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Abstract: One of the distinguishing properties of a bounded closed interval [a, b] is that every sequence in it has a subsequence
converging to a limit in the interval. This need not happen with an unbounded interval such as [0, 1) or a bounded non closed interval
such as (0,1]; the former contains the sequence {n}n>1, which has no convergent subsequence, and the latter contains the sequence
{1/n} n>1, which has no subsequence converging to a limit belonging to the interval. In fact, it is true of any bounded closed subset of R
that any sequence in it has a subsequence converging to a limit belonging to the subset. To see why, we first note that any sequence in a
bounded subset must, by the Bolzano-Weierstrass theorem have a convergent subsequence with limit in R; this limit must then be in the
closed subset by the definition of a closed subset. A compact set in R is a set E satisfying the property that if U is a collection of open sets
in R whose union contains E, then there is a finite sub collection V of U whose union contains E. Recall that such a collection is called
an open cover and V' is called a finite sub cover of U for E. In terms of this, a set E in R is compact if every open cover of the set E has a

finite sub cover for E. Because of these criteria, compact sets are also viewed as a generalization of finite sets.
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1. Introduction and Concept

A compact set in a metric space is a set that resembles a
closed and bounded subset of R, it is "small" in a certain
sense and "contains" all its adherent points. One of the main
reasons for studying compact sets is that they are in some
ways very similar to finite sets. In other words, there are
many results which are easy to show for finite sets, the
formulations as well as the proofs of which carry over with
minimal changes to compact sets. It is often said that
"compactness is the next best thing to finiteness".

Definition: A compact set in R is a set E satisfying the
property that if U is a collection of open sets in R whose
union contains E, then there is a finite sub collection V of U
whose union contains E. Recall that such a collection is
called an open cover and V is called a finite sub cover of U
for E. In terms of this, a set E in R is compact if every open
cover of the set E has a finite sub cover for E. Because of
these criteria, compact sets are also viewed as a
generalization of finite sets. Here we try to extend this idea
to metric spaces. For that we first introduce the concept of
an indexed family of subsets of a set. A thorough knowledge
of this will be needed to understand open covers in a metric
space.

Example: Let (X, d) be a metric space. For any
o> 0, {B(x, 1) : x € X)

is an open cover for X. If we fix an X, € X, then {B (Xo, 1): 1
E [0, )} is also an open cover for X.

Example: Consider the interval ] 0,1 [€ R. The family

U={]l/n, I:n€N,n>2}
is an open cover for ]0, 1 [.

Example: The family {] - n, n[: n € N) is an open cover for
R. Further, {(-2n, 2n): n € N) is a sub cover.

Proposition: A finite subset of a metric space is compact.

Proof: Let (X, d) be a metric space and E be a non-empty
finite subset of X. We denote the elements of E by

Let U = {A;}ie;r be an open cover of E. That is, E C
Uie; 4;. This implies that each element xj, j=1,............ N,
belongs i€l to € U;¢; 4;. That means for each j, xj € A; for
some i €I. Let us denote these Aj's by Alk k,=1,...,m.

Let Uy = {4;, : 1 <k <m). Then Up is a finite sub cover of
for E. This shows that every open cover of E admits a finite
sub cover for E.

Hence E is compact.

Example: R? with the usual metric is not a compact space.
In fact U = {B(0, n) : n € N) is an open cover for R? which
has no finite sub cover.

Theorem: Every compact set in a metric space is closed and
bounded.

Proof: Let X be a metric space and E be a compact subset.
To show that E is closed, it is enough to show that E° is
open.

Let x.,€E°. Now we apply Hausdorff property to each
elementy € E.

Then we get that for each y € E, there exists open sets Uy
and Vy of the points X, and y respectively such that
UynV,=2

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWWw.ijsr.net

Paper ID: SR251012102742

DOI: https://dx.doi.org/10.21275/SR251012102742 651


http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Then the collection

V={Vyy€E}
is an open cover for E. Since E is compact, V admits a finite
subcover for E. Then there exists sets Vyi . . ., Vyn such that
n
ec|Ju,

i=1

let V.=Ui, V), and U=Ni, U,,

where U,,’s are the neighborhoods of X, corresponding to
Vi1, . .., Vyn. Since U is a intersection of finite open sets, U
is open and x, € U. Also

U N V=2 (by the choice of Uy, 's and V. 's)

which implies that
UNnE=w2.

