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Abstract: Dynamic, partially observable, and stochastic environments require decision-making systems that combine learning flexibility
with robust, interpretable reasoning. This paper proposes a hybrid framework that integrates Deep Reinforcement Learning (DRL) with
Fuzzy Logic (FL) to produce adaptive policies that are both performant and interpretable. The hybrid architecture uses a DRL module
(actor-critic family) for representation learning and long-term optimization, while a fuzzy reasoning module provides high-level rule-
based adjustments, safety constraints, and interpretability. We detail the framework architecture, learning algorithm, experimental setup
across simulated dynamic tasks (navigation with changing goals, resource allocation with fluctuating demand, and nonstationary control
with drifting dynamics), and evaluation metrics. Results show that the hybrid system improves sample efficiency, reduces catastrophic
failures under distribution shift, and provides human-readable decision rationales compared to baseline DRL agents.
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1. Introduction

Recent advances in Deep Reinforcement Learning (DRL)
have produced agents capable of learning complex
behaviours from high-dimensional inputs. However, purely
data-driven DRL faces challenges in dynamic and safety-
critical settings: long training times, sensitivity to distribution
shifts, lack of interpretability, and the difficulty of
incorporating domain knowledge or safety constraints. Fuzzy
Logic (FL) offers interpretable, rule-based reasoning that
handles uncertainty and can incorporate human knowledge
but lacks the expressive power for high-dimensional
representation learning.

We propose a hybrid framework that leverages the strengths
of both paradigms: DRL handles representation learning and
optimization in large state-action spaces, while FL provides a

compact, interpretable supervisory layer that shapes
behaviour, enforces constraints, and accelerates learning
through informed priors.

A modular hybrid architecture combining actor-critic DRL
with a fuzzy reasoning module for adaptive decision making.

A training regime that interleaves end-to-end DRL updates
with fuzzy-rule parameter tuning using gradient-based and
rule-learning signals.

Experimental validation across three dynamic benchmarks

demonstrating improved robustness, interpretability, and
sample efficiency.

2. Problem Formulation

We consider an agent interacting with a stochastic environment modeled as a Markov Decision
Process (MDP) or partially observable MDP (POMDP): (&, .4, P, r, ), where & is the state space, 4

the action space, I? the transition dynamics, r the reward function, and + the discount factor.

The agent seeks a policy w(a|s; #) that maximizes expected return. In dynamic environments, the

transition dynamics £ and/or reward r may change over time. We augment the agent with a fuzzy

module I implementing a mapping from selected state features to action corrections or gating

signhals.

The hybrid decision at time £ is:

a; = g{“DI{L(5?}~f'-(@i’('?fj??-.‘i']]

where ¢ s;) are features input to the fuzzy module, & are DRL parameters, 1 are fuzzy parameters

{membership functions, rule consequents), and & is a fusion operator {e.g., additive correction,

multiplicative gating, or selector).
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Hybrid Framework Architecture

Overview:

The system consists of three main components:

e Perception & Representation: Encoders (CNNs, MLPs)
that transform raw observations into compact latent
vectors.

e DRL Core (Actor-Critic): A parameterized policy (actor)
and value estimator (critic) that produce candidate
actions and advantage estimates.

e Fuzzy Reasoning Module: A fuzzy inference system that
takes interpretable features and outputs action
adjustments, safety flags, or blending weights.

A fusion layer combines the actor output and fuzzy output
into the final executed action. Figure placeholders (e.g.,
Figure 1) indicate the architecture diagram.

