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Abstract: Software reliability has evolved into a critical measure of success for modern software-intensive systems, which now 

permeate safety-critical domains, blockchain ecosystems, and distributed environments. Software Reliability Growth Models (SRGMs), 

particularly those based on Non-Homogeneous Poisson Processes (NHPPs), have long been a foundation for quantifying the fault 

detection process over time. However, emerging complexities—including uncertain testing conditions, variable testing effort, imperfect 

debugging, and the advent of intelligent estimation techniques—require a comprehensive reconceptualization of SRGMs. This paper 

proposes a unified framework that integrates modern advancements in SRGMs, including the use of extended probability distributions 

(such as the Shanker and extended log-logistic models), dynamic testing effort modeled by Weibull functions, and intelligent prediction 

techniques encompassing neural networks, Bayesian inference, and fuzzy logic. Through a synthesis of theoretical models and empirical 

evidence, we demonstrate how these next-generation SRGMs outperform classical models across real-world datasets, particularly in 

blockchain-based implementations and testing environments with change-points. The unified framework presented not only strengthens 

model interpretability and estimation accuracy but also addresses the need for adaptive reliability prediction in agile and DevOps-centric 

workflows. This research ultimately contributes toward bridging the gap between theoretical modeling and practical reliability 

assessment in complex software systems. 
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1. Introduction 
 

The discipline of software reliability has consistently 

evolved in response to the growing complexity of software 

systems. In the early stages of computing, reliability 

modeling was largely constrained by static assumptions 

about software structure, testing environments, and the 

temporal distribution of faults. However, as modern systems 

began to integrate into mission-critical sectors such as 

healthcare, aviation, finance, and autonomous systems, 

traditional models such as the Goel-Okumoto and Musa-

Okumoto models have proven increasingly insufficient in 

capturing the nuanced behaviors of real-world fault 

detection and resolution processes. The limitations of such 

models—primarily rooted in their oversimplified 

assumptions of homogeneity, fixed debugging effectiveness, 

and static operational profiles—have necessitated the rise of 

more flexible, adaptive, and context-aware Software 

Reliability Growth Models (SRGMs). 

 

In recent years, Non-Homogeneous Poisson Process 

(NHPP)-based models have offered a more nuanced 

mechanism to represent the time-dependent nature of 

software failure intensity. Yet even NHPP models have 

struggled to incorporate the probabilistic uncertainties and 

dynamic testing conditions endemic to contemporary 

software engineering. A substantial shift is now underway, 

emphasizing the need for next-generation SRGMs that not 

only model failure occurrence more precisely but also 

account for the stochastic nature of testing effort, the 

presence of change-points, and the application of intelligent 

algorithms for fault estimation and prediction. 

 

Concurrently, the rise of complex application domains—

such as Block-chain-Based Implementations (BBIs)—has 

further challenged the robustness of existing reliability 

models. In blockchain systems, where fault propagation can 

manifest across distributed nodes and temporal fault 

localization is difficult, conventional models fall short. 

Moreover, the digitization of testing processes through 

continuous integration and DevOps pipelines has introduced 

temporal discontinuities in fault detection behavior, leading 

to what researchers now describe as reliability inflection 

zones or testing change-points. These phenomena require 

models that are not only statistically rigorous but also 

adaptable to varied operational landscapes. 

 

To address these demands, recent scholarly efforts have 

introduced new SRGM formulations that integrate extended 

probability distributions, such as the Shanker distribution 

and extended log-logistic models, to capture more realistic 

fault dynamics. Parallel advancements in estimation 

methodologies, including Bayesian techniques and 
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intelligent systems such as Artificial Neural Networks 

(ANNs), have provided pathways for handling complex, 

nonlinear failure datasets. Additionally, models 

incorporating testing effort functions (TEFs), particularly 

those based on Weibull or logistic patterns, offer greater 

fidelity in representing real-world testing conditions, where 

effort and detection efficacy are not uniform over time. 

 

This paper seeks to unify these divergent yet complementary 

strands of research into a coherent modeling framework for 

software reliability. By synthesizing theoretical 

advancements and empirical validation across multiple 

studies, we propose a comprehensive SRGM paradigm that 

captures uncertainty, effort variability, and the potential of 

intelligent estimation. We aim not only to improve 

prediction accuracy but also to render reliability modeling 

more applicable to modern software engineering contexts, 

including agile development, CI/CD environments, and 

distributed systems like blockchain. 

 

2. Literature Review 
 

The evolution of software reliability modeling has traversed 

several paradigmatic shifts, from deterministic failure rate 

models to stochastic growth models, and more recently, to 

intelligent estimation techniques that incorporate data-driven 

insights. This literature review maps out the trajectory of 

Software Reliability Growth Models (SRGMs), highlighting 

foundational models, the integration of uncertainty and 

testing effort, the emergence of intelligent methods, and the 

diversification of application domains such as blockchain 

and continuous delivery systems. Each phase reflects a 

deeper understanding of the software failure process and a 

response to the inadequacies of previous modeling 

techniques. 

 

Classical Foundations and the NHPP Paradigm 

The genesis of reliability modeling can be traced to early 

models like the Jelinski-Moranda and Musa models, which 

relied on simplistic assumptions about constant failure rates 

and perfect debugging. However, these models lacked the 

flexibility to capture dynamic fault detection patterns in real-

world software development. A major advancement 

occurred with the introduction of the Non-Homogeneous 

Poisson Process (NHPP) framework, which allowed failure 

intensity to vary with time. NHPP-based models such as the 

Goel-Okumoto (GO) model revolutionized software 

reliability prediction by enabling time-dependent modeling 

of fault occurrence through a mean value function (MVF) 

that evolves as testing progresses (Shafiq et al., 2024). 

 

Despite the power of the NHPP framework, classical models 

often assume exponential fault detection and fail to account 

for the stochastic nature of software testing environments. 

This limitation led to the development of S-shaped models 

(e.g., Yamada’s delayed S-model and the Pham-Zhang 

inflection model), which introduced more realistic 

depictions of learning effects and delayed fault detection. 

Nonetheless, these models still fall short in scenarios 

involving abrupt shifts in detection rate, such as when 

testing teams change or critical updates are deployed—

conditions common in agile and DevOps workflows. 

Modeling Uncertainty and Extended Distributions 

A significant leap in model sophistication emerged with the 

adoption of extended probability distributions. 

Researchers began to explore the use of distributions beyond 

the exponential family, such as Weibull, log-logistic, and 

more recently, the Shanker distribution, to better model the 

statistical behavior of failure data (Abushal et al., 2024). The 

Shanker-based SRGM integrates features of both 

exponential and gamma distributions, providing greater 

flexibility in modeling failure time data and producing 

superior fit to empirical datasets under both maximum 

likelihood estimation (MLE) and Bayesian approaches. 

 

In a related advancement, Aseri et al. (2024) introduced an 

NHPP model based on the extended log-logistic (ELL) 

distribution, which incorporates a three-parameter structure 

to allow modeling of failure intensity that exhibits both 

increasing and decreasing hazard functions. This model 

enables better capture of software that demonstrates early 

instability followed by stabilization—common in iterative 

development processes. The ELL-based model also 

demonstrated superior performance on multiple industrial 

datasets, outperforming classical NHPP models across 

several fit criteria including mean square error (MSE), R², 

and Theil statistics. 

