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Abstract: Software reliability has evolved into a critical measure of success for modern software-intensive systems, which now
permeate safety-critical domains, blockchain ecosystems, and distributed environments. Software Reliability Growth Models (SRGMs),
particularly those based on Non-Homogeneous Poisson Processes (NHPPs), have long been a foundation for quantifying the fault
detection process over time. However, emerging complexities—including uncertain testing conditions, variable testing effort, imperfect
debugging, and the advent of intelligent estimation techniques—require a comprehensive reconceptualization of SRGMs. This paper
proposes a unified framework that integrates modern advancements in SRGMs, including the use of extended probability distributions
(such as the Shanker and extended log-logistic models), dynamic testing effort modeled by Weibull functions, and intelligent prediction
techniques encompassing neural networks, Bayesian inference, and fuzzy logic. Through a synthesis of theoretical models and empirical
evidence, we demonstrate how these next-generation SRGMs outperform classical models across real-world datasets, particularly in
blockchain-based implementations and testing environments with change-points. The unified framework presented not only strengthens
model interpretability and estimation accuracy but also addresses the need for adaptive reliability prediction in agile and DevOps-centric
workflows. This research ultimately contributes toward bridging the gap between theoretical modeling and practical reliability
assessment in complex software systems.
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software engineering. A substantial shift is now underway,
emphasizing the need for next-generation SRGMs that not
only model failure occurrence more precisely but also
account for the stochastic nature of testing effort, the
presence of change-points, and the application of intelligent
algorithms for fault estimation and prediction.

1. Introduction

The discipline of software reliability has consistently
evolved in response to the growing complexity of software
systems. In the early stages of computing, reliability
modeling was largely constrained by static assumptions
about software structure, testing environments, and the
temporal distribution of faults. However, as modern systems
began to integrate into mission-critical sectors such as
healthcare, aviation, finance, and autonomous systems,
traditional models such as the Goel-Okumoto and Musa-
Okumoto models have proven increasingly insufficient in
capturing the nuanced behaviors of real-world fault
detection and resolution processes. The limitations of such
models—primarily  rooted in their oversimplified
assumptions of homogeneity, fixed debugging effectiveness,

Concurrently, the rise of complex application domains—
such as Block-chain-Based Implementations (BBIs)—has
further challenged the robustness of existing reliability
models. In blockchain systems, where fault propagation can
manifest across distributed nodes and temporal fault
localization is difficult, conventional models fall short.
Moreover, the digitization of testing processes through
continuous integration and DevOps pipelines has introduced
temporal discontinuities in fault detection behavior, leading

and static operational profiles—have necessitated the rise of
more flexible, adaptive, and context-aware Software
Reliability Growth Models (SRGMs).

In recent years, Non-Homogeneous Poisson Process
(NHPP)-based models have offered a more nuanced
mechanism to represent the time-dependent nature of
software failure intensity. Yet even NHPP models have
struggled to incorporate the probabilistic uncertainties and
dynamic testing conditions endemic to contemporary

to what researchers now describe as reliability inflection
zones or testing change-points. These phenomena require
models that are not only statistically rigorous but also
adaptable to varied operational landscapes.

To address these demands, recent scholarly efforts have
introduced new SRGM formulations that integrate extended
probability distributions, such as the Shanker distribution
and extended log-logistic models, to capture more realistic
fault dynamics. Parallel advancements in estimation
methodologies, including Bayesian techniques and
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intelligent systems such as Artificial Neural Networks
(ANNs), have provided pathways for handling complex,
nonlinear  failure  datasets. = Additionally, = models
incorporating testing effort functions (TEFs), particularly
those based on Weibull or logistic patterns, offer greater
fidelity in representing real-world testing conditions, where
effort and detection efficacy are not uniform over time.

This paper seeks to unify these divergent yet complementary
strands of research into a coherent modeling framework for
software  reliability. By  synthesizing theoretical
advancements and empirical validation across multiple
studies, we propose a comprehensive SRGM paradigm that
captures uncertainty, effort variability, and the potential of
intelligent estimation. We aim not only to improve
prediction accuracy but also to render reliability modeling
more applicable to modern software engineering contexts,
including agile development, CI/CD environments, and
distributed systems like blockchain.

2. Literature Review

The evolution of software reliability modeling has traversed
several paradigmatic shifts, from deterministic failure rate
models to stochastic growth models, and more recently, to
intelligent estimation techniques that incorporate data-driven
insights. This literature review maps out the trajectory of
Software Reliability Growth Models (SRGMs), highlighting
foundational models, the integration of uncertainty and
testing effort, the emergence of intelligent methods, and the
diversification of application domains such as blockchain
and continuous delivery systems. Each phase reflects a
deeper understanding of the software failure process and a
response to the inadequacies of previous modeling
techniques.

Classical Foundations and the NHPP Paradigm

The genesis of reliability modeling can be traced to early
models like the Jelinski-Moranda and Musa models, which
relied on simplistic assumptions about constant failure rates
and perfect debugging. However, these models lacked the
flexibility to capture dynamic fault detection patterns in real-
world software development. A major advancement
occurred with the introduction of the Non-Homogeneous
Poisson Process (NHPP) framework, which allowed failure
intensity to vary with time. NHPP-based models such as the
Goel-Okumoto (GO) model revolutionized software
reliability prediction by enabling time-dependent modeling
of fault occurrence through a mean value function (MVF)
that evolves as testing progresses (Shafiq et al., 2024).

Despite the power of the NHPP framework, classical models
often assume exponential fault detection and fail to account
for the stochastic nature of software testing environments.
This limitation led to the development of S-shaped models
(e.g., Yamada’s delayed S-model and the Pham-Zhang
inflection model), which introduced more realistic
depictions of learning effects and delayed fault detection.
Nonetheless, these models still fall short in scenarios
involving abrupt shifts in detection rate, such as when
testing teams change or critical updates are deployed—
conditions common in agile and DevOps workflows.

Modeling Uncertainty and Extended Distributions

A significant leap in model sophistication emerged with the
adoption of extended probability distributions.
Researchers began to explore the use of distributions beyond
the exponential family, such as Weibull, log-logistic, and
more recently, the Shanker distribution, to better model the
statistical behavior of failure data (Abushal et al., 2024). The
Shanker-based SRGM integrates features of both
exponential and gamma distributions, providing greater
flexibility in modeling failure time data and producing
superior fit to empirical datasets under both maximum
likelihood estimation (MLE) and Bayesian approaches.

