International Journal of Science and Research (IJSR)

ISSN: 2319-7064 SJIF (2022): 7.942

Anaerobic Digestion: A Sustainable Approach to Waste Management and Renewable Energy Production

Dr. Alok Gupta¹, Dr. Sunil Vikram Desale²

¹Director, Sai Nath Renewable Energy Pvt. Ltd., Jaipur, Rajasthan - 302017, India Email: algu358[at]gmail.com

²Professor & Head, Department of Civil Engineering, Gangamai College of Engineering, Nagaon-424 005 Email: svdesale[at]rediffmail.com

Abstract: Anaerobic digestion is a biological process that breaks down organic matter in the absence of oxygen, producing biogas, a mixture of methane and carbon dioxide, and a nutrient-rich digestate. This process has gained significant attention in recent years due to its potential to manage organic waste, reduce greenhouse gas emissions, and produce renewable energy. The increasing global population and urbanization have led to a significant increase in organic waste generation, posing a major challenge for waste management. Anaerobic digestion offers a sustainable solution to this problem by converting organic waste into a valuable resource, biogas, which can be used for electricity generation, heating, or as a fuel. Additionally, the digestate can be used as a nutrient-rich fertilizer, reducing the need for synthetic fertilizers. Anaerobic digestion offers numerous environmental benefits, making it a valuable solution for sustainable waste management and renewable energy production. By capturing methane from organic waste, anaerobic digestion reduces greenhouse gas emissions that would otherwise contribute to climate change. The biogas produced during the process serves as a renewable energy source, decreasing dependence on fossil fuels and lowering emissions. Additionally, anaerobic digestion provides an effective way to manage organic waste, minimizing the amount of waste sent to landfills and mitigating the environmental impacts of waste disposal. The nutrient-rich digestate can be used as a fertilizer, reducing the need for synthetic alternatives and promoting sustainable agriculture.

Keywords: Anaerobic Digestion, Biogas, Waste management, Biodegradable Waste, Methane

1. Introduction

Anaerobic digestion is a biological process that breaks down organic matter, such as food waste, agricultural waste, or sewage sludge, in the absence of oxygen. This process, facilitated by microorganisms, converts organic matter into biogas—a mixture of methane and carbon dioxide—and a nutrient-rich residue known as digestate. The biogas can be harnessed as a renewable energy source for electricity generation, heating, or as a fuel, while the digestate can be used as a fertilizer or soil amendment, promoting sustainable agriculture and reducing the need for synthetic fertilizers. Anaerobic digestion is utilized in various applications, including wastewater treatment plants, agricultural biogas plants, and food waste management facilities, offering benefits such as renewable energy production, effective waste management, and the creation of valuable by-products. By leveraging this technology, we can manage organic waste more sustainably and contribute to renewable energy production.

Anaerobic digestion technology is a biological process that breaks down organic matter in the absence of oxygen, producing biogas—a mixture of methane and carbon dioxide—and a nutrient-rich digestate. This technology utilizes microorganisms to facilitate the decomposition process within sealed vessels known as anaerobic digesters. The biogas generated can be harnessed as a renewable energy source for electricity generation, heating, or as a fuel, while the digestate can be used as a fertilizer or soil amendment, promoting sustainable agriculture. Anaerobic digestion is applicable in various settings, including wastewater treatment plants, agricultural biogas plants, and food waste

management facilities. By managing organic waste and producing renewable energy, anaerobic digestion technology contributes to sustainable waste management and environmental protection. Its benefits include reducing greenhouse gas emissions, minimizing waste sent to landfills, and producing valuable by-products. Overall, anaerobic digestion technology offers a promising solution for addressing waste management challenges while promoting renewable energy production and sustainable agricultural practices.

The Anaerobic Digestion Process

The anaerobic digestion process is a multifaceted biochemical mechanism that involves the decomposition of organic matter by microorganisms within an oxygen-free environment. This intricate process is comprised of four distinct stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. Each stage plays a pivotal role in breaking down complex organic materials into simpler compounds, ultimately resulting in the production of biogas, a mixture of methane and carbon dioxide.