Fuzzy
Reasoning

Dynamic
Environment

*  Additive Correction: a = @ ., + AF (&)

Critic —
Decision

Fuzzy Module Design

e Inputs: Selected low-dimensional features ¢(s)\phi(s)d(s)
such as distance-to-goal, relative velocity, resource
utilization, or environmental indicators (e.g., "high-
variance" flag).

o Fuzzy Variables & Membership Functions: For each
linguistic variable (e.g., "distance": {close, moderate,
far}), membership functions can be parameterized
(Gaussian, triangular, trapezoidal) and learned.

e Rule Base: Human-defined or initialized rules of the
form "IF distance is far AND drift is high THEN speed
correction = low".

e De-fuzzification: Weighted-average or
produce continuous corrections.

centroid to

The fuzzy module can operate in three roles:

e Advisory: Suggest additive or multiplicative corrections
to the actor action.

e Gating: Modulate the actor's action via a blending weight
between raw actor action and a safe action.

e Supervisory Safety Layer: Override actions that violate
safety constraints.

Fusion Strategies:

*  Multiplicative Scaling: @ = agetor & (1 + AF ()

*  Mixture-of-Experts (MoE): Elending weights & = o(F(¢)) and a = aaarer + (1 — a)afuz.y

The scalar A may be learned or scheduled.

Inference
Engine

Fuzzification

[ Ha(x) |/ Ha(x) )

L‘_fn;:_'.; - _l-j? + .lr:? ) L'J'r'g + - L'r'nfe'.rp

Learning and Optimization

Joint Training Objective

We train DRL parameters 0\ theta 8 with actor-critic
objectives (e.g., PPO clipped surrogate or SAC losses)
using actions produced after fusion. The fuzzy parameters
Y\ psiy are trained with a composite signal:

where [ f2] is expected return (gradient estimated via policy-gradient or critic signal

backpropagated through fusion path where differentiable), L., regularizes membership complexity,

and L., encourages concise rule cutputs (e.g., L1 sparsity on rules).

If the fuzzy module uses non-differentiable rule selection, we use policy gradient, REINFORCE-style

updates, or surrcgate continuous relaxations {e.g., Gumbel-Softmax) for end-to-end learning.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper ID: SR251006184000

DOI: https://dx.doi.org/10.21275/SR251006184000 426


http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Warm Start and Knowledge Injection

To improve sample efficiency, fuzzy rules and membership
functions can be initialized using expert knowledge or simple
heuristics. The DRL agent can be pre-trained in a simplified
environment, then fine-tuned with the fuzzy module active.

Safety and Constraint Enforcement

Hard constraints (e.g., never exceed acceleration limits,
minimum resource levels) are enforced via a supervisory
fuzzy rule set that can clip or replace actions when violations
are detected. This preserves safety even when DRL proposes
unsafe actions.

Algorithm (High-level)

Initialize DRL actor-critic networks with params 6
Initialize fuzzy module with params v (rule base R,
membership p)

for episode = 1-N do

s «— env. reset ()

fort=1-T do

z = encoder(s)

a_actor = actor (z; 0)

£= fuzzy(9(s); v)

a = fuse (a_actor, f)

s', r, done = env. step(a)

store transition (s, a, 1, s') s =s'

if training-step then

sample minibatch

update critic and actor 8 via RL loss using fused actions
update fuzzy y via composite loss (via gradient or policy-
gradient)

end

if done then break

end

end

Experimental Setup
Experimental Setup

Inputs Outputs

Benchmarks

We evaluate the hybrid framework on three classes of tasks

designed to probe adaptability:

e Dynamic Navigation: Continuous 2D navigation where
goals move and obstacles appear/disappear. Evaluation
metrics: success rate, time-to-goal, collisions.

e Resource Allocation: Simulated server cluster where
demand patterns shift (daily cycles, abrupt spikes).
Metrics: SLA violations, average latency, energy cost.

e Nonstationary Control: Classic control (inverted
pendulum / cart-pole, or vehicle steering) with slowly
drifting dynamics (mass, friction) and sudden
disturbances. Metrics: cumulative reward, failure rate.