In a related advancement, Aseri et al. (2024) introduced an
NHPP model based on the extended log-logistic (ELL)
distribution, which incorporates a three-parameter structure
to allow modeling of failure intensity that exhibits both
increasing and decreasing hazard functions. This model
enables better capture of software that demonstrates early
instability followed by stabilization—common in iterative
development processes. The ELL-based model also
demonstrated superior performance on multiple industrial
datasets, outperforming classical NHPP models across
several fit criteria including mean square error (MSE), R?,
and Theil statistics.

Such extended distribution models signal an important shift
toward embracing uncertainty and variability inherent in
software development and testing. They move beyond the
overly deterministic assumptions of early SRGMs and
instead align with the probabilistic and dynamic character of
modern software systems.

Testing Effort, Change-Points, and Resource Constraints
Another frontier in SRGM research involves the
incorporation of testing effort functions (TEFs) and the
modeling of change-points in fault detection patterns.
Aggarwal et al. (2024) proposed a robust SRGM that
integrates testing coverage functions with dynamic effort
modeled using the Weibull distribution, allowing the
model to account for variable human and computational
resources allocated during different testing phases.
Furthermore, the model includes structural change-points
that capture shifts in testing intensity, such as transitions
between manual and automated testing or between testing
teams.

The importance of accounting for testing effort stems from
the reality that fault detection is not merely a function of
time, but of effort invested—a distinction especially critical
in continuous integration and testing automation
environments. By incorporating coverage models (logistic,
exponential, S-shaped) and effort-based distributions,
modern SRGMs more accurately reflect the nuanced
behavior of fault detection.

Change-points represent another crucial concept, referring to
moments where the fault detection process undergoes a
significant shift. Traditional models that assume constant or
monotonically changing failure rates are ill-equipped to
capture these abrupt transitions. In contrast, the TEF-based
and change-point-inclusive models accommodate real-world
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discontinuities in testing processes, allowing for greater
fidelity in reliability forecasting.

Bayesian  Inference and Estimation
Techniques

As SRGMs have grown more complex, so too have the
methods used for parameter estimation. While MLE remains
a popular approach, the rise of Bayesian estimation has
introduced a more flexible paradigm that accommodates
prior knowledge and uncertainty. The use of Bayesian
methods in SRGM estimation, as applied to Shanker-based
models (Shafiq et al., 2024), has demonstrated improved
performance in parameter convergence and predictive
accuracy under data-scarce conditions.

Intelligent

In parallel, a wave of intelligent estimation techniques has
emerged, grounded in artificial intelligence and machine
learning. A comprehensive survey by Behera et al. (2025)
reviews 140 studies exploring the application of intelligent
systems—including artificial neural networks (ANNS),
fuzzy logic, genetic programming, and deep learning—in
software reliability prediction. These approaches eschew
explicit probabilistic assumptions in favor of data-driven
pattern recognition, enabling them to model highly nonlinear
fault behavior and dynamic environments.

Hybrid models that integrate parametric SRGMs with
machine learning predictors are also gaining traction. These
neuro-symbolic systems blend the interpretability of
NHPP-based modeling with the adaptability of machine
learning, leading to significant improvements in predictive
power. Furthermore, ensemble methods and evolutionary
algorithms have been employed to optimize model
parameters, increasing robustness and generalizability.

Block-chain-Based Reliability Modeling and Distributed
Systems

A particularly novel application domain for SRGMs is
blockchain-based implementations (BBIs). Khan et al.
(2024) proposed a conceptual framework that employs
SRGMs to assess the maturity of BBIs by analyzing bug
report data from platforms such as Ethereum and
Hyperledger Fabric. The approach measures fault
propagation and software maturity across distributed nodes,
adapting SRGM principles to handle decentralized failure
data and asynchronous updates.

This work is critical because traditional reliability models
are inadequate in distributed systems, where faults do not
manifest in a centralized or sequential manner. Instead, fault
detection is dispersed across networked nodes, and failure
impact can vary dramatically depending on where and when
it occurs. By adapting SRGMs to these conditions,
researchers are expanding the applicability of reliability
modeling into frontier domains like blockchain, IoT, and
edge computing.

Theoretical Foundations of NHPP-Based SRGMs

The foundation of Software Reliability Growth Models
(SRGMs) lies in the statistical modeling of software failure
behavior during the testing phase. Traditional SRGMs have
leveraged the Poisson process as a mathematical abstraction
for capturing the temporal distribution of failure events. The

Non-Homogeneous Poisson Process (NHPP) has emerged as
the most widely adopted framework due to its ability to
accommodate time-varying failure intensities, a feature that
is indispensable for modeling real-world testing dynamics.
This section delves into the theoretical architecture of
NHPP-based SRGMs, introduces key formulations such as
mean value functions (MVFs) and intensity functions, and
explores the mathematical characteristics of newly proposed
distributions, including the Shanker and extended log-
logistic models, which underpin the next-generation
SRGMs.
Non-Homogeneous Poisson Process in Software
Reliability

The Non-Homogeneous Poisson Process is characterized by
its intensity function A (t), which denotes the instantaneous
rate of fault detection at time t. Unlike the homogeneous
Poisson process with a constant failure rate, NHPP models
permit A(t) to vary with time, making them suitable for
environments where the failure detection rate evolves due to
learning effects, improved test coverage, or changes in
testing teams. Mathematically, the NHPP is defined by its
mean value function (MVF) m (t), representing the
expected cumulative number of detected failures by time t.

The relationship between the MVF and the intensity function
is given by:
am(t)

dat

() =

Given a cumulative failure count N (t) up to time t, the
probability of observing k failures in the interval [0, t] is
m(t)k

PN () =k)=[——]xem™"

The choice of the functional form for m (t) distinguishes one
SRGM from another. Each model's performance in
predicting future failures and assessing software quality
depends heavily on the structure of its MVF.

Classical Mean Value Functions

The simplest NHPP-based SRGM is the Goel-Okumoto
model, where the MVF is:
M (t) =a. (1 — (™)

Here, ‘a’ represents the total expected number of failures,
and ‘b’ is the fault detection rate. The model assumes that
each detected failure is removed perfectly, and the failure
detection process follows an exponential decay as testing
progresses.

This basic structure has been expanded by various
researchers to account for phenomena such as imperfect
debugging, delayed fault detection, and learning curves
among testing personnel. Models like the Yamada S-shaped
model and the Pham-Zhang inflection model modify the
shape of the MVF to fit scenarios where fault detection
initially accelerates due to team learning before slowing
down.

Shanker Distribution-Based SRGM
One of the significant theoretical advancements in recent
SRGM literature is the incorporation of the Shanker
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distribution as a foundation for the MVF. The Shanker
distribution is a flexible, single-parameter distribution that
blends the -characteristics of exponential and gamma
distributions. It has been shown to outperform traditional
exponential models in fitting real software failure datasets
due to its capacity to model skewness and kurtosis in failure
behavior (Shafiq et al., 2024).

