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Abstract: Fractals refer to mathematical structures that exhibit self-similarity, i.e., the recursive repetition of identical structures, with 

complex patterns being created under simple parameters. This paper investigates the emergence of fractal patterns in the music of 

Johann Sebastian Bach, who was known for his repetitive modifica-tion of motifs, especially in his work The Art of Fugue. Although his 

compositions are not strictly fractal, they serve to highlight a unique relationship between math-ematics and music, exemplifying the use 

of recursive processes to create complexity in music. 
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1. Introduction 
 

Before we can explore how fractals are related to fugues, we 

must first understand what they are. A fractal is any 

mathematical structure, be it a set, geometrical shape, or 

function, that exhibits self-similarity, has a non-integer 

Hausdorff dimension number (meaning it does not conform 

to any traditional integer dimension such as a 1D line or 2D 

plane), and cannot be simplified at any scale. In short, it is 

any structure that shows repetition across arbitrarily small 

scales. 

 

As a common example, one can consider the cover of Pink 

Floyd’s album Um-magumma, which features an image of 

the band members repeating itself in a mirror, getting 

smaller each time. Of course, this repetition on the album 

cover stops eventually, but in mathematical fractals, the 

recursion is infinite. 

 

Possibly the most famous example of a proper fractal is the 

Mandelbrot set—a sub-set of the complex plane that exhibits 

a complex tendril-like pattern that repeats itself forever. Any 

Mandelbrot set can be defined as follows:  

M = c ∈C : supn |zn| < ∞, where zn+1 = z2 n+ c 

 

 
Figure 1: The Mandelbrot set generated by iterating zn+1 = 

z2 n+ c. 

 

We can see in Figure 1 the basic shape of a Mandelbrot set. 

The boundary exhibits infinitely recursive self-similarity. 

 

The fugue, on the other hand, is a musical structure used 

most prominently by the composer Johann Sebastian Bach 

in the Baroque era of Western classical music. It is 

categorized by a main subject melody, which is constantly 

reiterated and expanded upon in different contexts, whether 

by use of a different instrument, key change, or tempo 

change. The use of different independent voices to produce 

a complete sound is known as counterpoint, a technique 

Bach is considered a master of. A popular example of a 

fugue is Bach’s Little Fugue in G Minor (BWV 578), which 

introduces a subject played on the right hand of the organ 

and then repeats it with the left hand, albeit in a different 

key.  
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Figure 2: Opening 12 bars of Bach’s Little Fugue in G minor, adapted for recorders (BWV 578). 

 

Figure 2 shows how the soprano line is mirrored in the alto 

but changed from G minor to D minor, shifting to the fifth 

degree. This trend is further continued by the tenor, which 

returns to G. In this way, fugues also show a “nesting” 

effect, repeating and expanding on the same subject using 

counterpoint. 

 

We are now familiar with the basics of both fractals and 

fugues. Now we can dive into the main premise of this 

paper—does music, specifically the contrapuntal fugue, 

have traits similar to those of fractals? And if so, what does 

it reveal about the intertwined nature of these two 

contrasting subjects? 

 

To understand the role of relatively new fractal math in 

Bach’s 18th-century com-positions, we must review the 

existing research on the topic, its musical connection, and 

previous analysis of Bach’s music in this context. The 

possibly fractal structure of Bach’s music still remains a 

topic of debate, making it necessary to understand why this 

connection was made in the first place. 

 

2. Literature Review 
 

The fractal found a concrete start in mathematics with the 

French polymath Benoit Mandelbrot, who in 1975 coined 

the term to describe such infinitely recursive structures. The 

Hausdorff number, used to quantify non-integer 

dimensionality, and early geometric depictions of fractals 

such as the Koch snowflake were major innovations in the 

field. 

 

The early history of fractals includes extensive research that 

had already developed a connection to musicology [9, 10]. 

The discovery of “pink noise” and its relation to fractals in 

time series was a key finding in this field. 

 

Pink noise refers to sound that roughly follows an inverse 

power spectrum as follows: S(f) ∝1/f  

 

This follows from the general power law:  

S(f) ∝1/fβ 

Where β is a constant depending on the type of sound. Music 

usually follows a power law where β ≈1, which is called 

“pink noise,” a bridge between overly random white noise (β 

≈0) and overly calm brown noise (β ≈2). This was a 

significant discovery, as the time series related to this 1/f 

relation also exhibits self-similar behavior, showing similar 

ups and downs no matter the time scale of measurement. 

 

As the study of fractals advanced, the intersection of fractal 

math and classical music became more apparent. The father-

and-son team of Kenneth J. Hsu and Andrew J. Hsu 

observed that the chord progressions and interval changes in 

the music of classical composers like Mozart implied self-

similarity [3, 4], comparing them to the well-known 

hypothesis that the length of a coastline cannot be measured, 

as it also possesses a fractal self-replicating form, showing 

complexity regardless of scale. 

 

In 2012, this idea of musical compositions obeying the 1/f 

law was pushed even further, with a large-scale study by D. 