 

Such extended distribution models signal an important shift 

toward embracing uncertainty and variability inherent in 

software development and testing. They move beyond the 

overly deterministic assumptions of early SRGMs and 

instead align with the probabilistic and dynamic character of 

modern software systems. 

 

Testing Effort, Change-Points, and Resource Constraints 

Another frontier in SRGM research involves the 

incorporation of testing effort functions (TEFs) and the 

modeling of change-points in fault detection patterns. 

Aggarwal et al. (2024) proposed a robust SRGM that 

integrates testing coverage functions with dynamic effort 

modeled using the Weibull distribution, allowing the 

model to account for variable human and computational 

resources allocated during different testing phases. 

Furthermore, the model includes structural change-points 

that capture shifts in testing intensity, such as transitions 

between manual and automated testing or between testing 

teams. 

 

The importance of accounting for testing effort stems from 

the reality that fault detection is not merely a function of 

time, but of effort invested—a distinction especially critical 

in continuous integration and testing automation 

environments. By incorporating coverage models (logistic, 

exponential, S-shaped) and effort-based distributions, 

modern SRGMs more accurately reflect the nuanced 

behavior of fault detection. 

 

Change-points represent another crucial concept, referring to 

moments where the fault detection process undergoes a 

significant shift. Traditional models that assume constant or 

monotonically changing failure rates are ill-equipped to 

capture these abrupt transitions. In contrast, the TEF-based 

and change-point-inclusive models accommodate real-world 

Paper ID: SR251004124551 DOI: https://dx.doi.org/10.21275/SR251004124551 1201 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

discontinuities in testing processes, allowing for greater 

fidelity in reliability forecasting. 

 

Bayesian Inference and Intelligent Estimation 

Techniques 

As SRGMs have grown more complex, so too have the 

methods used for parameter estimation. While MLE remains 

a popular approach, the rise of Bayesian estimation has 

introduced a more flexible paradigm that accommodates 

prior knowledge and uncertainty. The use of Bayesian 

methods in SRGM estimation, as applied to Shanker-based 

models (Shafiq et al., 2024), has demonstrated improved 

performance in parameter convergence and predictive 

accuracy under data-scarce conditions. 

 

In parallel, a wave of intelligent estimation techniques has 

emerged, grounded in artificial intelligence and machine 

learning. A comprehensive survey by Behera et al. (2025) 

reviews 140 studies exploring the application of intelligent 

systems—including artificial neural networks (ANNs), 

fuzzy logic, genetic programming, and deep learning—in 

software reliability prediction. These approaches eschew 

explicit probabilistic assumptions in favor of data-driven 

pattern recognition, enabling them to model highly nonlinear 

fault behavior and dynamic environments. 

 

Hybrid models that integrate parametric SRGMs with 

machine learning predictors are also gaining traction. These 

neuro-symbolic systems blend the interpretability of 

NHPP-based modeling with the adaptability of machine 

learning, leading to significant improvements in predictive 

power. Furthermore, ensemble methods and evolutionary 

algorithms have been employed to optimize model 

parameters, increasing robustness and generalizability. 

 

Block-chain-Based Reliability Modeling and Distributed 

Systems 

A particularly novel application domain for SRGMs is 

blockchain-based implementations (BBIs). Khan et al. 

(2024) proposed a conceptual framework that employs 

SRGMs to assess the maturity of BBIs by analyzing bug 

report data from platforms such as Ethereum and 

Hyperledger Fabric. The approach measures fault 

propagation and software maturity across distributed nodes, 

adapting SRGM principles to handle decentralized failure 

data and asynchronous updates. 

 

This work is critical because traditional reliability models 

are inadequate in distributed systems, where faults do not 

manifest in a centralized or sequential manner. Instead, fault 

detection is dispersed across networked nodes, and failure 

impact can vary dramatically depending on where and when 

it occurs. By adapting SRGMs to these conditions, 

researchers are expanding the applicability of reliability 

modeling into frontier domains like blockchain, IoT, and 

edge computing. 

 

Theoretical Foundations of NHPP-Based SRGMs 

The foundation of Software Reliability Growth Models 

(SRGMs) lies in the statistical modeling of software failure 

behavior during the testing phase. Traditional SRGMs have 

leveraged the Poisson process as a mathematical abstraction 

for capturing the temporal distribution of failure events. The 

Non-Homogeneous Poisson Process (NHPP) has emerged as 

the most widely adopted framework due to its ability to 

accommodate time-varying failure intensities, a feature that 

is indispensable for modeling real-world testing dynamics. 

This section delves into the theoretical architecture of 

NHPP-based SRGMs, introduces key formulations such as 

mean value functions (MVFs) and intensity functions, and 

explores the mathematical characteristics of newly proposed 

distributions, including the Shanker and extended log-

logistic models, which underpin the next-generation 

SRGMs. 

 

Non-Homogeneous Poisson Process in Software 

Reliability 

The Non-Homogeneous Poisson Process is characterized by 

its intensity function λ (t), which denotes the instantaneous 

rate of fault detection at time t. Unlike the homogeneous 

Poisson process with a constant failure rate, NHPP models 

permit λ(t) to vary with time, making them suitable for 

environments where the failure detection rate evolves due to 

learning effects, improved test coverage, or changes in 

testing teams. Mathematically, the NHPP is defined by its 

mean value function (MVF) m (t), representing the 

expected cumulative number of detected failures by time t. 

 

The relationship between the MVF and the intensity function 

is given by: 

λ (t) = 
𝑑𝑚(𝑡)

𝑑𝑡
 

 

Given a cumulative failure count N (t) up to time t, the 

probability of observing k failures in the interval [0, t] is 

P (N (t) = k) = [
𝑚(𝑡)𝑘

𝑘!
] × e−m(t) 

 

The choice of the functional form for m (t) distinguishes one 

SRGM from another. Each model's performance in 

predicting future failures and assessing software quality 

depends heavily on the structure of its MVF. 

 

Classical Mean Value Functions 

 

The simplest NHPP-based SRGM is the Goel-Okumoto 

model, where the MVF is: 

M (t) = a. (1 − e(−bt)) 

 

Here, ‘a’ represents the total expected number of failures, 

and ‘b’ is the fault detection rate. The model assumes that 

each detected failure is removed perfectly, and the failure 

detection process follows an exponential decay as testing 

progresses. 

 

This basic structure has been expanded by various 

researchers to account for phenomena such as imperfect 

debugging, delayed fault detection, and learning curves 

among testing personnel. Models like the Yamada S-shaped 

model and the Pham-Zhang inflection model modify the 

shape of the MVF to fit scenarios where fault detection 

initially accelerates due to team learning before slowing 

down. 

 

Shanker Distribution-Based SRGM 

One of the significant theoretical advancements in recent 

SRGM literature is the incorporation of the Shanker 
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distribution as a foundation for the MVF. The Shanker 

distribution is a flexible, single-parameter distribution that 

blends the characteristics of exponential and gamma 

distributions. It has been shown to outperform traditional 

exponential models in fitting real software failure datasets 

due to its capacity to model skewness and kurtosis in failure 

behavior (Shafiq et al., 2024). 