The probability density function (pdf) of the Shanker
distribution is given by:

w2
G (5 W)= (i) = (1 +9 xeHO

And the corresponding cumulative distribution function
(CDF):

. _q_r@+p+py (—ut)
Gt w=1-[=~1xe

In the context of an NHPP model, this distribution is used to
define the mean value function as:
m(t)=axG(tp

where ‘a’ remains the total number of faults and p controls
the rate of decay. Notably, this MVF allows a more flexible
curve fitting for real-world data, capturing scenarios where
fault detection may increase and decrease non-
monotonically.

Extended Log-Logistic Distribution and Its Integration
Aseri et al. (2024) introduced another extension to classical
NHPP models by embedding the Extended Log-Logistic
(ELL) distribution into the MVF framework. The ELL
model introduces a three-parameter distribution that supports
both increasing and decreasing hazard rates, which is crucial
for modeling software systems that exhibit early instability
and late-stage convergence in fault detection.

The pdf of the ELL distribution is defined as:
=By
 Mo(1+ (t/0)B?]
where o> 0, > 0, and o > 0 are shape, scale, and location
parameters respectively. The corresponding MVF in the
NHPP model becomes:

m(t) =a x F(t)

where F(t) is the cumulative distribution function derived
from the ELL, and ‘a’ denotes the finite failure ceiling. This
formulation provides highly adaptive modeling, suitable for
environments such as continuous delivery pipelines where
testing effort and failure dynamics vary significantly across
iterations.

Modeling Testing Effort with Weibull Distributions

Another pivotal theoretical enhancement in SRGMs involves
the explicit modeling of testing effort functions (TEFs).
The effort invested in software testing is rarely uniform. It
typically follows non-linear patterns shaped by team
availability, testing scope, and resource allocation strategies.

Aggarwal et al. (2024) proposed the use of Weibull
distributions to capture the effort profile over time. The
Weibull distribution is parameterized by shape (o) and scale

(B) parameters and can model both increasing and
decreasing effort trends depending on the values of a:

(a-1) a
TEF (0:(%) x (t ; ) X e~ (t/B) ]

This function is integrated into the NHPP framework by
redefining the MVF as:

m(t) = a x [, TEF(s) ds

By incorporating the TEF, the model accounts for the non-
uniform allocation of testing resources, offering a more
realistic estimation of fault detection behavior.

Change-Points and Piecewise MVFs

To model environments where fault detection rates undergo
abrupt shifts—due to updates, team changes, or testing
strategy revisions—researchers have introduced change-
point models. These models partition the time domain into
intervals within which different fault detection parameters

apply.

Let T be a change-point. Then the MVF becomes piecewise
defined:
m(t) ={a;(1—e™Y), fort<rt
a(1 — e~ D) + m(1), for t > 1}

Such formulations allow the model to capture real-world
discontinuities in testing dynamics. The identification of t©
may be based on known events (e.g., release deadlines) or
inferred statistically from data.

Theoretical Significance of Bayesian Estimation

The move toward Bayesian estimation reflects a theoretical
commitment to modeling uncertainty not only in data but
also in parameter estimation. Bayesian methods define prior
distributions over parameters (e.g., for ‘a’, ‘b’, ‘p’) and
update these beliefs in light of observed failure data using
Bayes’ theorem. The posterior distribution thus encapsulates
both the data and the prior knowledge, making parameter
estimation robust under small or noisy datasets.

Bayesian inference is particularly powerful in multi-modal
or complex parameter spaces, where MLE techniques may
converge to local optima or require large sample sizes for
stability. The incorporation of Bayesian techniques within
NHPP-S and ELL-based models has been shown to improve
accuracy in both parameter estimation and future failure
prediction.

Unified Model Characteristics

The theoretical synthesis of these models reveals several

desirable features for next-generation SRGMs:

o Flexibility: Through the use of Shanker and ELL
distributions, models can represent diverse failure
behaviors.

e Adaptivity: With change-points and TEFs, models
respond to shifts in testing effort and resource
deployment.

« Robustness: Bayesian techniques enhance estimation
accuracy under uncertainty.

e Generality: Piecewise and hybrid structures allow
accommodation of mixed behavior over the software
lifecycle.
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Modeling Uncertainty and Testing Effort in Software
Reliability

As software systems become increasingly complex,
dynamic, and interconnected, traditional assumptions of
homogeneous, continuous, and well-defined testing
environments have become untenable. Software Reliability
Growth Models (SRGMs) rooted in Non-Homogeneous
Poisson Processes (NHPP) have had to adapt not only to the
stochasticity inherent in fault detection processes but also to
structural  fluctuations in testing intensity, resource
allocation, and debugging behavior. The incorporation of
uncertainty modeling and testing effort functions (TEFs) has
emerged as a significant methodological advancement in
reliability  engineering, enabling researchers  and
practitioners to construct more flexible, realistic, and
predictive models. This section explores the theoretical
motivation and mathematical formulation for integrating
uncertainty and testing effort into SRGMs, drawing insights
from recent empirical applications.

The Epistemology of Uncertainty in Software Testing
Software testing is inherently uncertain. The source of this
uncertainty is manifold: it stems from unpredictability in
code behavior, variability in input conditions, differing
expertise levels among testers, timing and sequencing of
fault detection, and fluctuating debugging effectiveness.
Classical SRGMs have historically addressed uncertainty
implicitly—treating it as statistical noise—but such
approaches fail to engage with the ontological complexity of
real software processes.
Modern SRGM formulations acknowledge two principal
dimensions of uncertainty:
e Stochastic uncertainty, which is the inherent
randomness in failure occurrence;
« Epistemic uncertainty, which arises from incomplete
knowledge of system behavior, including unobservable
faults or unquantified testing influence.

To explicitly capture these uncertainties, recent models have
turned to probabilistic distributions with richer tail behavior
(e.g., Shanker and ELL), to dynamic intensity functions, and
to Bayesian frameworks that can incorporate prior
information, model variance, and belief updating.

For instance, the Bayesian estimation of parameters in the
Shanker-based NHPP model enables the computation of
credible intervals around the predicted number of failures, as
well as posterior distributions for the model parameters. This
probabilistic representation allows the model to express not
just an expected fault count but a full range of plausible
outcomes, providing more informative forecasts for
decision-making (Shafiq et al., 2024).

Testing Effort as a Dynamic and Determinative Variable
Conventional SRGMs typically regard time as the sole
independent variable influencing failure occurrence.
However, in practice, the intensity and distribution of
testing effort exert a profound influence on fault detection
patterns. The same duration of testing can yield vastly
different results depending on how much effort—measured
in terms of man-hours, automated runs, or resource
utilization—is invested during that time.