Hydrolysis: The Initial Breakdown

The first stage, hydrolysis, involves the decomposition of complex organic molecules such as carbohydrates, proteins, and fats into simpler compounds like sugars, amino acids, and fatty acids. This process is facilitated by hydrolytic microorganisms that secrete enzymes capable of breaking down these complex molecules. The efficiency of hydrolysis can be influenced by factors such as the type of organic matter, temperature, and pH.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

International Journal of Science and Research (IJSR) ISSN: 2319-7064

ISSN: 2319-7064 SJIF (2022): 7.942

Acidogenesis: Conversion to Volatile Fatty Acids

The second stage, acidogenesis, involves the conversion of the products of hydrolysis into volatile fatty acids, carbon dioxide, and hydrogen. Acidogenic microorganisms, including acid-forming bacteria, play a crucial role in this stage. These microorganisms metabolize the simpler compounds produced during hydrolysis, resulting in the formation of volatile fatty acids and other by-products.

Acetogenesis: Production of Acetic Acid

The third stage, acetogenesis, involves the conversion of volatile fatty acids into acetic acid, carbon dioxide, and hydrogen. Acetogenic microorganisms, such as acetogenic bacteria, are responsible for this stage. These microorganisms further break down the volatile fatty acids, producing acetic acid, which is a critical precursor for biogas production.

Methanogenesis: The Final Stage

The final stage, methanogenesis, involves the conversion of acetic acid into methane and carbon dioxide by methanogenic microorganisms. This stage is crucial for the production of biogas, as methane is the primary component of biogas. Methanogenic microorganisms, such as methanogenic archaea, play a vital role in this stage, utilizing acetic acid as a substrate to produce methane and carbon dioxide.

Factors Influencing Anaerobic Digestion

Anaerobic digestion is a complex process that is influenced by several key factors, including temperature, pH, retention time, and mixing and stirring. Understanding these factors is crucial for optimizing the efficiency and effectiveness of anaerobic digestion systems.

Temperature

Temperature plays a significant role in anaerobic digestion, as it affects the growth and activity of microorganisms. The optimal temperature range for anaerobic digestion is typically between 35°C and 40°C, which is considered mesophilic. Within this range, microorganisms can thrive and efficiently break down organic matter. However, anaerobic digestion can occur over a wide range of temperatures, from psychrophilic (low-temperature) to thermophilic (high-temperature) conditions.

- Psychrophilic Conditions: Psychrophilic microorganisms
 can survive in low-temperature conditions, typically
 below 20°C. These microorganisms are often found in
 cold environments, such as Arctic and Antarctic regions.
 Psychrophilic anaerobic digestion can be beneficial for
 treating wastewater in cold climates, as it eliminates the
 need for heating the wastewater.
- Mesophilic Conditions: Mesophilic microorganisms thrive in moderate temperatures, typically between 20°C and 45°C. This temperature range is ideal for most anaerobic digestion systems, as it allows for efficient breakdown of organic matter and biogas production.
- Thermophilic Conditions: Thermophilic microorganisms
 can survive in high-temperature conditions, typically
 above 45°C. These microorganisms are often found in hot
 environments, such as hot springs and compost piles.
 Thermophilic anaerobic digestion can be beneficial for
 treating high-strength wastewater, as it allows for faster
 reaction rates and increased pathogen destruction.

pН

The pH level of the digester can significantly impact the microbial population and the overall efficiency of the process. Most anaerobic digestion systems operate best at a pH range of 6.5 to 8.5. This pH range allows microorganisms to thrive and efficiently break down organic matter.

- Acidic Conditions: Acidic conditions, typically below pH 6.5, can inhibit the growth and activity of microorganisms. This can lead to reduced biogas production and decreased efficiency. Acidic conditions can be caused by the accumulation of volatile fatty acids, which can be toxic to microorganisms.
- Alkaline Conditions: Alkaline conditions, typically above pH 8.5, can also inhibit the growth and activity of microorganisms. This can lead to reduced biogas production and decreased efficiency. Alkaline conditions can be caused by the presence of high levels of ammonia or other alkaline substances.