Thus U is a neighborhood of xo which is fully contained in
E°. Hence E€ is open.

Now we have to show that E is bounded.
Fix any x, € E. Consider the open cover
U= {B(xo,n) : n € N) of E.
This admits a finite sub cover for E, say,
{B(X0, nj): 1 <j<p),
Since B (x,, m) € B(X,, n) forn > m,

It follows that
E € B(xo, M)
for M = max{n;: 1 <j < p).

Thus, E is bounded.

Remark: But the converse of the above theorem is not true.
For example, let X be an infinite set with discrete metric
space. Then every subset of X is closed and bounded, and
we have seen in earlier example that only the finite subsets
of X are compact. This shows that a closed and bounded set
need not be compact in a general metric space.

Theorem: Closed subsets of compact sets in a metric space
are compact.

Proof: Let X be a metric space and K is a compact set in X.
Suppose F is a closed subset of K. Since K is compact it is
closed in X. Since F is closed in K, it is closed in X. Let
{Vo} be an open cover of E. If F°¢ is adjoined to {V,}, we
obtain an open cover G of K. Since K is compact, there is a
finite sub collection @ of G which covers K, and hence F. If
F¢ is a member of 2, we may remove it from @ and still
retain an open cover of F. We have, thus, shown that a finite
sub collection of {V,} covers F. Therefore, F is compact.
Hence, we get the result.

Theorem: If A and B are compact sets in a metric space X,
then A U B and A N B are compact sets in X.

Proof: We shall first consider A U B. Let U be an open
cover for A U B. Then U is an open cover for A as well as
for B. Since A is compact, U admits a finite cover, say Ui.
for A. Since B is compact, U admits a finite sub cover, say
U,, for B. Then the collection obtained by adjoining the sets
in Uz to U, becomes a finite sub cover for A U B. This
shows that A U B is compact.

Since A and B are compact sets, by Theorem state earlier,
they are closed. So, A N B is closed, and it is a subset of A.
Since any closed subset of a compact set is compact, it
follows that A N B is compact. Hence, we get the result.

Theorem: If S is an infinite subset of a compact metric
space X, then S has a limit point in X.

Proof: We prove this by a contradiction argument. Let, if
possible, S has no limit point in X. Then given any point X in
X, there exists Ux open in X such that x € Uy and Uy
contains no points of S except possibly x itself. The family
{Uyx : x € X) is an open cover for X and, since X is compact,
has a finite subcover, say
{Uxys Ugyoenenininns Uy}

So,

S=8SnXcSn Uiz, Uy) €U (SN U ) (1)

Each of the sets Uy, contains almost one point of S. So the
R. H. S. of equation (1) has almost n point which in turns
implies that S is finite set. This is contradiction. Therefore, S
has limit point in X.

Theorem: Let X be a metric space. Then the following are
equivalent.

1) X s compact.

2) Every sequence in X has a convergent subsequence.

Proof: We shall first show that 1 = 2

Suppose X is compact. We have to show that every
sequence in X has a convergent subsequence. On the
contrary, assume that it is not so. Then there exists a
sequence {xn} such that it has no subsequence which
converges in X. This implies that each x € X, there is some
x> 0 and a positive integer ny such that

Xn & B(x, 1x) forn > ny.
To see this let us assume that it is not true.

Then, 3 x€X, Vr > 0and jEN I m;, = j with Xm;, € B
(x,1)

Let us take r1 = 1 and j; = 1, Then 3 n; = j with x,,, € B
(x,1), Note n; > 1, Now we take 1= Y, j» = n; +1. Note that
j2>ni. Then 3 np= j with x,,, € B (x,1/2). Note that no> n;

Thus, we take r3= 1/3, j3=n,+ 1. Note that j3> n,. Then 3

n3= j3 with x,, € B (x,1/3). Note that n3=> n, Proceeding like
this we get an increasing sequence {n; };=,for which
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Xn, € B (x,1/i) Vi€EN. {xp, }{2,

is subsequence of the sequence {xn} and x,, — X as i— .
This is not possible by our assumption. Therefore, we got
that for each x€X, there is some r,> 0 and a positive integer
n, such that X, € B(X, 1x) for n > ny,

Then {B(x, 1x): X € X) is an open cover for X. Since X is
compact, there exist Vi, Y2, Y3 ,eeeeereens ym € X such that
X c U, B, 7))
Let: no= max [nx1 > nxz > nx3 AR nxj] B(yl > rxj)
Then x,, ¢U{Z, B(y; ,rx].) so that x, ~ & X. which is

impossible. Therefore, our assumption is wrong. Hence we
get the claim.