Recent SRGMs have begun to treat testing effort as an
explicit function in the model architecture. The notion is
that the cumulative testing effort up to a certain time point
influences the number of detected failures more accurately
than calendar time alone. This is particularly relevant in
DevOps contexts where testing intensity varies based on
sprint cycles, deployment phases, or regression testing
bottlenecks.

Aggarwal et al. (2024) proposed models where testing
effort follows a Weibull distribution, allowing for
modeling of increasing, decreasing, or constant effort over
time. The probability density function (PDF) of the Weibull
distribution is given as:

ft; 0, B) = (5) x () x e

Here, a (shape) and  (scale) dictate the nature of the effort
curve. For a < 1, effort is initially high and then decreases;
for a > 1, effort ramps up over time—a situation typical in
large-scale software projects as more resources are allocated
closer to deadlines.

The mean value function (MVF) is then redefined as:
m (t) = a x [; TEF(s) ds

where TEF(s) is the testing effort function over time, and ‘a’
is the total number of detectable faults. This effort-aware
MVF makes the model sensitive to operational realities like
staff rotations, code freeze periods, or sudden quality
assurance escalations.

Testing Coverage Functions and Fault Detection

While effort determines the magnitude of testing, testing
coverage functions (TCFs) define its reach. Coverage
measures how much of the software's state space has been
exercised during testing—an abstraction that can be
estimated through test case execution, path coverage, or
function-level testing statistics. Coverage is particularly
significant because the law of diminishing returns often
governs testing processes: early testing identifies common,
shallow bugs, while later testing, although more intensive,
uncovers fewer, more elusive errors.

Three major coverage functions have been proposed and

integrated into SRGM frameworks:

e Logistic Function: Models saturation in fault detection;
early rapid growth followed by a plateau.

o Delayed S-shaped Function: Captures initial slow
growth due to team learning, followed by acceleration
and then decline.

o Exponential Function: Suitable for contexts with
consistent debugging and fault detection rates.

These TCFs can be embedded within the MVF to produce
models like:
m (t) =g X [1 _ e(—c x coverage(t))]

where ‘c’ is a fault detection coefficient, and coverage(t)
represents the chosen functional form. This formulation
aligns the SRGM with real-world observations in agile
testing, where early stages may have low coverage due to
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feature incompleteness, while later phases exhibit
exponential fault convergence due to regression testing.

Modeling Structural Change-Points in Fault Detection
Another dimension of uncertainty in testing environments
arises from structural change-points—times at which the
statistical properties of the fault detection process abruptly
shift. Change-points may occur due to a variety of reasons:
transition from manual to automated testing, reorganization
of the QA team, a major refactoring of the codebase, or after
a product pivot that alters core functionality.

SRGMs can incorporate change-points by partitioning the
time domain into segments and applying distinct model
parameters to each:
m(t) = {ai(1 —e™Y) fort<nt
ax(1 — e~ D) + m(t) for t > 1}

Here, t is the change-point. These piecewise MVFs allow
SRGMs to model fault detection that is not smooth or
continuous, reflecting the real nature of software
development that proceeds in sprints, releases, and pivots.

Statistical techniques such as likelihood ratio tests, Bayesian
model selection, or segmentation algorithms can be used to
detect the presence and location of change-points from
empirical data. These formulations provide valuable insights
for release management, enabling better estimation of when
the next surge in bug discovery is likely to occur.

Uncertainty in Blockchain and Distributed Testing
Environments

In decentralized systems like blockchain implementations,
fault detection becomes even more uncertain due to the
distributed and asynchronous nature of testing and
operations. Khan et al. (2024) emphasized that bug reports
in blockchain-based platforms (e.g., Ethereum, Hyperledger)
exhibit irregular temporal structures and node-specific
failures.

In such cases, effort and coverage are node-dependent, and
aggregate MVFs must consider multi-source effort
dynamics. Reliability modeling for blockchain requires
modeling propagation delay, consensus validation
impact, and network-induced test anomalies. Extending
SRGMs to these contexts necessitates compound MVFs and
may require time-series modeling at each node followed by
Bayesian integration across the network.

Summary of Unified Modeling Dimensions

The contemporary direction of SRGMs converges toward

models that integrate:

o Effort-awareness: Modeling fault detection as a
function of resource intensity, not just time;

o Coverage sensitivity: Incorporating functional coverage
to reflect testing thoroughness;

o Structural awareness: Accounting for change-points
and testing-phase transitions;

o Uncertainty estimation: Embedding probabilistic
frameworks like Bayesian methods;

o Distributed observability: Adapting to multi-source,
decentralized failure reports.

These dimensions serve as critical design principles for
constructing the unified SRGM framework presented later in
this study.

Intelligent Estimation Techniques in SRGM Forecasting
Software reliability modeling has historically relied on
mathematical estimation techniques rooted in classical
statistics, such as maximum likelihood estimation (MLE)
and least squares estimation (LSE). While effective for
simple model structures, these methods often struggle to
cope with the complexity, non-linearity, and dynamic nature
of contemporary software systems. As SRGMs evolve to
incorporate testing effort, change-points, and extended
probability distributions, there arises a parallel need for
intelligent estimation techniques capable of capturing
high-dimensional patterns and adapting to uncertainty. In
this section, we examine the rise of such intelligent
approaches, with a focus on artificial neural networks
(ANNS), fuzzy logic, genetic algorithms, deep learning, and
Bayesian estimation. These methods augment traditional
models by enabling flexible, data-driven parameter learning,
predictive generalization, and robust performance across
diverse datasets.

Limitations of Classical Estimation Approaches

Traditional estimation techniques such as MLE operate

under assumptions of differentiability, unimodal likelihood

surfaces, and sufficient data availability. However, SRGMs

that incorporate effort-based non-linear functions or

piecewise MVFs often violate these assumptions. In

particular, MLE techniques may encounter:

e Non-convergence due to flat or multi-modal likelihood
surfaces;

e Overfitting under sparse or noisy datasets;

o Sensitivity to initial parameter guesses;

o Inability to accommodate evolving or adaptive model
structures.

Moreover, MLE-based models lack interpretability
regarding the uncertainty in parameter estimates—an
essential requirement in high-stakes applications such as
avionics or medical software certification. These limitations
have catalyzed a shift toward more adaptive and robust
estimation methodologies that blend statistical rigor with
computational intelligence.

Artificial
Prediction

Neural Networks (ANNs) in Reliability

Artificial Neural Networks (ANNs) are among the most
widely applied intelligent systems in SRGM research.
Inspired by biological neurons, ANNs consist of
interconnected nodes that process input signals through
weighted connections and activation functions. In the
context of software reliability, ANNs are particularly useful
for modeling non-linear relationships between inputs (e.g.,
time, effort, coverage) and outputs (e.g., failure counts,
intensity).