Retention Time

The retention time of the organic matter in the digester can impact the degree of digestion and biogas production. Longer retention times can result in more complete digestion and higher biogas yields.

- Hydraulic Retention Time (HRT): HRT refers to the amount of time that the organic matter remains in the digester. A longer HRT can result in more complete digestion and higher biogas yields. However, a longer HRT can also increase the capital costs of the digester.
- Solids Retention Time (SRT): SRT refers to the amount of time that the microorganisms remain in the digester. A longer SRT can result in a more diverse and robust microbial population. This can improve the efficiency and stability of the digestion process.

Mixing and Stirring

Adequate mixing and stirring of the digester contents can help ensure that the microorganisms have access to the organic matter and can improve the overall efficiency of the process.

- Types of Mixing: There are several types of mixing, including mechanical mixing, hydraulic mixing, and pneumatic mixing. Each type of mixing has its advantages and disadvantages. Mechanical mixing is commonly used in anaerobic digesters, as it provides a high level of control over the mixing process.
- Importance of Mixing: Mixing helps to distribute heat, nutrients, and microorganisms evenly throughout the digester. This can improve the efficiency of the process and increase biogas production. Mixing can also help to prevent the formation of dead zones, where microorganisms may not have access to organic matter.

Biogas Composition and Utilization

The biogas produced during anaerobic digestion is a mixture of methane (50-70%) and carbon dioxide (30-50%). The exact composition of biogas can vary depending on factors such as the type of organic matter being digested, the operating conditions of the digester, and the microbial population present. Biogas can be utilized as a renewable energy source, providing a sustainable alternative to fossil fuels

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

International Journal of Science and Research (IJSR) ISSN: 2319-7064

SJIF (2022): 7.942

The anaerobic digestion process involves the breakdown of organic matter by microorganisms in an oxygen-free environment. The process consists of four stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The biogas produced during the process is a mixture of methane (50-70%) and carbon dioxide (30-50%).

Applications in Waste Management

Anaerobic digestion is a highly versatile technology that can be applied to various types of organic waste, providing a sustainable solution for waste management and renewable energy production. Some of the key applications of anaerobic digestion in waste management include:

- Food Waste: Anaerobic digestion can effectively manage food waste, reducing the amount of waste sent to landfills and producing renewable energy. This approach can help minimize the environmental impacts of food waste disposal, such as greenhouse gas emissions and odors. By diverting food waste from landfills, anaerobic digestion can also reduce the production of methane, a potent greenhouse gas.
- Agricultural Waste: The process can also be used to manage agricultural waste, such as manure and crop residues, reducing waste disposal costs and generating valuable by-products. Anaerobic digestion can help farmers manage their waste more sustainably, while also producing renewable energy and nutrient-rich fertilizers. This approach can also help reduce the environmental impacts of agricultural waste disposal, such as water pollution and soil degradation.
- Industrial Waste: Anaerobic digestion can be applied to
 industrial waste streams, such as wastewater and organic
 waste, reducing environmental impacts and generating
 renewable energy. This approach can help industries
 minimize their waste disposal costs, while also reducing
 their environmental footprint. By treating industrial
 wastewater and organic waste, anaerobic digestion can
 also help industries meet regulatory requirements and
 improve their sustainability performance.

Anaerobic Digestion is used for methane production as fuel

To harness the potential of anaerobic digestion for methane production, it's essential to understand the step-by-step process involved. The journey begins with the design and construction of an anaerobic digester, a critical component that provides a controlled environment for microorganisms to thrive and efficiently break down organic waste. Various types of anaerobic digester designs are available, including continuous stirred-tank reactors (CSTR), plug-flow reactors, and anaerobic baffled reactors, each with its unique advantages and applications. The choice of digester design depends on the type and quantity of organic waste being processed, as well as the desired outcomes of the digestion process.

