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1. Introduction

We consider the following nonhomogeneous Steklov eigenvalue problem{
4p(x)u+4q(x)u = 0 in Ω,
(|∇u|p(x)−2 + |∇u|q(x)−2)∂u∂ν = g(x, u)− |u|p(x)−2u− |u|q(x)−2u on ∂Ω,

(1.1)

where ∆p(x)u := div(|∇u|p(x)−2∇u) is the p(x)-Laplacian operator, Ω is a bounded domain in RN (N ≥
2), ∂u∂ν is the normal derivative of the outer unit on ∂Ω, p, q ∈ C+(Ω) := {m ∈ C(Ω) : minx∈Ωm(x) > 1}
such that q(.) ≤ p(.) and g is a function fulfilling appropriate conditions.

For m ∈ C+(Ω), we denote

m− = min
x∈Ω

m(x); m+ = max
x∈Ω

m(x);

and

p∂(x) =

{
(N−1)p(x)
N−p(x) , if p(x) < N,

∞, if p(x) ≥ N.
The study of differential equations and variational problems with variable exponents has garnered

attention due to both their intriguing mathematical properties and their significant applications in fields
such as fluid mechanics, material science, and biological systems. Understanding the behavior of solutions
to these problems is essential for accurate modeling in these areas.

One notable example is the model for electrorheological fluids with p(x)-growth developed by Ra-
jagopal and Růžička (see [27, 28]). These fluids change their mechanical properties in response to an
electric field E(x). In the steady-state case, the model is described by the equation

−divS(x, E(v)) = g(x, v,Dv), div v = 0,

where v is the fluid velocity, E(v) is the symmetric part of the gradient Dv, and the ”extra stress” tensor
S satisfies

D2S(x, z) ≥ v(1 + |z|2)(p(x)−2)/2Id,

with p(x) ≡ p(|E|2) and E given.
Similarly, models have been developed for thermo-rheological fluids, where viscosity is affected by

temperature (see [3, 36, 37]). For example, the differential system modeling the ”thermistor problem”
includes equations such as

−div(p(x)|Du|p(x)−2Du) = 0.

These models are crucial for the design of advanced materials and systems in engineering. In image
processing, the p(x)-Laplacian operator is used to restore images by smoothing while preserving edges,
which is important for noise reduction (see [6]):

−∆p(x)u = I(x)− u,
where I(x) is the original noisy image and u is the restored image. This technique is vital for improving
the quality of visual data in various technologies. Other applications include elasticity problems (see
[26, 35]), variational integrals with nonstandard growth (see [1, 23]), and fluid flow in porous media (see
[4]).
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Recently, there has been significant interest in nonhomogeneous eigenvalue problems involving oper-
ators with variable exponent growth conditions, such as the p(x)-Laplacian. These operators present
unique challenges due to their nonhomogeneous nature, which renders many analytical techniques that
work for constant exponent cases ineffective. For example, the Lagrange multiplier theorem does not
apply to many problems involving these operators, indicating greater complexity compared to problems
involving standard p-Laplacian operators.

Our research is also motivated by the challenges in obtaining multiple solutions in the superlinear
case and other complexities in applying variational methods. Specifically, we must demonstrate that the
operator Φ′i (see Lemma 3.3) has the (S+) property, a compactness condition crucial for establishing
other important properties, such as the Palais-Smale condition, within a variational framework.

In the following, we provide a concise yet comprehensive overview of the current state of research in
this field.

The constant case where p(x) = p and q(x) = q (p and q are constants) has been extensively investi-
gated, as noted by the authors in the survey [22], which outlines several key applications of these results.
Furthermore, in [30], variational methods combined with critical point theorems are utilized to explore
these problems.

Regarding the case p(x) = q(x), Numerous researchers have investigated elliptic equations with p(x)-
Laplacian subjected to different types of boundary conditions in both bounded domains as discussed in
[12, 19, 33], and in unbounded domains as detailed in [11, 15, 34]. Some studies establish the uniqueness
of solutions, while others confirm the existence of two, three, multiple, or even infinitely many solutions.
Particularly, in [19], A. Zerouali et al. studied the problem{

4p(x)u = |u|p(x)−2u in Ω,
|∇u|p(x)−2 ∂u

∂ν = g(x, u) on ∂Ω,

and established, under suitable assumptions on g, the existence of weak solutions.
For further information and specific insights regarding variable exponent problems, we recommend

interested readers to consult the references [11, 12, 24, 25].
To our knowledge, no articles have been published on the existence results for this class of Steklov

problems with the (p(x), q(x))-Laplacian. The authors employ a variational approach to investigate
the existence and multiplicity results of Steklov elliptic equations involving the (p(x), q(x))-Laplacian,
incorporating concepts from the previously mentioned literature.