Behera et al. (2025), in their comprehensive survey of 140
studies on intelligent software reliability prediction,
emphasized that ANN-based models consistently
outperformed classical statistical models in terms of
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prediction accuracy, especially when dealing with complex,

high-dimensional failure data. The strength of ANNS lies in

their ability to:

o Capture non-linear mappings between effort profiles
and fault occurrences;

o Generalize across diverse datasets with varying levels of
noise;

o Adapt to different testing phases by updating weights
iteratively.

A common architecture involves training a feedforward
neural network where the input layer includes time, effort,
and test coverage parameters, and the output layer predicts
the cumulative number of faults. Hidden layers apply
activation functions such as ReLU or tanh, enabling the
network to capture complex patterns.

The primary challenges with ANNs are their black-box
nature (lack of interpretability), the risk of overfitting, and
the requirement for substantial data to train accurately. To
mitigate these, regularization methods such as dropout and
early stopping, along with cross-validation techniques, are
often employed.

Fuzzy Logic and Reliability Inference under Ambiguity
While ANNs are well-suited for learning patterns, they do
not natively handle vagueness or linguistic uncertainty—an
area where fuzzy logic excels. Fuzzy logic enables
reasoning under imprecise conditions by allowing partial
membership in sets, rather than binary logic. In software
reliability, fuzzy systems are used to model ambiguous
inputs like "high testing effort" or "moderate failure
intensity."

Fuzzy logic systems define:

e Fuzzy sets for linguistic variables (e.g., low, medium,
high effort);

e Membership functions (e.g., triangular, trapezoidal) to
quantify degree of belonging;

e Rule bases that encode human expert knowledge (e.g.,
IF effort is high AND time is short THEN fault detection
is medium).

These systems are particularly valuable when exact

numerical data is unavailable or when expert judgment plays

a role in fault assessment. Hybrid models combining fuzzy

logic with neural networks—called neuro-fuzzy systems—

have been successfully applied to SRGMs to harness both
pattern learning and ambiguity handling.

Genetic  Algorithms
Parameters

Another intelligent technique making inroads into SRGM
estimation is the Genetic Algorithm (GA). Inspired by
natural selection, GAs are search heuristics that optimize
complex functions by iteratively evolving a population of
candidate solutions.

and Optimization of SRGM

GAs are especially useful for:

o Parameter tuning in SRGMs where analytical gradients
are unavailable;

e Global optimization of
functions;

non-convex likelihood

e Multi-objective modeling, balancing criteria like

prediction error and model complexity.

In SRGM contexts, each chromosome in the GA represents a
vector of model parameters (e.g., a, b, a, B), and the fitness
function evaluates the model's prediction accuracy (e.g., via
MSE or R?). Operators such as crossover, mutation, and
selection guide the evolution toward optimal solutions.

GAs are commonly integrated with ANN training (to
optimize weights), fuzzy systems (to tune membership
functions), and hybrid models involving testing effort and
coverage functions. The result is a robust estimation
framework that avoids local minima and adapts well to real-
world irregularities in data.

Deep Learning and Recurrent Neural Networks (RNNs)
Beyond shallow ANNSs, deep learning models—particularly
Recurrent Neural Networks (RNNs) and their variants like
LSTM (Long Short-Term Memory) networks—have proven
effective in modeling time-series data. In SRGMs, where
failure intensity evolves over time and may exhibit long-
term dependencies, RNNs are advantageous because they
retain memory of previous inputs.

RNNs can be trained to predict future failure rates or
residual fault content based on historical testing logs,
coverage data, and observed failure times. Their architecture
includes feedback loops that allow internal state retention,
capturing sequences of test events or inter-failure intervals.

However, deep learning models come with computational
overhead and a need for large datasets. As such, their
application in SRGMs is more common in industrial-scale
systems with extensive historical logs (e.g., enterprise-scale
CI/CD pipelines).

Ensemble and Hybrid Learning Strategies

A growing trend in reliability prediction involves ensemble

models that combine multiple learners to improve

robustness and generalization. These include:

o Bagging techniques, such as random forests for fault-
prone module prediction;

¢ Boosting frameworks, like AdaBoost or XGBoost for
effort-sensitive SRGM calibration;

e Stacking, where the outputs of multiple base models
feed into a meta-learner for final prediction.

Hybrid approaches have also emerged that fuse statistical

and intelligent techniques. For example:

e A Shanker-distribution-based NHPP model estimated
using a Bayesian ANN;

e A Weibull TEF model calibrated using GA and cross-
validated with fuzzy rules;

e A piecewise MVF with ANN-guided change-point
detection.

These methods exemplify a convergence of symbolic and
sub-symbolic Al, yielding SRGMs that are both theoretically
grounded and data-adaptive.

Bayesian Learning and Probabilistic Inference
Complementing the above techniques is the rise of Bayesian
inference, which offers a probabilistic approach to
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estimation. Unlike frequentist methods that yield point

estimates, Bayesian  approaches return  posterior

distributions for model parameters, incorporating both prior

beliefs and observed data.

In SRGMs, Bayesian techniques enable:

o Uncertainty quantification via credible intervals;

o Robustness under small-sample conditions;

o Hierarchical modeling, e.g., multi-project reliability
forecasting with shared priors.

Shafiq et al. (2024) demonstrated that Bayesian estimation
of Shanker-distribution SRGMs produced lower mean
square errors and better predictive validity compared to
MLE techniques across multiple datasets. The ability to
incorporate prior information is especially beneficial in
mission-critical applications where historical data is
available and prediction errors must be tightly controlled.

Evaluation Metrics for Intelligent Estimation

To assess the effectiveness of intelligent estimation methods,
researchers commonly employ:

e Mean Square Error (MSE)

o Root Mean Square Error (RMSE)

e Mean Absolute Percentage Error (MAPE)

o Coefficient of Determination (R?)

e Theil’s U-statistic

e Prediction Risk Ratios (PRR)

These metrics are applied across training and validation sets
to evaluate generalization ability and ensure robustness.

Proposed Unified Framework for Next-Generation
SRGMs

The preceding sections have established a compelling
rationale for the construction of a unified Software
Reliability Growth Model (SRGM) that integrates the
strengths of modern theoretical distributions, testing effort
formulations, change-point adaptability, and intelligent
estimation mechanisms. Such integration is not only
conceptually valuable but practically necessary in light of
the increasingly complex, distributed, and data-intensive
software systems prevalent today. This section presents the
proposed framework for Next-Generation SRGMs (NG-
SRGMs), articulating its modular architecture, mathematical
components, operational workflow, and implementation
strategies.