Once the digester is in place, the next step is feedstock preparation, which involves grinding or macerating the organic waste to increase its surface area. This process facilitates the breakdown of the organic matter by microorganisms, enhancing the efficiency of the anaerobic digestion process. The prepared feedstock is then mixed with water to create a slurry, ensuring a consistent temperature and

optimal conditions for microbial activity. This mixture is then fed into the anaerobic digester, where the microorganisms work their magic, breaking down the organic matter in a series of stages, including hydrolysis, acidogenesis, acetogenesis, and methanogenesis. During these stages, complex organic polymers are converted into simpler compounds, volatile fatty acids, and ultimately, biogas, which is primarily composed of methane and carbon dioxide.

The biogas produced during anaerobic digestion is collected and purified to remove impurities such as Carbon Dioxide (CO₂), hydrogen sulfide (H₂SO₄) and moisture (H₂O). This purification process is crucial to produce a high-quality methane-rich gas that can be used as a fuel for various applications. The purified biogas can be utilized in multiple ways, including electricity generation, heating, and as a transportation fuel. For instance, the methane can be used to power gas engines or turbines to generate electricity, providing a renewable energy source that reduces dependence on fossil fuels. Additionally, the biogas can be used for heating purposes, such as space heating or water heating, offering a sustainable alternative to traditional heating methods. Furthermore, the methane can be compressed and used as a transportation fuel for vehicles, providing a cleaner alternative to conventional fuels.

After the biogas is upgraded to remove impurities and increase its methane content, it is compressed to a high pressure, typically around 200-250 bar, to facilitate transportation and storage. This compression process is essential because it reduces the volume of the biogas, making it is more efficient to transport and store. By compressing the biogas, its volume is significantly reduced, allowing for more efficient use of storage facilities and transportation infrastructure. The compressed biogas is then transmitted through pipelines or transported in cylinders or tanks to the point of use. This transmission process requires specialized infrastructure, including pipelines, compressor stations, and storage facilities. Pipelines are a common method for transmitting compressed biogas over long distances, offering a safe and efficient way to transport the fuel. Compressor stations are strategically located along the pipeline to maintain the pressure and flow rate of the biogas, ensuring a steady supply to the end-users. Storage facilities are also critical components of the transmission infrastructure, providing a buffer against fluctuations in supply and demand.

The benefits of anaerobic digestion extend beyond the production of renewable energy. This process also offers a sustainable solution for managing organic waste, reducing greenhouse gas emissions, and minimizing environmental impacts. By diverting organic waste from landfills, anaerobic digestion helps to mitigate the production of methane, a potent greenhouse gas, in landfills. Moreover, the process reduces the amount of waste sent to landfills, prolonging their lifespan and minimizing the environmental issues associated with waste disposal. The economic benefits of anaerobic digestion are also significant, as it creates opportunities for selling renewable energy and reducing waste disposal costs. By adopting anaerobic digestion, communities and industries can not only generate renewable energy but also contribute to a more sustainable and environmentally friendly waste management strategy.

International Journal of Science and Research (IJSR) ISSN: 2319-7064

ISSN: 2319-7064 SJIF (2022): 7.942

2. Challenges and Future Directions in Anaerobic Digestion

Anaerobic digestion is a promising technology for managing organic waste and producing renewable energy. However, despite its benefits, there are several challenges that need to be addressed to make it more efficient, cost-effective, and widely adopted. Some of the key challenges facing anaerobic digestion include:

High Capital Costs

The initial investment required for anaerobic digestion systems can be high, making it a significant barrier to adoption. The cost of designing and constructing an anaerobic digester, as well as the equipment and infrastructure required for biogas utilization, can be substantial. To overcome this challenge, governments and private investors can provide incentives and subsidies to encourage the adoption of anaerobic digestion technology.