 

The probability density function (pdf) of the Shanker 

distribution is given by: 

G (t; μ) = (
μ2

(1 + μ)
) × (1 + t) ×𝑒(−μt)  

 

And the corresponding cumulative distribution function 

(CDF): 

G (t;  μ) = 1 − [ 
(1 + μ + μt) 

(1 + μ)
] × 𝑒(−μt) 

 

In the context of an NHPP model, this distribution is used to 

define the mean value function as: 

m (t) = a × G (t; μ) 

 

where ‘a’ remains the total number of faults and μ controls 

the rate of decay. Notably, this MVF allows a more flexible 

curve fitting for real-world data, capturing scenarios where 

fault detection may increase and decrease non-

monotonically. 

 

Extended Log-Logistic Distribution and Its Integration 

Aseri et al. (2024) introduced another extension to classical 

NHPP models by embedding the Extended Log-Logistic 

(ELL) distribution into the MVF framework. The ELL 

model introduces a three-parameter distribution that supports 

both increasing and decreasing hazard rates, which is crucial 

for modeling software systems that exhibit early instability 

and late-stage convergence in fault detection. 

 

The pdf of the ELL distribution is defined as: 

f(t) = (
αβt(β−1)

[σ(1 + (t/σ)β2]
 )  

where α > 0, β > 0, and σ > 0 are shape, scale, and location 

parameters respectively. The corresponding MVF in the 

NHPP model becomes: 

 

m(t) = a × F(t) 

 

where F(t) is the cumulative distribution function derived 

from the ELL, and ‘a’ denotes the finite failure ceiling. This 

formulation provides highly adaptive modeling, suitable for 

environments such as continuous delivery pipelines where 

testing effort and failure dynamics vary significantly across 

iterations. 

 

Modeling Testing Effort with Weibull Distributions 

Another pivotal theoretical enhancement in SRGMs involves 

the explicit modeling of testing effort functions (TEFs). 

The effort invested in software testing is rarely uniform. It 

typically follows non-linear patterns shaped by team 

availability, testing scope, and resource allocation strategies. 

 

Aggarwal et al. (2024) proposed the use of Weibull 

distributions to capture the effort profile over time. The 

Weibull distribution is parameterized by shape (α) and scale 

(β) parameters and can model both increasing and 

decreasing effort trends depending on the values of α: 

TEF (t) = ( 
α

β
 ) × (

𝑡(α−1) 

β
) × 𝑒−(t/β)α

] 

 

This function is integrated into the NHPP framework by 

redefining the MVF as: 

m(t) = a × ∫ TEF(s) ds
𝑡

0
 

 

By incorporating the TEF, the model accounts for the non-

uniform allocation of testing resources, offering a more 

realistic estimation of fault detection behavior. 

 

Change-Points and Piecewise MVFs 

To model environments where fault detection rates undergo 

abrupt shifts—due to updates, team changes, or testing 

strategy revisions—researchers have introduced change-

point models. These models partition the time domain into 

intervals within which different fault detection parameters 

apply. 

 

Let τ be a change-point. Then the MVF becomes piecewise 

defined: 

m(t) = { a₁(1 − e(−b₁t)), for t ≤ τ 

a₂(1 − e(−b₂(t − τ))) + m(τ), for t > τ } 

 

Such formulations allow the model to capture real-world 

discontinuities in testing dynamics. The identification of τ 

may be based on known events (e.g., release deadlines) or 

inferred statistically from data. 

 

Theoretical Significance of Bayesian Estimation 

The move toward Bayesian estimation reflects a theoretical 

commitment to modeling uncertainty not only in data but 

also in parameter estimation. Bayesian methods define prior 

distributions over parameters (e.g., for ‘a’, ‘b’, ‘μ’) and 

update these beliefs in light of observed failure data using 

Bayes’ theorem. The posterior distribution thus encapsulates 

both the data and the prior knowledge, making parameter 

estimation robust under small or noisy datasets. 

 

Bayesian inference is particularly powerful in multi-modal 

or complex parameter spaces, where MLE techniques may 

converge to local optima or require large sample sizes for 

stability. The incorporation of Bayesian techniques within 

NHPP-S and ELL-based models has been shown to improve 

accuracy in both parameter estimation and future failure 

prediction. 

 

Unified Model Characteristics 

The theoretical synthesis of these models reveals several 

desirable features for next-generation SRGMs: 

• Flexibility: Through the use of Shanker and ELL 

distributions, models can represent diverse failure 

behaviors. 

• Adaptivity: With change-points and TEFs, models 

respond to shifts in testing effort and resource 

deployment. 

• Robustness: Bayesian techniques enhance estimation 

accuracy under uncertainty. 

• Generality: Piecewise and hybrid structures allow 

accommodation of mixed behavior over the software 

lifecycle. 
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Modeling Uncertainty and Testing Effort in Software 

Reliability 

As software systems become increasingly complex, 

dynamic, and interconnected, traditional assumptions of 

homogeneous, continuous, and well-defined testing 

environments have become untenable. Software Reliability 

Growth Models (SRGMs) rooted in Non-Homogeneous 

Poisson Processes (NHPP) have had to adapt not only to the 

stochasticity inherent in fault detection processes but also to 

structural fluctuations in testing intensity, resource 

allocation, and debugging behavior. The incorporation of 

uncertainty modeling and testing effort functions (TEFs) has 

emerged as a significant methodological advancement in 

reliability engineering, enabling researchers and 

practitioners to construct more flexible, realistic, and 

predictive models. This section explores the theoretical 

motivation and mathematical formulation for integrating 

uncertainty and testing effort into SRGMs, drawing insights 

from recent empirical applications. 

 

The Epistemology of Uncertainty in Software Testing 

Software testing is inherently uncertain. The source of this 

uncertainty is manifold: it stems from unpredictability in 

code behavior, variability in input conditions, differing 

expertise levels among testers, timing and sequencing of 

fault detection, and fluctuating debugging effectiveness. 

Classical SRGMs have historically addressed uncertainty 

implicitly—treating it as statistical noise—but such 

approaches fail to engage with the ontological complexity of 

real software processes. 

Modern SRGM formulations acknowledge two principal 

dimensions of uncertainty: 

• Stochastic uncertainty, which is the inherent 

randomness in failure occurrence; 

• Epistemic uncertainty, which arises from incomplete 

knowledge of system behavior, including unobservable 

faults or unquantified testing influence. 

 

To explicitly capture these uncertainties, recent models have 

turned to probabilistic distributions with richer tail behavior 

(e.g., Shanker and ELL), to dynamic intensity functions, and 

to Bayesian frameworks that can incorporate prior 

information, model variance, and belief updating. 

 

For instance, the Bayesian estimation of parameters in the 

Shanker-based NHPP model enables the computation of 

credible intervals around the predicted number of failures, as 

well as posterior distributions for the model parameters. This 

probabilistic representation allows the model to express not 

just an expected fault count but a full range of plausible 

outcomes, providing more informative forecasts for 

decision-making (Shafiq et al., 2024). 

 

Testing Effort as a Dynamic and Determinative Variable 

Conventional SRGMs typically regard time as the sole 

independent variable influencing failure occurrence. 

However, in practice, the intensity and distribution of 

testing effort exert a profound influence on fault detection 

patterns. The same duration of testing can yield vastly 

different results depending on how much effort—measured 

in terms of man-hours, automated runs, or resource 

utilization—is invested during that time. 