Baselines and Ablations

e DRL-only agent (PPO or SAC) with same network
capacity.

o DRL + static rule-based controller (no learning in fuzzy
module).

e Hybrid with fuzzy advisory vs.
supervisory modes.

e Ablations removing membership-function learning or
removing warm-start.

fuzzy gating vs.

Implementation Details

e DRL: PPO for discrete/continuous hybrid tasks or SAC
for continuous control.

o Encoders: MLPs for low-dimensional features, CNNs for
image observations.

e Fuzzy module: Gaussian membership functions
parameterized by mean and variance; rules represented as
weighted consequents.

e Training: Adam optimizer, learning rates tuned per task,
batch size 64—2048 depending on task. Hyper parameters:
B,n,A\beta,\eta,\lambdap,n,A tuned via grid search.

3. Results

Comparative results table:
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Comparative Results Table

. DRL-Only Static Rule-Based Hybrid DRL + Fuzzy
Task / Metric (PPO/SAC) Controller (Advisory)
Dynamic Success Rate: Success Rate: Luccess Rate:
Mavigation T2%Collisions: 64%Collisions: 85%Collisions:
18%Avg. Time-to- 12%4vg. Time-to- ToAvg, Time-to-
Goal: 15.2s Goal: 18.7s Goal: 13.8s
Resource S5LA Violations: SLA Violations: 5LA Violations:
Allocation 21%Avg. Latency: 18%Avg. Latency: 9%4vg. Latency:
240msEnergy Cost: 260msEnergy Cost: 210msEnergy Costh:
High Medium Medium -Low
Nonstationary Failure Rate: Failure Rate: Failure Rate:
Control 28%Reward: 22%Reward: 12%Reward:
2800Recovery 2500Recovery Time: 3400Recovery Time:
Time: Slow Moderate Fast
Interpretability Very Low — no High — rules are Medium-High —

Hytrid DRL + Fuzzy
(Supervisory)

Success Rate:
82%Collisions
3%Avg. Time-to-
Goal: 14.55

5LA Violations:
11%Avg. Latency:
220msEnergy Cost:
Low

Failure Rate:
9%Reward:
3250Recovery
Tirme: Very Fast

High — sftrict rule-

human-readable predefined adaptive fuzzy rules based overrides
rules provide reasoning with clear
explanations
Sample 1.0x baseline 1.1 = baseline 1.5x baseline 1.3 baseline
Efficiency
Robustness to Medium — fails Medium-High — High - adapts well Very High — safety
Shift under abrupt shifis handles known with fuzzy priors owverrides prevent
patterns only failure
Graphs:
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Comparative Results

Latency, Reward, Efficiency

4. Conclusion and Future Work

This study introduced a hybrid Deep Reinforcement Learning
and Fuzzy Logic framework for adaptive decision making in
dynamic environments. By combining data-driven learning
with interpretable, rule-based reasoning, the approach
demonstrated improvements in safety, sample efficiency,
robustness, and explain ability compared to baseline DRL-
only and static rule-based systems. The hybrid design
leverages the strengths of actor-critic architectures for
representation learning while embedding fuzzy reasoning as
an adaptive supervisory layer, ensuring decisions remain safe
and interpretable under nonstationary conditions.

The results across navigation, resource allocation, and control
tasks confirm that the framework balances optimal
performance with safety guarantees. The advisory
configuration improves adaptability and efficiency, while the
supervisory configuration offers strong robustness and
minimal failures. Interpretability through fuzzy rules supports
debugging and human-in-the-loop interventions.

Future work will focus on extending the framework by:

1) Automatically extracting interpretable features from
latent DRL embedding’s.

2) Designing hierarchical fuzzy rule structures and pruning
mechanisms to reduce complexity.

3) Deploying the system in real-world domains such as
robotics, autonomous vehicles, and cloud resource
management.

4) Integrating formal verification and explainable Al
methods to strengthen safety assurances.

These directions will further enhance the reliability and

usability of hybrid intelligent agents in dynamic, uncertain
environments.
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