The high initial investment required for anaerobic digestion systems can be a significant barrier to adoption. The cost of designing and constructing an anaerobic digester, as well as the equipment and infrastructure required for biogas utilization, can be substantial. However, there are several ways to overcome this challenge and make anaerobic digestion more accessible to a wider range of users. Governments and private investors can provide incentives and subsidies to encourage the adoption of anaerobic digestion technology. For instance, governments can offer grants and subsidies to help cover the upfront costs of anaerobic digestion systems, or provide tax credits to companies and individuals that invest in this technology. Low-interest loans can also be provided to help finance the construction and operation of anaerobic digestion systems.

Private investment and financing can also play a crucial role in promoting the adoption of anaerobic digestion technology. Venture capital firms can invest in anaerobic digestion companies and projects, providing the necessary funding to get projects off the ground. Private equity firms can invest in established anaerobic digestion companies, providing the necessary capital to expand operations and increase efficiency. Green bonds can also be issued to finance anaerobic digestion projects, providing a new source of capital for the industry. By providing incentives and subsidies, and investing in anaerobic digestion technology, we can overcome the high initial investment barrier and promote the adoption of this promising technology.

The benefits of investing in anaerobic digestion technology are numerous. Anaerobic digestion produces renewable energy, reducing dependence on fossil fuels and mitigating climate change. It also creates jobs in construction, operation, and maintenance, and provides a sustainable solution for managing organic waste. Additionally, anaerobic digestion can provide economic benefits, such as revenue from the sale of biogas and digestate, and cost savings from reduced waste disposal costs. By investing in anaerobic digestion technology, we can promote sustainable development, reduce greenhouse gas emissions, and create a more environmentally friendly future.

The governments and private investors can work together to develop innovative financing models and incentives that can help to overcome the high initial investment barrier. For example, governments can provide guarantees or tax credits to investors, reducing the risk associated with investing in anaerobic digestion projects. Private investors can also work with governments to develop public-private partnerships, which can help to leverage private sector expertise and financing to support the development of anaerobic digestion projects. By working together, we can create a more favorable investment environment for anaerobic digestion technology and promote its adoption on a larger scale.

Energy Efficiency

Anaerobic digestion systems can have low energy efficiency, reducing the overall energy output. This can be due to various factors, including the type of feedstock, the design of the digester, and the efficiency of the biogas utilization system. To improve energy efficiency, researchers are exploring new technologies and strategies, such as co-digestion, gas upgrading, and combined heat and power (CHP) systems.

Co-digestion is a strategy that involves digesting multiple types of feedstocks together to improve the energy efficiency of anaerobic digestion systems. By co-digesting different feedstocks, the nutrient balance and microbial activity in the digester can be improved, leading to increased biogas production and energy efficiency. Co-digestion can also help to reduce the costs associated with feedstock handling and storage, as multiple feedstocks can be processed together. Some common feedstocks used for co-digestion include food waste, agricultural waste, and wastewater sludge.

Gas upgrading is another strategy that can be used to improve the energy efficiency of anaerobic digestion systems. Biogas produced through anaerobic digestion is a mixture of methane and carbon dioxide, with small amounts of other gases. Gas upgrading involves removing the carbon dioxide and other impurities from the biogas, producing a high-quality fuel that can be used in a variety of applications, including electricity generation, heating, and transportation. Gas upgrading can be achieved through various technologies, including membrane separation, pressure swing adsorption, and chemical scrubbing.

Combined heat and power (CHP) systems are a highly efficient way to utilize the energy produced through anaerobic digestion. CHP systems involve generating electricity and heat simultaneously, using the waste heat from the electricity generation process to provide heating or cooling. This approach can significantly improve the overall energy efficiency of anaerobic digestion systems, as the waste heat can be used to meet the thermal demands of the digester or other nearby buildings. CHP systems can be powered by biogas, natural gas, or other fuels, and can be designed to meet the specific energy needs of a particular application.

Pathogen Reduction

Anaerobic digestion may not completely eliminate pathogens, requiring additional treatment steps. This can be a concern for the use of digestate as a fertilizer, as pathogens can pose a risk to human health and the environment. To address this challenge, additional treatment steps, such as pasteurization

International Journal of Science and Research (IJSR) ISSN: 2319-7064

SJIF (2022): 7.942

or sanitization, can be implemented to reduce the pathogen load in the digestate.