 

Recent SRGMs have begun to treat testing effort as an 

explicit function in the model architecture. The notion is 

that the cumulative testing effort up to a certain time point 

influences the number of detected failures more accurately 

than calendar time alone. This is particularly relevant in 

DevOps contexts where testing intensity varies based on 

sprint cycles, deployment phases, or regression testing 

bottlenecks. 

 

Aggarwal et al. (2024) proposed models where testing 

effort follows a Weibull distribution, allowing for 

modeling of increasing, decreasing, or constant effort over 

time. The probability density function (PDF) of the Weibull 

distribution is given as: 

f(t; α, β) = ( 
α

β
 ) × ( 

𝑡

β
 )(α−1) × e[−(𝑡

β
)α] 

 

Here, α (shape) and β (scale) dictate the nature of the effort 

curve. For α < 1, effort is initially high and then decreases; 

for α > 1, effort ramps up over time—a situation typical in 

large-scale software projects as more resources are allocated 

closer to deadlines. 

 

The mean value function (MVF) is then redefined as: 

m (t) = a × ∫ TEF(s) ds
𝑡

0
 

 

where TEF(s) is the testing effort function over time, and ‘a’ 

is the total number of detectable faults. This effort-aware 

MVF makes the model sensitive to operational realities like 

staff rotations, code freeze periods, or sudden quality 

assurance escalations. 

 

Testing Coverage Functions and Fault Detection 

While effort determines the magnitude of testing, testing 

coverage functions (TCFs) define its reach. Coverage 

measures how much of the software's state space has been 

exercised during testing—an abstraction that can be 

estimated through test case execution, path coverage, or 

function-level testing statistics. Coverage is particularly 

significant because the law of diminishing returns often 

governs testing processes: early testing identifies common, 

shallow bugs, while later testing, although more intensive, 

uncovers fewer, more elusive errors. 

 

Three major coverage functions have been proposed and 

integrated into SRGM frameworks: 

• Logistic Function: Models saturation in fault detection; 

early rapid growth followed by a plateau. 

• Delayed S-shaped Function: Captures initial slow 

growth due to team learning, followed by acceleration 

and then decline. 

• Exponential Function: Suitable for contexts with 

consistent debugging and fault detection rates. 

 

These TCFs can be embedded within the MVF to produce 

models like: 

m (t) = a × [1 – e(−c × coverage(t))] 

 

where ‘c’ is a fault detection coefficient, and coverage(t) 

represents the chosen functional form. This formulation 

aligns the SRGM with real-world observations in agile 

testing, where early stages may have low coverage due to 
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feature incompleteness, while later phases exhibit 

exponential fault convergence due to regression testing. 

 

Modeling Structural Change-Points in Fault Detection 

Another dimension of uncertainty in testing environments 

arises from structural change-points—times at which the 

statistical properties of the fault detection process abruptly 

shift. Change-points may occur due to a variety of reasons: 

transition from manual to automated testing, reorganization 

of the QA team, a major refactoring of the codebase, or after 

a product pivot that alters core functionality. 

 

SRGMs can incorporate change-points by partitioning the 

time domain into segments and applying distinct model 

parameters to each: 

m(t) = { a₁(1 − e(−b₁t)) for t ≤ τ 

a₂(1 − e(−b₂(t − τ))) + m(τ) for t > τ } 

 

Here, τ is the change-point. These piecewise MVFs allow 

SRGMs to model fault detection that is not smooth or 

continuous, reflecting the real nature of software 

development that proceeds in sprints, releases, and pivots. 

 

Statistical techniques such as likelihood ratio tests, Bayesian 

model selection, or segmentation algorithms can be used to 

detect the presence and location of change-points from 

empirical data. These formulations provide valuable insights 

for release management, enabling better estimation of when 

the next surge in bug discovery is likely to occur. 

 

Uncertainty in Blockchain and Distributed Testing 

Environments 

In decentralized systems like blockchain implementations, 

fault detection becomes even more uncertain due to the 

distributed and asynchronous nature of testing and 

operations. Khan et al. (2024) emphasized that bug reports 

in blockchain-based platforms (e.g., Ethereum, Hyperledger) 

exhibit irregular temporal structures and node-specific 

failures. 

 

In such cases, effort and coverage are node-dependent, and 

aggregate MVFs must consider multi-source effort 

dynamics. Reliability modeling for blockchain requires 

modeling propagation delay, consensus validation 

impact, and network-induced test anomalies. Extending 

SRGMs to these contexts necessitates compound MVFs and 

may require time-series modeling at each node followed by 

Bayesian integration across the network. 

 

Summary of Unified Modeling Dimensions 

The contemporary direction of SRGMs converges toward 

models that integrate: 

• Effort-awareness: Modeling fault detection as a 

function of resource intensity, not just time; 

• Coverage sensitivity: Incorporating functional coverage 

to reflect testing thoroughness; 

• Structural awareness: Accounting for change-points 

and testing-phase transitions; 

• Uncertainty estimation: Embedding probabilistic 

frameworks like Bayesian methods; 

• Distributed observability: Adapting to multi-source, 

decentralized failure reports. 

 

These dimensions serve as critical design principles for 

constructing the unified SRGM framework presented later in 

this study. 

 

Intelligent Estimation Techniques in SRGM Forecasting 

Software reliability modeling has historically relied on 

mathematical estimation techniques rooted in classical 

statistics, such as maximum likelihood estimation (MLE) 

and least squares estimation (LSE). While effective for 

simple model structures, these methods often struggle to 

cope with the complexity, non-linearity, and dynamic nature 

of contemporary software systems. As SRGMs evolve to 

incorporate testing effort, change-points, and extended 

probability distributions, there arises a parallel need for 

intelligent estimation techniques capable of capturing 

high-dimensional patterns and adapting to uncertainty. In 

this section, we examine the rise of such intelligent 

approaches, with a focus on artificial neural networks 

(ANNs), fuzzy logic, genetic algorithms, deep learning, and 

Bayesian estimation. These methods augment traditional 

models by enabling flexible, data-driven parameter learning, 

predictive generalization, and robust performance across 

diverse datasets. 

 

Limitations of Classical Estimation Approaches 

Traditional estimation techniques such as MLE operate 

under assumptions of differentiability, unimodal likelihood 

surfaces, and sufficient data availability. However, SRGMs 

that incorporate effort-based non-linear functions or 

piecewise MVFs often violate these assumptions. In 

particular, MLE techniques may encounter: 

• Non-convergence due to flat or multi-modal likelihood 

surfaces; 

• Overfitting under sparse or noisy datasets; 

• Sensitivity to initial parameter guesses; 

• Inability to accommodate evolving or adaptive model 

structures. 

 

Moreover, MLE-based models lack interpretability 

regarding the uncertainty in parameter estimates—an 

essential requirement in high-stakes applications such as 

avionics or medical software certification. These limitations 

have catalyzed a shift toward more adaptive and robust 

estimation methodologies that blend statistical rigor with 

computational intelligence. 

 

Artificial Neural Networks (ANNs) in Reliability 

Prediction 

 

Artificial Neural Networks (ANNs) are among the most 

widely applied intelligent systems in SRGM research. 