Next, we shall show that (ii) = (i)

Suppose that every sequence in X has a convergent
subsequence we have to show that X is compact. We shall
prove this in three steps.

Step 1: We shall first claim that given any open cover U of
X, there exists a number § > 0 such that for each subset B of
X having diameter less than §, there exists an element of U
containing B. We shall refer to such a number § as a
Lebesgue number for U.

Let, if possible, there be no such § for some open cover U.
That means for any § > 0, there exists a subset, whose
diameter is less than &, and this subset does not lie inside
any element of U. In particular, for each n € N, we can
choose a set C,, having diameter less than 1/n which is not
contained in any element of U. Now for each n, choose an
element x, € C,. Then {x,} so obtained has a convergent
subsequence {xnj } converging to X, say, in view of the fact

that (ii) holds. Now, x belongs to some element A of U, and
because A is open, there is an r > 0 such that B(x, r) CA.
Choose i large enough that satisfies

d(xnj, x) <r1/2 and 1/n; < 1/2

Because the diameter of Cn]. is less than 1/n; we have
1
an c B(xn]_, n_j)
which in turn is contained in B(xnj,g). It follows then, that
Cn]. cB((x,r)
Therefore, Cn]. C A this is not so. Hence, we get the claim.

This establishes the claim made in the beginning of Step 1.

Step 2: We now claim that for every € > 0, there exists a
finite covering of X by € - balls.

Let, if possible, there be an € > 0 for which such a covering
does not exist. Now, we construct a sequence {Xn} in X.
Choose an element x; € X. Since B(x, €) is not all of X
(otherwise X could be covered by a single € ball), 3 an x, €

X such that x, & B(xy, €). So d(x2, Xi) = €. Then B (x;, 1) U
B(x2, €) is not all of X. So there exists x3 € X with

x3 € B (x5, €) U B (x2, €).

Therefore,
d(xz, x1), d(x3, X2) = €.
We already have d(xi, x2) = €.

Proceeding similarly, we get that given xi, X2, X3, ....... Xn €
X with d(xj, xx) = €. for 1 <j # k < n, there exists x,,,; €
X such that

Xn+1€Ui21 B(x; , €)
Therefore, d(xj, xp-1) = €. for1 <j<n,
Thus by induction we get a sequence (x,) for which

d(xj, xk) = € for j # k.
Thus {x,} can have no convergent subsequence. This is a
contradiction because (ii) holds. Hence we get the claim.

Step 3: Now we claim that X is compact.
Let U be an open covering of X. Then the covering U has a
Lebesgue number § as specified in Step 1. Corresponding to

this §, using Step 2 € = g there exists using with € = g a
finite covering. F of X by balls of radius g. Then each of

. 5

these balls has diameter at most 2? So, we can choose, for
each of these balls, t an element of V containing it using the
fact that 23—6< 6 a Lebesnue number for V, as in Step 1. If U’

denote this collection, then U' becomes a finite sub cover of
U for X. Thus, we get that every open covering of X has a
finite sub cover. Hence X is compact.

2. Conclusion

The property of compactness holds significant importance as
it extends the concepts of boundedness and closedness,
ensuring that continuous functions attain their maximum and
minimum values within a compact domain. This
characteristic facilitates the proof of theorems, aids in
solving optimization problems and offers a method for
managing infinite sets by transforming them into finite,
more manageable subsets, as demonstrated by the existence
of finite sub covers. The concept of compactness permits the
reduction of infinite collections of open sets to finite ones,
thereby simplifying numerous proofs in topology and
analysis, making them considerably more "constructive".
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