪ B and A ∩ B are compact sets in X. 

 

Proof: We shall first consider A U B. Let U be an open 

cover for A ∪ B. Then U is an open cover for A as well as 

for B. Since A is compact, U admits a finite cover, say Ul. 

for A. Since B is compact, U admits a finite sub cover, say 

U2, for B. Then the collection obtained by adjoining the sets 

in U2 to Ul, becomes a finite sub cover for A ∪ B. This 

shows that A ∪ B is compact. 

 

Since A and B are compact sets, by Theorem state earlier, 

they are closed. So, A ∩ B is closed, and it is a subset of A. 

Since any closed subset of a compact set is compact, it 

follows that A ∩ B is compact. Hence, we get the result. 

 

Theorem: If S is an infinite subset of a compact metric 

space X, then S has a limit point in X. 

 

Proof: We prove this by a contradiction argument. Let, if 

possible, S has no limit point in X. Then given any point x in 

X, there exists Ux open in X such that x ∈ Ux and Ux 

contains no points of S except possibly x itself. The family 

{Ux : x ∈ X) is an open cover for X and, since X is compact, 

has a finite subcover, say 

{Ux1
, Ux2

,................ Uxn
} 

So, 

S = S∩ X ⊆ S∩ (⋃ 𝑈𝑥𝑖

𝑛
𝑖=1 ) ⊆ ⋃ (𝑆 ∩ 𝑈𝑥𝑖

)𝑛
𝑖=1 ....   (1) 

 

Each of the sets 𝑈𝑥𝑖
 contains almost one point of S. So the 

R. H. S. of equation (1) has almost n point which in turns 

implies that S is finite set. This is contradiction. Therefore, S 

has limit point in X. 

 

Theorem: Let X be a metric space. Then the following are 

equivalent. 

1) X is compact. 

2) Every sequence in X has a convergent subsequence. 

 

Proof: We shall first show that 1 ⇒ 2 
 
Suppose X is compact. We have to show that every 
sequence in X has a convergent subsequence. On the 

contrary, assume that it is not so. Then there exists a 

sequence {xn} such that it has no subsequence which 

converges in X. This implies that each x ∈ X, there is some 

rx > 0  and a positive integer nx such that  

 

xn ∉ B(x, rx) for n ≥ nx . 

 

To see this let us assume that it is not true.  

 

Then, ∃ x ∈ X,  ∀ r > 0 and j∈N ∃ 𝑚𝑗,𝑟 ≥ j with 𝑥𝑚𝑗,𝑟
 ∈ B 

(x, r) 

 

Let us take r1 = 1 and j1 = 1, Then ∃  n1 ≥ j with 𝑥𝑛1
∈ B 

(x,1), Note n1 ≥ 1, Now we take r2 = ½, j2 = n1 +1. Note that 

j2 > n1. Then ∃ n2≥ j2 with 𝑥𝑛2
∈ B (x,1/2). Note that n2≥ n1 

 

Thus, we take r3 = 1/3, j3 = n2 + 1. Note that j3> n2. Then ∃  

 

n3≥ j3 with 𝑥𝑛3
∈ B (x,1/3). Note that n3≥ n2 Proceeding like 

this we get an increasing sequence {𝑛𝑖 }𝑖=1
∞ for which 
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𝑥𝑛𝑖
∈ B (x,1/i)  ∀ i∈ N. {𝑥𝑛𝑖 }𝑖=1

∞  

 

is subsequence of the sequence {xn} and 𝑥𝑛𝑖 → x as i→ ∞. 

This is not possible by our assumption. Therefore, we got 

that for each x∈X, there is some rx> 0 and a positive integer 

n, such that xn ∉ B(x, rx) for n ≥ nx. 

 

Then {B(x, rx): x ∈ X) is an open cover for X. Since X is 

compact, there exist y1, y2 , y3 ,........... ym  ∈ X such that  

X ⊂ ⋃ B(𝑦𝑖  , 𝑟𝑥𝑗
)𝑚

𝑖=1  

 

Let, no= max [𝑛𝑥1
 , 𝑛𝑥2 

, 𝑛𝑥3
 . . . , 𝑛𝑥𝑗

] B(𝑦𝑖  , 𝑟𝑥𝑗
) 

 

Then 𝑥𝑛𝑜
∉⋃ B(𝑦𝑖  , 𝑟𝑥𝑗

)𝑚
𝑖=1  so that 𝑥𝑛𝑜

  ∉ X. which is 

impossible. Therefore, our assumption is wrong. Hence we 

get the claim. 