J. Levitin, P. Chordia, and V. Menon [5]. This study 

analyzed a wide range of music from Bach to Joplin, 

ultimately reinforcing the fact that this “inverse frequency 

law” was obeyed by most music, and thus that music had 

fractal nature built into it. 

 

Bach’s music has been central in the discussion around 

fractal rule-forming musical structure, as his music 

possesses the most clear connection to the recursive 

repetition often observed in fractals. His works usually 

center around a small 4–5 note main theme, which is then 

expanded and often nested into itself, such as in the Little 

Fugue in G Minor (BWV 578). A PNAS news feature 

review by Stephen Ornes surveyed the already existing 

research on fractal geometry in music, with attention 

towards Bach specifically [8]. This review uncovered the 

scaling of motifs and demonstrated the existence of 

structural self-similarity. A clear case of this is seen in 

Bach’s famous Cello Suites, where interval scaling is used 

[1]. 
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However, it is important to note that Bach’s music does not 

follow fractal geometry perfectly, nor do fractal patterns 

reveal themselves in all of his works. This fact is demon-

strated by Henderson-Sellers, who revealed logical flaws in 

the argument that classical music possesses a fractal nature 

[2]. We can think of this comparison as closer to the 

repeating image in Ummagumma than to a Koch snowflake. 

The purpose of these studies was merely to analyze the 

emergence of fractal-like patterns in the field of music, and 

thus prove that these fields are related to each other on a 

fundamental level. 

 

3. The Gap in Research 
 

Although previous research has connected fractal geometry 

to musical structure, the focus has been on statistical self-

similarity. This has been done by essentially reducing music 

to a simple power series that can then be compared to 

fractal-natured time series. The recursive development of 

motifs, especially those of Bach, has remained 

underexplored. This paper attempts to address this gap by 

analyzing individual motifs through the lens of fractal 

geometry, and thus goes beyond statistical analysis. It aims 

to demonstrate that fractal recursive self-similarity exists in 

the individual phrasings and motifs of Bach’s music, and 

intends to highlight how this structure shapes the perception 

of his works.  

 

a) Self-Similar Motifs 

In music, the term “motif” refers to a short recurring idea. 

This can be a specific rhythm or a set of notes. In Western 

classical music, the motif usually acts as an anchor for the 

piece, providing a clear structure in longer pieces with 

higher musical complexity. Bach famously uses the B-A-C-

H motif in his works, which acts as a musical signature in 

the German notation system, translating to B♭−A −C −B♮, 
as shown in Figure 3. 

 

 
Figure 3: The BACH Motif 

 

In fractal geometry, self-similarity refers to the repetition of 

a geometrical structure across arbitrarily large or small 

scales. Thus, the geometrical structure is preserved, but it 

may be distorted in some way, such as in size. Bach’s fugues 

often have motifs that are stretched, shortened, or nested in a 

way that closely resembles the geometry of fractals. This 

correlation in the fugal structure and the geometry of fractals 

invites further investigation into the contrapuntal nature of 

these compositions. 

 

In a fugue, the subject is often repeated entirely in each 

voice (soprano →alto →tenor →bass), often with 

modulation or interval alteration. Repetition is usually 

written in different pitch levels, most commonly in the 

relative minor (iv) or dominant (V), and the time values for 

each note may be augmented or diminished. This suggests 

an inherently fractal nature, as the entire composition often 

reduces to the repetition of a small number of motifs. 

Madden argues that this property of composition by altering 

repetition of a single theme makes Bach inherently fractal 

[6]. McDonough terms Bach’s motifs as structurally fractal, 

claiming that they exhibit nesting [7]. 

 

This feature makes Bach’s fugues efficient, as the vast 

complexity in his music is only generated from a minute, 

often 4–5 note phrasing. This correlation also provides a 

concrete basis for arguing that fugues are, in fact, fractal 

structures, as it shows that these fugues exhibit more than a 

mere statistical S(f) = 1/f scaling. 

 

b) Recursive Imitation 

We have seen that the individual motifs follow to a great 

extent the basic rules that govern fractal geometry. We will 

now expand our view to the complete fugue structure, 

applying the same qualities of altered motif repetition and 

recursive imitation to the composition of a fugue in general. 

It is a well-known feature of the contrapuntal fugue that the 

individual melodic lines imitate each other. A large degree 

of nesting is seen here, as the soprano serves as a leading 

line that is imitated by the alto, tenor, and finally the bass. 

 

This concept, pushed to its logical extreme, results in a 

fugue that is essentially a macrocosm of its subject. This 

shows similarity to the Mandelbrot condition of possess-ing 

a non-integer Hausdorff dimension. Although the Hausdorff 

dimension of a musical composition is naturally not a real 

value, we can interpret this as the composition ex-hibiting 

more complexity than is suggested by the individual motif. 

 

An example of this motivic microcosm can be clearly seen 

in Bach’s Passacaglia in C Minor (BWV 582). The piece is 

based on an 8-bar ostinato that persists throughout the 

composition. The recursive imitation of this theme serves to 

add further complexity, providing a deeper analysis of the 

motif. This piece demonstrates an exceptionally fractal 

nature, as the fugue itself is a reflection of the ostinato that 

forms it. The descending motif resembles the overall 

structure of the fugue, which further unifies this Passacaglia. 