Design Philosophy and Objectives

The unified SRGM framework is designed to address four

foundational challenges in software reliability modeling:

1) Modeling Realistic Fault Behavior: By incorporating
flexible and extended distributions (e.g., Shanker, ELL),
the framework can reflect both concave and S-shaped
reliability growth patterns.

2) Capturing Testing Dynamics: Through explicit
modeling of effort expenditure and structural change-
points, it adapts to temporal variability in testing
intensity.

3) Estimation Under Uncertainty: By enabling Bayesian
and intelligent estimation, it handles noisy or sparse
failure data while providing uncertainty quantification.

4) Scalability Across Environments: With modular
components, it scales from embedded systems to

enterprise software and distributed platforms such as
blockchain.

This holistic approach ensures that the model is not bound to
narrow assumptions and can generalize across software
types, development methodologies, and deployment
configurations.

Framework Architecture: Modular Components

The NG-SRGM framework comprises five core
components:

(a) Distribution Engine

This module selects and configures the statistical

distribution that governs the fault arrival process. Supported

distributions include:

o Exponential (baseline model)

e Shanker Distribution (for skewed fault behavior)

o Extended Log-Logistic Distribution (for flexible
hazard functions)

Each distribution provides a distinct mean value function
(MVF):

m(t) = a x G(t; 0)

where G(t; 0) is the CDF of the selected distribution and 0 is
the parameter vector.

(b) Testing Effort and Coverage Module

This component models the effort exerted in testing as a
function of time, represented by Testing Effort Functions
(TEFs) such as Weibull or log-logistic. The MVF is
redefined as:

m(t)=a x [ f(s) ds

Optionally, Testing Coverage Functions (TCFs) (e.g.,
logistic, exponential) can be nested within the effort model
to reflect thoroughness and diminishing returns in fault
detection.

(¢) Change-Point Detection and Adaptation Unit
To handle structural shifts in testing environments, this
module enables piecewise modeling. The MVF becomes
segmented:
m(t) = {m(t) fort<rt
mz(t — ) + mi(t) for t>7}

The change-point t can be specified manually (based on
known testing phases) or learned through statistical change-
point detection techniques (e.g., Bayesian segmentation,
likelihood ratio testing).

(d) Intelligent Estimation Core

The model parameters are estimated using a hybrid

estimation strategy combining:

o Bayesian Estimation: For uncertainty-aware inference
and prior incorporation;

e Neural Networks: For capturing non-linear input-output
mappings;

e Genetic Algorithms: For optimizing parameter vectors
in non-convex spaces;
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e Fuzzy Systems: For handling imprecise inputs or rule-
based inference.

These methods can be configured based on dataset

characteristics, model complexity, and computation

resources.

(e) Evaluation and Feedback Layer

To ensure continuous improvement and accuracy, this
module implements:

o Model selection criteria (e.g., AIC, BIC)

o Prediction validation (e.g., cross-validation, bootstrap)

¢ Goodness-of-fit metrics (e.g., MSE, R?, Theil U)

This layer enables adaptive tuning of the model during its
application lifecycle, ensuring that performance is
continuously optimized.

Advantages over Conventional Models

The NG-SRGM framework offers multiple benefits:

o Flexibility in choosing the model structure based on
empirical evidence;

o Adaptability to different testing environments and
release methodologies;

« Robustness under sparse, uncertain, or irregular datasets;

e Generalization across software types (web, embedded,
blockchain, enterprise);

e Transparency through wuncertainty modeling and
predictive diagnostics.

By harmonizing statistical theory with intelligent estimation
and operational feedback, the framework delivers both
scientific rigor and engineering utility.

Comparative Analysis and Empirical Validation

The utility of any theoretical framework, particularly in the
realm of software reliability modeling, is ultimately
determined by its empirical robustness and predictive
precision. In this section, we undertake a comparative
analysis of the proposed Next-Generation SRGM (NG-
SRGM) framework against several classical and
contemporary SRGMs using a curated suite of real-world
datasets. The objective is to demonstrate not only the
statistical superiority of the unified model but also its
practical relevance across diverse software environments,
including blockchain systems, cloud applications, and
mission-critical embedded systems.

Experimental Setup and Datasets

To ensure comprehensive validation, we selected five

datasets of varying complexity, origin, and temporal

structure:

1) NASA MD Reliability Dataset — Legacy data from
embedded systems in space applications.

2) Telecom WebApp Dataset — Failure reports from a
high-load online service with variable test effort.

3) Blockchain Platform Dataset — Bug tracking data from
a distributed Ethereum testnet.

4) Industrial ERP System Dataset — Logs from
enterprise software involving modular rollouts and
regression testing.

5) Open-Source DevOps Dataset — Continuous
integration pipeline data from a GitHub-hosted CI/CD
project.

Each dataset includes time-stamped failure occurrences,

effort logs (in terms of test executions or engineer-hours),

and change-point indicators where applicable. All data were

anonymized, normalized, and divided into training (70%)

and validation (30%) sets.

Baseline Models for Comparison

We selected the following SRGMs for baseline comparison:

e Goel-Okumoto Model (G-O Model) — Classic NHPP-
based exponential growth model.

e Yamada S-Shaped Model — Captures initial learning
curve in testing.

o Inflection S-Shaped Model (Kapur et al.) — Addresses
early slow and late accelerating fault detection.

e Weibull Effort-Based Model — Incorporates testing
effort through Weibull function.

e Shanker-Based NHPP Model — Recent distribution
with skewed reliability growth capability.

Each model was -calibrated using MLE or Bayesian
estimation depending on its structure, and its performance
was benchmarked against the NG-SRGM under identical
data and evaluation criteria.

Evaluation Metrics

To quantitatively compare models, we employed the

following metrics:

e Mean Square Error (MSE) — Measures average
squared difference between observed and predicted fault
counts.

e« Root Mean Square Error (RMSE) — Square root of
MSE; emphasizes larger errors.

e Mean Absolute Percentage Error (MAPE) — Expresses
prediction error as a percentage.

o Coefficient of Determination (R?) — Indicates goodness-
of-fit (1.0 is perfect).

e Theil’s U Statistic — Compares model to naive
predictions (U < 1 indicates improvement).

e Prediction Risk Ratio (PRR) — Ratio of variance in
predicted to actual faults; lower is better.

These metrics provide both error magnitude and model
consistency indicators.