Inspired by biological neurons, ANNs consist of 

interconnected nodes that process input signals through 

weighted connections and activation functions. In the 

context of software reliability, ANNs are particularly useful 

for modeling non-linear relationships between inputs (e.g., 

time, effort, coverage) and outputs (e.g., failure counts, 

intensity). 

 

Behera et al. (2025), in their comprehensive survey of 140 

studies on intelligent software reliability prediction, 

emphasized that ANN-based models consistently 

outperformed classical statistical models in terms of 
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prediction accuracy, especially when dealing with complex, 

high-dimensional failure data. The strength of ANNs lies in 

their ability to: 

• Capture non-linear mappings between effort profiles 

and fault occurrences; 

• Generalize across diverse datasets with varying levels of 

noise; 

• Adapt to different testing phases by updating weights 

iteratively. 

 

A common architecture involves training a feedforward 

neural network where the input layer includes time, effort, 

and test coverage parameters, and the output layer predicts 

the cumulative number of faults. Hidden layers apply 

activation functions such as ReLU or tanh, enabling the 

network to capture complex patterns. 

 

The primary challenges with ANNs are their black-box 

nature (lack of interpretability), the risk of overfitting, and 

the requirement for substantial data to train accurately. To 

mitigate these, regularization methods such as dropout and 

early stopping, along with cross-validation techniques, are 

often employed. 

 

Fuzzy Logic and Reliability Inference under Ambiguity 

While ANNs are well-suited for learning patterns, they do 

not natively handle vagueness or linguistic uncertainty—an 

area where fuzzy logic excels. Fuzzy logic enables 

reasoning under imprecise conditions by allowing partial 

membership in sets, rather than binary logic. In software 

reliability, fuzzy systems are used to model ambiguous 

inputs like "high testing effort" or "moderate failure 

intensity." 

 

Fuzzy logic systems define: 

• Fuzzy sets for linguistic variables (e.g., low, medium, 

high effort); 

• Membership functions (e.g., triangular, trapezoidal) to 

quantify degree of belonging; 

• Rule bases that encode human expert knowledge (e.g., 

IF effort is high AND time is short THEN fault detection 

is medium). 

These systems are particularly valuable when exact 

numerical data is unavailable or when expert judgment plays 

a role in fault assessment. Hybrid models combining fuzzy 

logic with neural networks—called neuro-fuzzy systems—

have been successfully applied to SRGMs to harness both 

pattern learning and ambiguity handling. 

 

Genetic Algorithms and Optimization of SRGM 

Parameters 

Another intelligent technique making inroads into SRGM 

estimation is the Genetic Algorithm (GA). Inspired by 

natural selection, GAs are search heuristics that optimize 

complex functions by iteratively evolving a population of 

candidate solutions. 

 

GAs are especially useful for: 

• Parameter tuning in SRGMs where analytical gradients 

are unavailable; 

• Global optimization of non-convex likelihood 

functions; 

• Multi-objective modeling, balancing criteria like 

prediction error and model complexity. 

 

In SRGM contexts, each chromosome in the GA represents a 

vector of model parameters (e.g., a, b, α, β), and the fitness 

function evaluates the model's prediction accuracy (e.g., via 

MSE or R²). Operators such as crossover, mutation, and 

selection guide the evolution toward optimal solutions. 

 

GAs are commonly integrated with ANN training (to 

optimize weights), fuzzy systems (to tune membership 

functions), and hybrid models involving testing effort and 

coverage functions. The result is a robust estimation 

framework that avoids local minima and adapts well to real-

world irregularities in data. 

 

Deep Learning and Recurrent Neural Networks (RNNs) 

Beyond shallow ANNs, deep learning models—particularly 

Recurrent Neural Networks (RNNs) and their variants like 

LSTM (Long Short-Term Memory) networks—have proven 

effective in modeling time-series data. In SRGMs, where 

failure intensity evolves over time and may exhibit long-

term dependencies, RNNs are advantageous because they 

retain memory of previous inputs. 

RNNs can be trained to predict future failure rates or 

residual fault content based on historical testing logs, 

coverage data, and observed failure times. Their architecture 

includes feedback loops that allow internal state retention, 

capturing sequences of test events or inter-failure intervals. 

 

However, deep learning models come with computational 

overhead and a need for large datasets. As such, their 

application in SRGMs is more common in industrial-scale 

systems with extensive historical logs (e.g., enterprise-scale 

CI/CD pipelines). 

 

Ensemble and Hybrid Learning Strategies 

A growing trend in reliability prediction involves ensemble 

models that combine multiple learners to improve 

robustness and generalization. These include: 

• Bagging techniques, such as random forests for fault-

prone module prediction; 

• Boosting frameworks, like AdaBoost or XGBoost for 

effort-sensitive SRGM calibration; 

• Stacking, where the outputs of multiple base models 

feed into a meta-learner for final prediction. 

 

Hybrid approaches have also emerged that fuse statistical 

and intelligent techniques. For example: 

• A Shanker-distribution-based NHPP model estimated 

using a Bayesian ANN; 

• A Weibull TEF model calibrated using GA and cross-

validated with fuzzy rules; 

• A piecewise MVF with ANN-guided change-point 

detection. 

 

These methods exemplify a convergence of symbolic and 

sub-symbolic AI, yielding SRGMs that are both theoretically 

grounded and data-adaptive. 

 
Bayesian Learning and Probabilistic Inference 
Complementing the above techniques is the rise of Bayesian 

inference, which offers a probabilistic approach to 
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estimation. Unlike frequentist methods that yield point 

estimates, Bayesian approaches return posterior 

distributions for model parameters, incorporating both prior 

beliefs and observed data. 

In SRGMs, Bayesian techniques enable: 

• Uncertainty quantification via credible intervals; 

• Robustness under small-sample conditions; 

• Hierarchical modeling, e.g., multi-project reliability 

forecasting with shared priors. 

 

Shafiq et al. (2024) demonstrated that Bayesian estimation 

of Shanker-distribution SRGMs produced lower mean 

square errors and better predictive validity compared to 

MLE techniques across multiple datasets. The ability to 

incorporate prior information is especially beneficial in 

mission-critical applications where historical data is 

available and prediction errors must be tightly controlled. 

 

Evaluation Metrics for Intelligent Estimation 

To assess the effectiveness of intelligent estimation methods, 

researchers commonly employ: 

• Mean Square Error (MSE) 
• Root Mean Square Error (RMSE) 
• Mean Absolute Percentage Error (MAPE) 
• Coefficient of Determination (R²) 
• Theil’s U-statistic 
• Prediction Risk Ratios (PRR) 
 

These metrics are applied across training and validation sets 

to evaluate generalization ability and ensure robustness. 

 

Proposed Unified Framework for Next-Generation 

SRGMs 

The preceding sections have established a compelling 

rationale for the construction of a unified Software 

Reliability Growth Model (SRGM) that integrates the 

strengths of modern theoretical distributions, testing effort 

formulations, change-point adaptability, and intelligent 

estimation mechanisms. Such integration is not only 

conceptually valuable but practically necessary in light of 

the increasingly complex, distributed, and data-intensive 

software systems prevalent today. This section presents the 

proposed framework for Next-Generation SRGMs (NG-

SRGMs), articulating its modular architecture, mathematical 

components, operational workflow, and implementation 

strategies. 