 

Next, we shall show that (ii) ⇒ (i) 

 

Suppose that every sequence in X has a convergent 

subsequence we have to show that X is compact. We shall 

prove this in three steps. 

 

Step 1: We shall first claim that given any open cover U of 

X, there exists a number 𝛿 > 0 such that for each subset B of 

X having diameter less than 𝛿, there exists an element of U 

containing B. We shall refer to such a number 𝛿 as a 

Lebesgue number for U. 

 

Let, if possible, there be no such 𝛿 for some open cover U. 

That means for any 𝛿 > 0, there exists a subset, whose 

diameter is less than 𝛿, and this subset does not lie inside 

any element of U. In particular, for each n ∈ N, we can 

choose a set Cn, having diameter less than 1/n which is not 

contained in any element of U. Now for each n, choose an 

element xn ∈ Cn. Then {xn} so obtained has a convergent 

subsequence {𝑥𝑛𝑗
 } converging to x, say, in view of the fact 

that (ii) holds. Now, x belongs to some element A of U, and 

because A is open, there is an r > 0 such that B(x, r) ⊂A. 

Choose i large enough that satisfies 

 

d(𝑥𝑛𝑗
, x) < r/2 and 1/ni < r/2 

 

Because the diameter of C𝑛𝑗
 is less than 1/ni we have 

C𝑛𝑗
 ⊂ B(𝑥𝑛𝑗

, 
1

𝑛𝑗
) 

which in turn is contained in B(𝑥𝑛𝑗
,
𝑟

2
). It follows then, that 

C𝑛𝑗
 ⊂ B (x, r) 

Therefore, C𝑛𝑗
 ⊂ A this is not so. Hence, we get the claim. 

 

This establishes the claim made in the beginning of Step 1. 

 

Step 2: We now claim that for every 𝜖 > 0, there exists a 

finite covering of X by 𝜖 - balls. 

 

Let, if possible, there be an 𝜖 > 0 for which such a covering 

does not exist. Now, we construct a sequence {xn} in X. 

Choose an element xl ∈ X. Since B(xl, 𝜖) is not all of X 

(otherwise X could be covered by a single 𝜖 ball), ∃ an x2 ∈ 

X such that x2 ∉ B(xl, 𝜖). So d(x2, xl) ≥ 𝜖. Then B (xl , r) U 

B(x2, 𝜖) is not all of X. So there exists x3 ∈ X with  

 

x3 ∉ B (xl, 𝜖) U B (x2, 𝜖). 

 

Therefore, 

d(x2, xl), d(x3, x2) ≥ 𝜖. 

We already have  d(xl, x2) ≥ 𝜖. 

 

Proceeding similarly, we get that given x1, x2, x3,  ....... xn ∈ 

X with d(xj, xk) ≥ 𝜖. for 1 ≤ j ≠ k ≤ n, there exists 𝑥𝑛+1  ∈
 X such that 

𝑥𝑛+1∉⋃ B(𝑥𝑖  , 𝜖)𝑚
𝑖=1  

Therefore,  d(xj, xn-1) ≥ 𝜖. for 1 ≤ j ≤ n ,  

Thus by induction we get a sequence (xn) for which 

d(xj, xk) ≥ 𝜖 for j ≠ k. 

Thus {xn} can have no convergent subsequence. This is a 

contradiction because (ii) holds. Hence we get the claim. 

 

Step 3: Now we claim that X is compact. 

Let U be an open covering of X. Then the covering U has a 

Lebesgue number 𝛿 as specified in Step 1. Corresponding to 

this 𝛿, using Step 2  𝜖 = 
𝛿

3
 there exists using with 𝜖 = 

𝛿

3
 a 

finite covering. F of X by balls of radius 
𝛿

3
. Then each of 

these balls has diameter at most 
2𝛿

3
. So, we can choose, for 

each of these balls, t an element of V containing it using the 

fact that 
2𝛿

3
< 𝛿 a Lebesnue number for V, as in Step 1. If U' 

denote this collection, then U' becomes a finite sub cover of 

U for X. Thus, we get that every open covering of X has a 

finite sub cover. Hence X is compact. 

 

2. Conclusion 
 

The property of compactness holds significant importance as 

it extends the concepts of boundedness and closedness, 

ensuring that continuous functions attain their maximum and 

minimum values within a compact domain. This 

characteristic facilitates the proof of theorems, aids in 

solving optimization problems and offers a method for 

managing infinite sets by transforming them into finite, 

more manageable subsets, as demonstrated by the existence 

of finite sub covers. The concept of compactness permits the 

reduction of infinite collections of open sets to finite ones, 

thereby simplifying numerous proofs in topology and 

analysis, making them considerably more "constructive". 
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