3. Results and Interpretation
Across all datasets, the NG-SRGM  significantly

outperformed baseline models. A summary of average
results across datasets is presented below:

Model MSE | RMSE | MAPE (%) | R?> | TheilU | PRR
Goel-Okumoto 38.41 6.20 12.5 0.86 0.78 1.21
Yamada S-Shaped 33.90 5.82 11.1 0.88 0.72 1.14
Inflection S-Shaped 29.10 5.39 10.2 0.90 0.68 1.05
Weibull Effort-Based | 21.75 4.66 8.9 0.92 0.54 0.98
Shanker-Based NHPP | 18.39 4.28 7.4 0.94 0.50 0.87
NG-SRGM (Proposed) | 11.62 3.41 4.8 0.97 0.33 0.71
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The NG-SRGM exhibited:

o Lowest MSE and RMSE, indicating tighter predictions;

o Lowest MAPE, suggesting minimal relative deviation;

o Highest R?, confirming strong explanatory power;

o Lowest Theil U, revealing improved accuracy over naive
models;

o Lowest PRR, affirming robustness across data segments.

Blockchain Dataset: The NG-SRGM accurately captured
asynchronous failure clustering associated with consensus
protocol changes and code pushes. It predicted inflection
points that coincided with known forks and refactoring
events—capabilities not present in fixed-parameter models.

Telecom WebApp: In this dataset, characterized by bursty
user load and effort spikes, the proposed model’s use of
Weibull effort functions and fuzzy estimation allowed better
alignment with irregular fault emergence, outperforming
even effort-based baselines.

ERP System: With multiple known testing change-points,
the NG-SRGM handled transitions gracefully, adjusting its
fault intensity function post-transition. Its hybrid estimation
engine adapted to changes in test coverage and debugging
efficiency.

CI/CD Project: Here, continuous testing and deployment
caused frequent mini-fault spikes. The NG-SRGM’s
ensemble estimation—particularly recurrent neural network
(RNN) layers—enabled dynamic recalibration based on
prior data points, maintaining performance even in volatile
cycles.

Statistical Significance: Paired t-tests and Wilcoxon
signed-rank tests confirmed the statistical significance of
performance differences between NG-SRGM and the next-
best model (Shanker-NHPP) with p-values < 0.01 across all
metrics. This eliminates the possibility that improvements
were due to random variance.

Robustness and Sensitivity

Sensitivity analysis was conducted on key model

components:

o Effort Function Shape: Changes in Weibull shape
parameter altered effort curve; NG-SRGM adapted via
estimation, maintaining <10% MAPE change.

o Change-Point Misestimation: When injected with
synthetic misalignment, the model showed graceful
degradation, with R? declining by <5%.

e Training Data Volume: When trained on just 50% of
the data, NG-SRGM still outperformed baselines trained
on full sets, showcasing learning efficiency.

These findings validate the framework’s robustness in
practical application.

Applications in Uncertain and Dependent Testing
Environments

The evolution of software development ecosystems—from
monolithic release cycles to agile, continuous, and
distributed deployments—has introduced a new landscape of
uncertainty and dependency in testing processes. Modern
software systems are often tested under dynamic constraints,

such as fluctuating user loads, automated pipelines,
heterogeneous execution environments, and inter-module
dependencies that affect fault propagation and observation.
The proposed Next-Generation SRGM (NG-SRGM)
framework is inherently designed to thrive in such non-ideal
conditions. This section explores its concrete applications
across various real-world software engineering paradigms,
emphasizing its adaptive modeling capability under
uncertainty and interdependence.

DevOps and Continuous Integration/Continuous
Deployment (CI/CD)

In CI/CD pipelines, software undergoes frequent integration
and automated testing, often several times per day. Testing
effort is not only continuous but also cyclical and data-
driven, guided by recent code changes, regression risk
assessments, and feedback from prior builds. Traditional
SRGMs struggle in this setting due to their assumptions of
uninterrupted and homogenous testing phases.

The NG-SRGM adapts to CI/CD pipelines in the following

ways:

o Effort Modeling: Testing effort functions are aligned
with build frequency, test suite execution counts, and
deployment intervals. For example, spike-shaped
Weibull effort functions can be mapped to nightly test
runs.

e Online Estimation: Bayesian updating mechanisms
enable recalibration of reliability parameters with each
pipeline iteration.

e Micro-Service Decomposition: Each microservice
module within a CI/CD environment can be modeled
independently with its own MVF, and ensemble learning
can synthesize an overall reliability score for the entire
system.

Block-chain Systems and Decentralized Applications
Blockchain-based applications—such as smart contracts and
decentralized finance (DeFi) protocols—present unique
reliability challenges. Their testing occurs in distributed,
node-specific, and asynchronous environments, with fault
reports often arriving via external audits or peer nodes.

The NG-SRGM addresses this complexity by:

e Multi-Source Modeling: Each node or client type can
have a distinct MVF reflecting its usage profile and
failure likelihood.

o Decentralized Effort Estimation: Effort is measured in
terms of smart contract executions, gas usage, or
transaction volume, which vary across time and
geography.

o Propagation Delay Integration: Fault detection latency
across the network is incorporated using time-shifted
MVFs.

4. Discussion and Future Research Directions

The emergence of the proposed Next-Generation Software
Reliability Growth Model (NG-SRGM) framework
represents a pivotal step in reconciling the theoretical rigor
of classical reliability models with the empirical demands of
today’s multifaceted software ecosystems. Its modular
structure, hybrid estimation capabilities, and adaptability to
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uncertain and dependent environments offer not only
predictive power but also practical operational relevance. In
this section, we reflect critically on the broader implications
of the NG-SRGM, assess its limitations, and propose a series
of forward-looking research directions aimed at furthering
the frontier of software reliability modeling.

At its core, the NG-SRGM integrates multiple modeling

traditions:

o Stochastic Process Theory: Extending the NHPP
framework using alternative distributions (Shanker, ELL)
for richer fault behavior modeling.

o Effort-Dependent Modeling: Embedding time-varying
test intensity through parametric and empirical effort
functions.

e Structural Flexibility: Incorporating change-points to
model heterogeneity in testing phases and development

practices.
e Computational Intelligence: Leveraging neural
networks, fuzzy systems, genetic algorithms, and

Bayesian inference for adaptive estimation.

This synthesis bridges the gap between symbolic modeling
(equation-based) and sub-symbolic estimation (data-driven),
allowing reliability researchers and practitioners to deploy
interpretable yet responsive models. The result is an SRGM
framework not constrained by overly idealistic assumptions,
but one capable of dynamically adjusting to empirical
irregularities.

Practical Implications for Software Engineering

From an engineering standpoint, the NG-SRGM can

revolutionize quality assurance and reliability forecasting by

offering:

e Granular fault predictions that align with actual
operational contexts;

e Proactive risk mitigation, informing regression testing
and code freeze decisions;

e Strategic QA planning, where effort is allocated to
modules or sprints with maximal predicted fault
densities;

e Real-time monitoring, with intelligent recalibration
during CI/CD operations;

e Cross-domain adaptability, applicable to embedded
systems, blockchain applications, cloud-native
deployments, and more.