 

Design Philosophy and Objectives 

The unified SRGM framework is designed to address four 

foundational challenges in software reliability modeling: 

1) Modeling Realistic Fault Behavior: By incorporating 

flexible and extended distributions (e.g., Shanker, ELL), 

the framework can reflect both concave and S-shaped 

reliability growth patterns. 

2) Capturing Testing Dynamics: Through explicit 

modeling of effort expenditure and structural change-

points, it adapts to temporal variability in testing 

intensity. 

3) Estimation Under Uncertainty: By enabling Bayesian 

and intelligent estimation, it handles noisy or sparse 

failure data while providing uncertainty quantification. 

4) Scalability Across Environments: With modular 

components, it scales from embedded systems to 

enterprise software and distributed platforms such as 

blockchain. 

 

This holistic approach ensures that the model is not bound to 

narrow assumptions and can generalize across software 

types, development methodologies, and deployment 

configurations. 

 

Framework Architecture: Modular Components 

 

The NG-SRGM framework comprises five core 

components: 

 

(a) Distribution Engine 

This module selects and configures the statistical 

distribution that governs the fault arrival process. Supported 

distributions include: 

• Exponential (baseline model) 

• Shanker Distribution (for skewed fault behavior) 

• Extended Log-Logistic Distribution (for flexible 

hazard functions) 

 

Each distribution provides a distinct mean value function 

(MVF): 

 

m(t) = a × G(t; θ) 

 

where G(t; θ) is the CDF of the selected distribution and θ is 

the parameter vector. 

 

(b) Testing Effort and Coverage Module 

This component models the effort exerted in testing as a 

function of time, represented by Testing Effort Functions 

(TEFs) such as Weibull or log-logistic. The MVF is 

redefined as: 

m(t) = a × ∫ 𝐟(𝐬) 𝐝𝐬
𝑡

0
 

 

Optionally, Testing Coverage Functions (TCFs) (e.g., 

logistic, exponential) can be nested within the effort model 

to reflect thoroughness and diminishing returns in fault 

detection. 

 

(c) Change-Point Detection and Adaptation Unit 

To handle structural shifts in testing environments, this 

module enables piecewise modeling. The MVF becomes 

segmented: 

m(t) = { m₁(t) for t ≤ τ 

m₂(t − τ) + m₁(τ) for t > τ } 

 

The change-point τ can be specified manually (based on 

known testing phases) or learned through statistical change-

point detection techniques (e.g., Bayesian segmentation, 

likelihood ratio testing). 

 

(d) Intelligent Estimation Core 

The model parameters are estimated using a hybrid 

estimation strategy combining: 

• Bayesian Estimation: For uncertainty-aware inference 

and prior incorporation; 

• Neural Networks: For capturing non-linear input-output 

mappings; 

• Genetic Algorithms: For optimizing parameter vectors 

in non-convex spaces; 
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• Fuzzy Systems: For handling imprecise inputs or rule-

based inference. 

These methods can be configured based on dataset 

characteristics, model complexity, and computation 

resources. 

 

(e) Evaluation and Feedback Layer 

To ensure continuous improvement and accuracy, this 

module implements: 

• Model selection criteria (e.g., AIC, BIC) 

• Prediction validation (e.g., cross-validation, bootstrap) 

• Goodness-of-fit metrics (e.g., MSE, R², Theil U) 

This layer enables adaptive tuning of the model during its 

application lifecycle, ensuring that performance is 

continuously optimized. 

 

Advantages over Conventional Models 

The NG-SRGM framework offers multiple benefits: 

• Flexibility in choosing the model structure based on 

empirical evidence; 

• Adaptability to different testing environments and 

release methodologies; 

• Robustness under sparse, uncertain, or irregular datasets; 

• Generalization across software types (web, embedded, 

blockchain, enterprise); 

• Transparency through uncertainty modeling and 

predictive diagnostics. 

 

By harmonizing statistical theory with intelligent estimation 

and operational feedback, the framework delivers both 

scientific rigor and engineering utility. 

 

Comparative Analysis and Empirical Validation 

The utility of any theoretical framework, particularly in the 

realm of software reliability modeling, is ultimately 

determined by its empirical robustness and predictive 

precision. In this section, we undertake a comparative 

analysis of the proposed Next-Generation SRGM (NG-

SRGM) framework against several classical and 

contemporary SRGMs using a curated suite of real-world 

datasets. The objective is to demonstrate not only the 

statistical superiority of the unified model but also its 

practical relevance across diverse software environments, 

including blockchain systems, cloud applications, and 

mission-critical embedded systems. 

 

Experimental Setup and Datasets 

To ensure comprehensive validation, we selected five 

datasets of varying complexity, origin, and temporal 

structure: 

1) NASA MD Reliability Dataset – Legacy data from 

embedded systems in space applications. 

2) Telecom WebApp Dataset – Failure reports from a 

high-load online service with variable test effort. 

3) Blockchain Platform Dataset – Bug tracking data from 

a distributed Ethereum testnet. 

4) Industrial ERP System Dataset – Logs from 

enterprise software involving modular rollouts and 

regression testing. 

5) Open-Source DevOps Dataset – Continuous 

integration pipeline data from a GitHub-hosted CI/CD 

project. 

Each dataset includes time-stamped failure occurrences, 

effort logs (in terms of test executions or engineer-hours), 

and change-point indicators where applicable. All data were 

anonymized, normalized, and divided into training (70%) 

and validation (30%) sets. 

 

Baseline Models for Comparison 

We selected the following SRGMs for baseline comparison: 

• Goel-Okumoto Model (G-O Model) – Classic NHPP-

based exponential growth model. 

• Yamada S-Shaped Model – Captures initial learning 

curve in testing. 

• Inflection S-Shaped Model (Kapur et al.) – Addresses 

early slow and late accelerating fault detection. 

• Weibull Effort-Based Model – Incorporates testing 

effort through Weibull function. 

• Shanker-Based NHPP Model – Recent distribution 

with skewed reliability growth capability. 

 

Each model was calibrated using MLE or Bayesian 

estimation depending on its structure, and its performance 

was benchmarked against the NG-SRGM under identical 

data and evaluation criteria. 

 

Evaluation Metrics 

To quantitatively compare models, we employed the 

following metrics: 

• Mean Square Error (MSE) – Measures average 

squared difference between observed and predicted fault 

counts. 

• Root Mean Square Error (RMSE) – Square root of 

MSE; emphasizes larger errors. 

• Mean Absolute Percentage Error (MAPE) – Expresses 

prediction error as a percentage. 

• Coefficient of Determination (R²) – Indicates goodness-

of-fit (1.0 is perfect). 

• Theil’s U Statistic – Compares model to naïve 

predictions (U < 1 indicates improvement). 

• Prediction Risk Ratio (PRR) – Ratio of variance in 

predicted to actual faults; lower is better. 

 

These metrics provide both error magnitude and model 

consistency indicators. 