The presence of pathogens in digestate, the nutrient-rich byproduct of anaerobic digestion, poses significant risks to human health and the environment. Pathogens, including bacteria, viruses, and parasites, can cause disease in humans and animals if not properly treated. To mitigate these risks, additional treatment steps are essential. Pasteurization, for instance, involves heating the digestate to a high temperature to kill pathogens. Sanitization methods, including chemical treatments, can also be effective in reducing pathogen loads. Composting, which involves breaking down the digestate in the presence of oxygen, is another approach that can help minimize pathogen presence. Furthermore, storing the digestate for a period allows many pathogens to die off naturally over time.

Implementing these additional treatment steps is crucial for ensuring the safe use of digestate as a fertilizer. By reducing the number of pathogens, the risk of contaminating soil, water, and crops is significantly decreased, thereby protecting human health and the environment. This is particularly important as the demand for digestate as a sustainable fertilizer alternative grows. Ensuring the safety and quality of digestate not only enhances its marketability but also supports sustainable agricultural practices.

The benefits of pathogen reduction in digestate extend beyond safety and environmental protection. By adopting effective treatment methods, producers can comply with regulatory standards and avoid potential legal and financial repercussions. Moreover, pathogen reduction can open up new markets and opportunities for digestate use, contributing to a more circular economy. As the world moves towards more sustainable waste management and agricultural practices, the importance of effective pathogen reduction in digestate cannot be overstated. It is a critical step in ensuring that anaerobic digestion systems operate safely and efficiently, providing benefits to both the environment and the economy.

3. Suggestions

To promote sustainable development and maximize the benefits of anaerobic digestion, consider implementing anaerobic digestion systems in your community, farm, or industrial setting. This can help manage organic waste, produce renewable energy, and reduce greenhouse gas emissions.

Additionally, educating others about the benefits of anaerobic digestion and its potential to contribute to sustainable development can increase adoption rates and promote a cleaner environment.

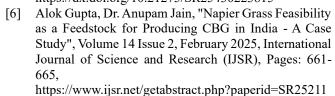
Supporting policy initiatives and investing in research and development can also help improve efficiency, reduce costs, and increase the adoption of anaerobic digestion technology. Furthermore, exploring new applications for anaerobic digestion, such as co-digestion of multiple feedstocks or the production of high-value chemicals, can help unlock new opportunities and promote innovation.

By working together to promote anaerobic digestion, we can create a more sustainable future and mitigate the environmental impacts of waste management. Anaerobic digestion offers a promising solution for managing organic waste, generating renewable energy, and promoting sustainable agriculture.

Its benefits extend beyond waste reduction, as it plays a crucial role in mitigating greenhouse gas emissions and supporting circular economy principles. As the world continues to evolve, prioritizing sustainable solutions like anaerobic digestion can help ensure a cleaner, greener future for generations to come. By investing in and promoting anaerobic digestion technology, we can reduce our reliance on fossil fuels, minimize waste, and promote sustainable development.

4. Conclusion

Anaerobic digestion stands as a pivotal technology in the quest for sustainable waste management and renewable energy production. By harnessing the power of microorganisms to break down organic matter in an oxygenfree environment, this process not only reduces the volume of waste sent to landfills but also generates biogas, a valuable renewable energy source, and nutrient-rich digestate that can enhance soil fertility. The benefits of anaerobic digestion extend beyond waste reduction, as it plays a crucial role in mitigating greenhouse gas emissions by capturing and utilizing methane, a potent greenhouse gas. As the world continues to grapple with the challenges of climate change and sustainable development, anaerobic digestion offers a promising solution that aligns with circular economy principles. By investing in and promoting this technology, we can move towards a more sustainable future, where waste is viewed not as a problem, but as a resource to be harnessed. Embracing anaerobic digestion can lead to significant environmental, economic, and social benefits, paving the way for a cleaner, greener, and more sustainable world. Anaerobic digestion is a sustainable approach to waste management and renewable energy production. While there are challenges that need to be addressed, the benefits of anaerobic digestion make it a promising technology for managing organic waste and reducing greenhouse gas emissions.