 

 
Figure 4: The ostinato of Bach’s Passacaglia in C Minor 

(BWV 582) 

 

c) Statistical Self-Similarity 

This structural self-similarity has been largely based on 

external structural commonalities between Bach’s fugues 

and fractal structures. This correlation is substantiated by 

statis-tical similarities between them, most clearly seen in 

the form of the series S(f) = 1/f. 

 

Statistical self-similarity means that the system will retain a 

similar structure across different scales on average. 

Therefore, it allows us to reduce all music to a power law of 

the form: 
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S(f) ∝1/fβ 

 

In this relation, β represents the degree of randomness 

exhibited by the sound, with a small value (β ≈0) signifying 

complete randomness, observed in white noise, and higher 

values (β ≈2) suggesting stable noise, with special reference 

to brown noise. 

Music shows a middle ground between complete 

randomness and high stability, exist-ing as statistical “pink 

noise,” which conforms to the relation: 

 

 
Figure 5: Comparison of power spectra for white, pink, and brown noise, illustrating statistical self-similarity. 

 

Here, it is apparent that β ≈1, as the frequency of sound has 

an inverse relationship to power. This is a very important 

relation, as it provides a direct mathematical correlation 

with fractals. In time series, a similar relation is seen which 

shows fractal self-similarity. This essentially proves that, on 

a statistical scale, all music, not just Bach, shows fractal 

nature. 

 

d) Case Study: Contrapunctus VII 

Contrapunctus VII is an important fugue from Bach’s Art of 

Fugue (BWV 1080), as it is a comprehensive example for 

every previously discussed feature of fractal-resembling 

music. It is a complex composition that alters the subject in 

many unique ways, thus showing a large amount of fractal-

like recursive repetition that can be thoroughly analyzed. 

 

e) The Subject 

The subject of this piece is a variation on the theme of the 

Art of Fugue, a simple starting point. However, Bach 

introduces alterations as soon as the subject is stated, using 

the lengthening of note values (augmentation) and flipping 

the intervals. The 4-note rhythm remains constant in the 

piece, being restated in ascending and descending forms, in 

different keys, and projected in different ways, mirroring 

affine transformation. 

 

 
Figure 6: The subject of Bach’s Contrapunctus VII (BWV 

1080) 

f) Recursive Imitation 

This fugue is characterized by constant overlapping of the 

repeated subject, nesting aug-mented versions over inverted 

or diminished ones. The counterpoint has a large amount of 

complexity that is generated by only a small seed motif. This 

is a clear example of re-cursive imitation, where the overall 

fugal structure is based on the subject. This produces an 

effect quite similar to that of the Koch snowflake: nested 

layers of fractals. 

 

4. Discussion 
 

The connection of music to fractals reveals important 

insights into the nature of music and the close connection it 

has to mathematics. This self-similar fugal structure acts as 

an example of fractals existing in everyday phenomena, 

adding music to the already expansive list. It can also be 

argued that the apparent fractality of Bach’s works and of 

music in general strengthens the idea that musical harmony 

is a natural phenomenon. Fractals were not a mathematical 

concept in Bach’s time, nor was he a mathematician, so the 

fact that these Baroque-era compositions conform to such an 

extent to theories posed hundreds of years after them 

strengthens the fundamental nature of fractals. 

 

That said, this does not mean that fractal math perfectly 

maps onto Baroque music. Bach’s music does not have any 

of the mathematically rigorous properties of pure fractals 

(e.g., non-integer Hausdorff dimension), and the statistical 

relation of music to fractals also has many drawbacks [2]. 

Completely fractal music has never been made, though 

recent algorithmic developments make this a less distant 

possibility. 
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5. Conclusion 
 

We must now ask again our main question: Does Bach’s 

music show fractal properties? Naturally, there is no single 

clear answer. Fractal geometry is certainly a useful lens for 

interpreting the fugue, but at the same time much of the 

connection remains analogical. There are as many strong 

supporting factors to this claim as there are limitations. We 

can, at most, term Bach’s fugues imperfectly fractal in 

nature. While the resemblance they show to fractal shapes is 

undeniable and non-negligible, it still does not pass the rigor 

of mathematical proof. 

 

So far, most of the research on fractality in music has used 

statistical similarities to support the claim. Power series and 

time series have been able to demonstrate a relation between 

statistical fractals and music in general, from Bach to Joplin. 

This paper has attempted to show the relation in a new light, 

focusing on structural similarity over statistics and taking J. 

S. Bach’s music as a case study. The already close 

connection of fractal geometry to music opens up the 

possibility of creating truly fractal compositions in the 

future. Such music, generated by recursive algorithms, could 

embody genuine self-similarity across arbitrary scales rather 

than approximate it. 

 

In this way, Bach’s works take the concept of fractals 

beyond mathematics and nature and reveal that these 

structures also shape our perception of art. His fugues 

demonstrate that complexity can emerge from simplicity, 

that repetition and transformation can build vast 

architecture, and that mathematics and music are not merely 

parallel domains but deeply intertwined. 
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