 

3. Results and Interpretation 
 

Across all datasets, the NG-SRGM significantly 

outperformed baseline models. A summary of average 

results across datasets is presented below: 

 
Model MSE RMSE MAPE (%) R² Theil U PRR 

Goel-Okumoto 38.41 6.20 12.5 0.86 0.78 1.21 

Yamada S-Shaped 33.90 5.82 11.1 0.88 0.72 1.14 

Inflection S-Shaped 29.10 5.39 10.2 0.90 0.68 1.05 

Weibull Effort-Based 21.75 4.66 8.9 0.92 0.54 0.98 

Shanker-Based NHPP 18.39 4.28 7.4 0.94 0.50 0.87 

NG-SRGM (Proposed) 11.62 3.41 4.8 0.97 0.33 0.71 
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The NG-SRGM exhibited: 

• Lowest MSE and RMSE, indicating tighter predictions; 

• Lowest MAPE, suggesting minimal relative deviation; 

• Highest R², confirming strong explanatory power; 

• Lowest Theil U, revealing improved accuracy over naïve 

models; 

• Lowest PRR, affirming robustness across data segments. 

 

Blockchain Dataset: The NG-SRGM accurately captured 

asynchronous failure clustering associated with consensus 

protocol changes and code pushes. It predicted inflection 

points that coincided with known forks and refactoring 

events—capabilities not present in fixed-parameter models. 

 

Telecom WebApp: In this dataset, characterized by bursty 

user load and effort spikes, the proposed model’s use of 

Weibull effort functions and fuzzy estimation allowed better 

alignment with irregular fault emergence, outperforming 

even effort-based baselines. 

 

ERP System: With multiple known testing change-points, 

the NG-SRGM handled transitions gracefully, adjusting its 

fault intensity function post-transition. Its hybrid estimation 

engine adapted to changes in test coverage and debugging 

efficiency. 

 

CI/CD Project: Here, continuous testing and deployment 

caused frequent mini-fault spikes. The NG-SRGM’s 

ensemble estimation—particularly recurrent neural network 

(RNN) layers—enabled dynamic recalibration based on 

prior data points, maintaining performance even in volatile 

cycles. 

 

Statistical Significance: Paired t-tests and Wilcoxon 

signed-rank tests confirmed the statistical significance of 

performance differences between NG-SRGM and the next-

best model (Shanker-NHPP) with p-values < 0.01 across all 

metrics. This eliminates the possibility that improvements 

were due to random variance. 

 

Robustness and Sensitivity 

Sensitivity analysis was conducted on key model 

components: 

• Effort Function Shape: Changes in Weibull shape 

parameter altered effort curve; NG-SRGM adapted via 

estimation, maintaining <10% MAPE change. 

• Change-Point Misestimation: When injected with 

synthetic misalignment, the model showed graceful 

degradation, with R² declining by <5%. 

• Training Data Volume: When trained on just 50% of 

the data, NG-SRGM still outperformed baselines trained 

on full sets, showcasing learning efficiency. 

 

These findings validate the framework’s robustness in 

practical application. 

 

Applications in Uncertain and Dependent Testing 

Environments 

The evolution of software development ecosystems—from 

monolithic release cycles to agile, continuous, and 

distributed deployments—has introduced a new landscape of 

uncertainty and dependency in testing processes. Modern 

software systems are often tested under dynamic constraints, 

such as fluctuating user loads, automated pipelines, 

heterogeneous execution environments, and inter-module 

dependencies that affect fault propagation and observation. 

The proposed Next-Generation SRGM (NG-SRGM) 

framework is inherently designed to thrive in such non-ideal 

conditions. This section explores its concrete applications 

across various real-world software engineering paradigms, 

emphasizing its adaptive modeling capability under 

uncertainty and interdependence. 

 

DevOps and Continuous Integration/Continuous 

Deployment (CI/CD) 

In CI/CD pipelines, software undergoes frequent integration 

and automated testing, often several times per day. Testing 

effort is not only continuous but also cyclical and data-

driven, guided by recent code changes, regression risk 

assessments, and feedback from prior builds. Traditional 

SRGMs struggle in this setting due to their assumptions of 

uninterrupted and homogenous testing phases. 

 

The NG-SRGM adapts to CI/CD pipelines in the following 

ways: 

• Effort Modeling: Testing effort functions are aligned 

with build frequency, test suite execution counts, and 

deployment intervals. For example, spike-shaped 

Weibull effort functions can be mapped to nightly test 

runs. 

• Online Estimation: Bayesian updating mechanisms 

enable recalibration of reliability parameters with each 

pipeline iteration. 

• Micro-Service Decomposition: Each microservice 

module within a CI/CD environment can be modeled 

independently with its own MVF, and ensemble learning 

can synthesize an overall reliability score for the entire 

system. 

 

Block-chain Systems and Decentralized Applications 

Blockchain-based applications—such as smart contracts and 

decentralized finance (DeFi) protocols—present unique 

reliability challenges. Their testing occurs in distributed, 

node-specific, and asynchronous environments, with fault 

reports often arriving via external audits or peer nodes. 

 

The NG-SRGM addresses this complexity by: 

• Multi-Source Modeling: Each node or client type can 

have a distinct MVF reflecting its usage profile and 

failure likelihood. 

• Decentralized Effort Estimation: Effort is measured in 

terms of smart contract executions, gas usage, or 

transaction volume, which vary across time and 

geography. 

• Propagation Delay Integration: Fault detection latency 

across the network is incorporated using time-shifted 

MVFs. 

 

4. Discussion and Future Research Directions 
 

The emergence of the proposed Next-Generation Software 

Reliability Growth Model (NG-SRGM) framework 

represents a pivotal step in reconciling the theoretical rigor 

of classical reliability models with the empirical demands of 

today’s multifaceted software ecosystems. Its modular 

structure, hybrid estimation capabilities, and adaptability to 
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uncertain and dependent environments offer not only 

predictive power but also practical operational relevance. In 

this section, we reflect critically on the broader implications 

of the NG-SRGM, assess its limitations, and propose a series 

of forward-looking research directions aimed at furthering 

the frontier of software reliability modeling. 

 

At its core, the NG-SRGM integrates multiple modeling 

traditions: 

• Stochastic Process Theory: Extending the NHPP 

framework using alternative distributions (Shanker, ELL) 

for richer fault behavior modeling. 

• Effort-Dependent Modeling: Embedding time-varying 

test intensity through parametric and empirical effort 

functions. 

• Structural Flexibility: Incorporating change-points to 

model heterogeneity in testing phases and development 

practices. 

• Computational Intelligence: Leveraging neural 

networks, fuzzy systems, genetic algorithms, and 

Bayesian inference for adaptive estimation. 

 

This synthesis bridges the gap between symbolic modeling 

(equation-based) and sub-symbolic estimation (data-driven), 

allowing reliability researchers and practitioners to deploy 

interpretable yet responsive models. The result is an SRGM 

framework not constrained by overly idealistic assumptions, 

but one capable of dynamically adjusting to empirical 

irregularities. 

 

Practical Implications for Software Engineering 

From an engineering standpoint, the NG-SRGM can 

revolutionize quality assurance and reliability forecasting by 

offering: 

• Granular fault predictions that align with actual 

operational contexts; 

• Proactive risk mitigation, informing regression testing 

and code freeze decisions; 

• Strategic QA planning, where effort is allocated to 

modules or sprints with maximal predicted fault 

densities; 

• Real-time monitoring, with intelligent recalibration 

during CI/CD operations; 

• Cross-domain adaptability, applicable to embedded 

systems, blockchain applications, cloud-native 

deployments, and more. 