References

- [1] Ministry of New and Renewable Energy (MNRE). (2020). National Biogas and Manure Management Programme (NBMMP).
- [2] Central Pollution Control Board (CPCB). (2019). Guidelines for Municipal Solid Waste Management.
- [3] Indian Renewable Energy Development Agency (IREDA). (2020). CBG Production from MSW: A Feasibility Study.
- [4] Alok Gupta, Dr Aparna Soni, "Compressed Bio Gas: A Clean and Renewable Energy Source for the Future", Volume 14 Issue 7, July 2025, International Journal of Science and Research (IJSR), Pages: 512-517, https://www.ijsr.net/getabstract.php?paperid=SR25705 064704, DOI: https://dx.doi.org/10.21275/SR25705064704

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 SJIF (2022): 7.942

Alok Gupta, Dr Aparna Soni, "Assessing the Feasibility of CBG Plants in Reducing Biodegradable Waste in Indian Cities", Volume 14 Issue 5, May 2025, International Journal of Science and Research (IJSR), Pages: 216-219, https://www.ijsr.net/getabstract.php?paperid=SR25430 223815, https://dx.doi.org/10.21275/SR25430223815

062509,

https://dx.doi.org/10.21275/SR25211062509

- Alok Gupta, Dr Anupam Jain, Nitin Kumar Bhageria, "Technological Challenges in CBG Manufacturing in India - A Critical Review", Volume 14 Issue 1, January 2025, International Journal of Science and Research 747-752, (IJSR), Pages: https://www.ijsr.net/getabstract.php?paperid=SR25113 194820, DOI: https://dx.doi.org/10.21275/SR25113194820
- Er. Alok Gupta, Sorabh Singal, "Case Study on Production of Biogas from Paddy Straw", Volume 13 Issue 8, August 2024, International Journal of Science and Research (IJSR), Pages: 600-603, https://www.ijsr.net/getabstract.php?paperid=SR24807 233253, DOI: https://dx.doi.org/10.21275/SR24807233253
- Alok Gupta, Dr. Anupam Jain, "Case Study on 145MLD Sewage Treatment Plant (STP) (SBR Technology) in Gwalior", Volume 12 Issue 6, June 2023, International Journal of Science and Research (IJSR), Pages: 39-44, https://www.ijsr.net/getabstract.php?paperid=SR23528 222500, DOI: https://dx.doi.org/10.21275/SR23528222500
- [10] Gupta EA, Singhal S. Case Study on Plastic Pollution Reuse, Reduce and Recycling Process and Methods. THE RESEARCH JOURNAL (TRJ): A UNIT OF I2OR. 2021;7(3):1-7. theresearchjournal.net
- [11] Gupta EA, Jain dr anupam. CASE STUDY ON PROJECT TO TREAT 100 TON MUNICIPAL BIO DEGRADABLE WASTE IN, JAIPUR, RAJASTHAN Er Alok Gupta Director, Sai Nath Renewable Energy Pvt. Ltd., Jaipur, Rajasthan, India. Dr. Anupam Jain Associate Professor ABST, LBS PG College, Jaipur, Rajasthan,. NIU International Journal of Human Rights. 2021;8(V):123-132.
- [12] Jain A, Gupta EA. Case Study Case Study on **Environment Protection through Training in Biomining** and Bio Remediation - Legacy Waste Treatment. IJTD. 2021;51(1):96-102

Author Profile

Dr. Alok Gupta is a BE, MBA, PhD years of experience in waste management and is the director in 7 companies, with 14 years of expertise in developing and implementing sustainable waste management solutions for various industries as well as organizations.

Dr. Sunil Vikram Desale holds the designation of Associate Professor in the Department of Civil Engineering. BE in Civil Engineering, ME in Construction Technology and Ph.D.