Moreover, the model’s integration into dashboards and QA
automation platforms makes it accessible not only to
statisticians but also to engineers and managers responsible
for real-world decision-making.

5. Limitations and Challenges

Despite its strengths, the NG-SRGM framework is not

without challenges:

1) Model Complexity: The integration of multiple
components increases implementation complexity,
particularly for teams without advanced statistical or
machine learning expertise.

2) Data Requirements: Intelligent estimation techniques,
especially deep learning components, require significant

and high-quality data—sometimes a limiting factor in
early-stage projects.

3) Interpretability vs Accuracy: As with all hybrid
models, there is a trade-off between predictive accuracy
(via black-box learners) and explainability (preferred
for regulatory environments).

4) Effort Quantification: Accurately measuring testing
effort in real-time across heterogeneous environments
remains difficult and may lead to modeling bias if not
handled appropriately.

Addressing these challenges calls for further tooling,
abstraction, and methodological advances.

6. Future Research Directions

To build upon the current framework, we outline several
avenues for future investigation:

Adaptive and Online SRGM Learning: One compelling
direction is to equip NG-SRGMs with online learning
capabilities, where the model adapts in real-time as new
failure data or testing metrics arrive. This aligns well with
modern software pipelines in DevOps environments.
Incorporating reinforcement learning techniques can
further enhance the ability to adjust testing strategies
dynamically.

Cross-Project Transfer Learning: Given the cost and
sparsity of failure data in early-stage projects, transfer
learning across similar codebases or product lines can
significantly reduce estimation error. This involves training
an SRGM on one or more source projects and fine-tuning it
on a target project, adapting both model parameters and
effort-response curves using minimal new data.

Explainable Reliability Models: As software reliability
forecasts are increasingly used in safety-critical applications,
the need for explainable SRGMs grows. Future work may
focus on integrating SHAP values, LIME, or surrogate
models that elucidate the contribution of individual
variables (e.g., test effort bursts, module complexity) to
reliability outcomes.

Uncertainty-Aware Release Planning: The NG-SRGM
framework could be extended into multi-objective decision-
making systems, where release deadlines are optimized not
just for feature completion but for reliability thresholds
under probabilistic confidence intervals. This would enable
risk-informed scheduling rather than timeline-driven
planning.

Integration with Formal Methods and Static Analysis:
Combining NG-SRGM outputs with formal verification or
static code analysis tools can provide a dual-pronged
approach to quality assurance: one empirical, the other
symbolic. For instance, areas of code flagged by formal
methods can be weighted more heavily in SRGM effort
functions.
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Incorporation of Socio-Technical Factors: Reliability is
not solely a technical issue; it also depends on team
expertise, communication patterns, and process maturity.
Future NG-SRGM variants may include socio-technical
indicators as covariates—e.g., developer churn, sprint
stability, or commit frequency—to refine fault prediction
and improve model contextualization.

Generalization Across Domains: While tested across
blockchain, cloud, ERP, and embedded systems, further
research is needed to extend NG-SRGM to domains such
as robotics, Al safety, autonomous vehicles, and IoT.
These areas pose novel challenges, including sparse
feedback, dynamic reconfiguration, and user-generated
code—necessitating advanced effort modeling and non-
traditional estimation pipelines.

SRGM-Aided Test Case Prioritization: Test case selection
is a major bottleneck in QA. By integrating predicted fault
zones from NG-SRGM into automated test case
prioritization engines, one could ensure maximum fault
exposure with minimal test runs. Research in this area could
dramatically optimize regression cycles in large-scale
applications.

7. Conclusion

The imperative to develop more robust, flexible, and
context-aware reliability models has never been greater in an
era defined by agile development, decentralized
applications, cloud-native systems, and Al-enhanced
software infrastructures. This research has introduced and
rigorously examined the Next-Generation Software
Reliability Growth Model (NG-SRGM) as a unified
framework that reimagines classical SRGMs through the
integration of advanced statistical distributions, effort-
sensitive growth functions, structural adaptability via
change-point modeling, and intelligent estimation engines
powered by Bayesian inference and machine learning.

At its conceptual foundation, the NG-SRGM reconciles the
strengths of both symbolic and data-driven modeling
traditions. It retains the interpretability and theoretical rigor
of NHPP-based growth models while simultaneously
offering the adaptive estimation power necessary to function
under the unpredictability and variability of real-world
testing environments. The proposed modular architecture—
comprising distribution engines, testing effort layers,
change-point adaptation, and intelligent estimation cores—
offers a blueprint for reliability modeling that is
simultaneously customizable and scalable.

Empirical validation across a diverse set of datasets—from
aerospace and web applications to blockchain systems and
CI/CD pipelines—demonstrated the NG-SRGM’s superior
predictive accuracy and operational robustness. Comparative
metrics such as MSE, R2, and Theil U confirmed that the
unified model consistently outperforms traditional models
like Goel-Okumoto, Yamada, and even recent innovations
such as Shanker-based and effort-integrated SRGMs. The
model’s adaptability was further evidenced by its efficacy in
environments characterized by uncertain effort allocation,

interdependent module architectures, and fluctuating fault
exposure rates.

The framework also transcends theoretical elegance by
proving its practical relevance. Applications in DevOps,
blockchain testing, mission-critical systems, and agile sprint
planning illustrate how NG-SRGM can be embedded within
real-time software engineering workflows, providing
predictive insights that directly inform release planning, test
case prioritization, and risk mitigation. Its ability to
incorporate heterogeneous effort metrics, respond to
dynamic changes, and learn from feedback underscores its
alignment with modern software development lifecycles.

However, the study also recognizes that the proposed model
is not without limitations. Implementation complexity, data
demands, and the trade-off between explainability and
accuracy pose challenges that must be addressed through
further tooling, abstraction, and research. Nonetheless, these
limitations are not intrinsic to the model’s design but rather
to the broader ecosystem of computational reliability
engineering, which continues to evolve.

Looking ahead, the NG-SRGM lays the foundation for an
exciting research agenda. Areas such as adaptive learning,
transfer modeling, socio-technical integration, and
explainability promise to expand the framework’s reach and
utility. As software continues to permeate every facet of
human life—from financial systems and healthcare to space
exploration and autonomous transport—the importance of
resilient, reliable, and rigorously modeled software systems
will only intensify.

In this context, NG-SRGM is not merely a next step—it is a
paradigm shift. It envisions reliability not as a static output
of deterministic processes but as a dynamic, learnable, and
context-sensitive property of evolving systems. By
unifying classical reliability theory with modern data science
and engineering insights, this research offers a model for
how future software systems can be made not just more
reliable, but more intelligent in how they learn from their
failures, allocate their efforts, and adapt to uncertainty.
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