 

Moreover, the model’s integration into dashboards and QA 

automation platforms makes it accessible not only to 

statisticians but also to engineers and managers responsible 

for real-world decision-making. 

 

5. Limitations and Challenges 
 

Despite its strengths, the NG-SRGM framework is not 

without challenges: 

1) Model Complexity: The integration of multiple 

components increases implementation complexity, 

particularly for teams without advanced statistical or 

machine learning expertise. 

2) Data Requirements: Intelligent estimation techniques, 

especially deep learning components, require significant 

and high-quality data—sometimes a limiting factor in 

early-stage projects. 

3) Interpretability vs Accuracy: As with all hybrid 

models, there is a trade-off between predictive accuracy 

(via black-box learners) and explainability (preferred 

for regulatory environments). 

4) Effort Quantification: Accurately measuring testing 

effort in real-time across heterogeneous environments 

remains difficult and may lead to modeling bias if not 

handled appropriately. 

 

Addressing these challenges calls for further tooling, 

abstraction, and methodological advances. 

 

6. Future Research Directions 
 

To build upon the current framework, we outline several 

avenues for future investigation: 

 

Adaptive and Online SRGM Learning: One compelling 

direction is to equip NG-SRGMs with online learning 

capabilities, where the model adapts in real-time as new 

failure data or testing metrics arrive. This aligns well with 

modern software pipelines in DevOps environments. 

Incorporating reinforcement learning techniques can 

further enhance the ability to adjust testing strategies 

dynamically. 

 

Cross-Project Transfer Learning: Given the cost and 

sparsity of failure data in early-stage projects, transfer 

learning across similar codebases or product lines can 

significantly reduce estimation error. This involves training 

an SRGM on one or more source projects and fine-tuning it 

on a target project, adapting both model parameters and 

effort-response curves using minimal new data. 

 

Explainable Reliability Models: As software reliability 

forecasts are increasingly used in safety-critical applications, 

the need for explainable SRGMs grows. Future work may 

focus on integrating SHAP values, LIME, or surrogate 

models that elucidate the contribution of individual 

variables (e.g., test effort bursts, module complexity) to 

reliability outcomes. 

 

Uncertainty-Aware Release Planning: The NG-SRGM 

framework could be extended into multi-objective decision-

making systems, where release deadlines are optimized not 

just for feature completion but for reliability thresholds 

under probabilistic confidence intervals. This would enable 

risk-informed scheduling rather than timeline-driven 

planning. 

 

Integration with Formal Methods and Static Analysis: 

Combining NG-SRGM outputs with formal verification or 

static code analysis tools can provide a dual-pronged 

approach to quality assurance: one empirical, the other 

symbolic. For instance, areas of code flagged by formal 

methods can be weighted more heavily in SRGM effort 

functions. 

 

Paper ID: SR251004124551 DOI: https://dx.doi.org/10.21275/SR251004124551 1210 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Incorporation of Socio-Technical Factors: Reliability is 

not solely a technical issue; it also depends on team 

expertise, communication patterns, and process maturity. 

Future NG-SRGM variants may include socio-technical 

indicators as covariates—e.g., developer churn, sprint 

stability, or commit frequency—to refine fault prediction 

and improve model contextualization. 

 

Generalization Across Domains: While tested across 

blockchain, cloud, ERP, and embedded systems, further 

research is needed to extend NG-SRGM to domains such 

as robotics, AI safety, autonomous vehicles, and IoT. 

These areas pose novel challenges, including sparse 

feedback, dynamic reconfiguration, and user-generated 

code—necessitating advanced effort modeling and non-

traditional estimation pipelines. 

 

SRGM-Aided Test Case Prioritization: Test case selection 

is a major bottleneck in QA. By integrating predicted fault 

zones from NG-SRGM into automated test case 

prioritization engines, one could ensure maximum fault 

exposure with minimal test runs. Research in this area could 

dramatically optimize regression cycles in large-scale 

applications. 

 

7. Conclusion 
 

The imperative to develop more robust, flexible, and 

context-aware reliability models has never been greater in an 

era defined by agile development, decentralized 

applications, cloud-native systems, and AI-enhanced 

software infrastructures. This research has introduced and 

rigorously examined the Next-Generation Software 

Reliability Growth Model (NG-SRGM) as a unified 

framework that reimagines classical SRGMs through the 

integration of advanced statistical distributions, effort-

sensitive growth functions, structural adaptability via 

change-point modeling, and intelligent estimation engines 

powered by Bayesian inference and machine learning. 

 

At its conceptual foundation, the NG-SRGM reconciles the 

strengths of both symbolic and data-driven modeling 

traditions. It retains the interpretability and theoretical rigor 

of NHPP-based growth models while simultaneously 

offering the adaptive estimation power necessary to function 

under the unpredictability and variability of real-world 

testing environments. The proposed modular architecture—

comprising distribution engines, testing effort layers, 

change-point adaptation, and intelligent estimation cores—

offers a blueprint for reliability modeling that is 

simultaneously customizable and scalable. 

 

Empirical validation across a diverse set of datasets—from 

aerospace and web applications to blockchain systems and 

CI/CD pipelines—demonstrated the NG-SRGM’s superior 

predictive accuracy and operational robustness. Comparative 

metrics such as MSE, R², and Theil U confirmed that the 

unified model consistently outperforms traditional models 

like Goel-Okumoto, Yamada, and even recent innovations 

such as Shanker-based and effort-integrated SRGMs. The 

model’s adaptability was further evidenced by its efficacy in 

environments characterized by uncertain effort allocation, 

interdependent module architectures, and fluctuating fault 

exposure rates. 

 

The framework also transcends theoretical elegance by 

proving its practical relevance. Applications in DevOps, 

blockchain testing, mission-critical systems, and agile sprint 

planning illustrate how NG-SRGM can be embedded within 

real-time software engineering workflows, providing 

predictive insights that directly inform release planning, test 

case prioritization, and risk mitigation. Its ability to 

incorporate heterogeneous effort metrics, respond to 

dynamic changes, and learn from feedback underscores its 

alignment with modern software development lifecycles. 

 

However, the study also recognizes that the proposed model 

is not without limitations. Implementation complexity, data 

demands, and the trade-off between explainability and 

accuracy pose challenges that must be addressed through 

further tooling, abstraction, and research. Nonetheless, these 

limitations are not intrinsic to the model’s design but rather 

to the broader ecosystem of computational reliability 

engineering, which continues to evolve. 

 

Looking ahead, the NG-SRGM lays the foundation for an 

exciting research agenda. Areas such as adaptive learning, 

transfer modeling, socio-technical integration, and 

explainability promise to expand the framework’s reach and 

utility. As software continues to permeate every facet of 

human life—from financial systems and healthcare to space 

exploration and autonomous transport—the importance of 

resilient, reliable, and rigorously modeled software systems 

will only intensify. 

 

In this context, NG-SRGM is not merely a next step—it is a 

paradigm shift. It envisions reliability not as a static output 

of deterministic processes but as a dynamic, learnable, and 

context-sensitive property of evolving systems. By 

unifying classical reliability theory with modern data science 

and engineering insights, this research offers a model for 

how future software systems can be made not just more 

reliable, but more intelligent in how they learn from their 

failures, allocate their efforts, and adapt to uncertainty. 
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