Our aim is to establish conditions on the function g that are sufficient for the existence of nontrivial
weak solutions to problem (1.1) under the given cases :

i) g(x, u) = f(x, u) + λ|u|α(x)−2u, λ ∈ R+ and α ∈ C+(Ω);
ii) g(x, u) = λf(x, u), λ > 0,

The following conditions on f are enumerated, but it is important to note that these conditions do
not have to be satisfied simultaneously.

(H0) f : ∂Ω× R 7→ R is continuous.
(H1) There exists d > 0 and s ∈ C+(Ω) with p+ < s− < s+ < p∂(x), such that

|f(x, t)| ≤ d|t|s(x)−1,

for a.e. x ∈ ∂Ω and all t ∈ R.
(H’1) There exists d > 0 and s ∈ C+(Ω) with s+ < p−, such that

|f(x, t)| ≤ d|t|s(x)−1,

for a.e. x ∈ ∂Ω and all t ∈ R.
(H2) There exists µ > p+ and l > 0 such that

0 < µF (x, t) ≤ f(x, t)t,

for a.e. x ∈ ∂Ω and all |t| > l, where F (x, t) =
∫ t

0
f(x, s) ds.

(H3) For a.e. x ∈ ∂Ω and all t ∈ R, f(x,−t) = −f(x, t).
(H4) There exists t0 > 0 such that F (x, t0) > 0 a.e. x ∈ ∂Ω.

(H5) For all x ∈ ∂Ω, lim
|t|→+∞

f(x, t)

|t|p(x)−1
= 0.

(H6) For all x ∈ ∂Ω, lim
|t|→0

f(x, t)

|t|p(x)−1
= 0.

In this paper, our first and last results rely on the utilization of the mountain pass theorem (see, [2]).
The determination of critical points of functionals has become an essential approach for solving elliptic
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equations and variational problems due to its substantial intuitive appeal and practical significance. The
second and third ones are based on a variant of symmetric mountain pass theorem.

This paper comprises four sections. The second section present basic properties related to the Lebesgue
and Sobolev spaces with variable exponents. Additionally, we compile the essential components of our
proofs. The proofs for our primary outcomes under case (i) are detailed in section three, while section
four is dedicated to addressing case (ii).

2. Preliminaries

In this section, it is necessary to explore the theory related to generalized Lebesgue-Sobolev spaces.
However, for the sake of convenience, we will focus on only few aspects within the theory.

We introduce the generalized Lebesgue space

Lp(x)(Ω) :=

{
u : Ω ⊂ RN → R is measurable and

∫
Ω

|u|p(x)dx < +∞
}
,

possessing the Luxemburg norm

|u|Lp(x)(Ω) := inf

{
α > 0 ;

∫
Ω

∣∣∣∣u(x)

α

∣∣∣∣p(x)

dx ≤ 1

}
,

which is separable and reflexive Banach space (see, [13]).
Let us define the space

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) / |∇u| ∈ Lp(x)(Ω)

}
,

equipped with the norm

‖u‖Ω := inf

{
α > 0 ;

∫
Ω

∣∣∣∣u(x)

α

∣∣∣∣p(x)

dx+

∫
Ω

∣∣∣∣∇u(x)

α

∣∣∣∣p(x)

dx ≤ 1

}
; ∀u ∈W 1,p(x)(Ω).

Proposition 2.1. [9] Let u ∈W 1,p(x)(Ω).
Let ‖u‖ := |∇u|Lp(x)(Ω) + |u|Lp(x)(∂Ω). Then the norm ‖u‖ is a norm on W 1,p(x)(Ω) which is equivalent

to ‖u‖Ω.

Proposition 2.2. [11, 20, 10]

(1) W 1,p(x)(Ω) is a separable and reflexive Banach space;
(2) If h ∈ C+(Ω̄) and h(x) < p∂(x) for any x ∈ Ω, then the embedding from W 1,p(x)(Ω) to Lh(x)(∂Ω)

is compact and continuous.

The mapping ρp : W 1,p(x)(Ω)→ R defined by

ρp(u) :=

∫
Ω

|∇u|p(x)dx+

∫
∂Ω

|u|p(x)dσ,

plays a crucial role in handling the Lebesgue-Sobolev spaces with variable exponents.

Proposition 2.3. [9] For u, uk ∈W 1,p(x)(Ω); k = 1, 2, . . . , we have

(1) ||u|| ≥ 1 implies ||u||p− ≤ ρp(u) ≤ ||u||p+ ;

(2) ||u|| ≤ 1 implies ||u||p+ ≤ ρp(u) ≤ ||u||p− .

To prove Theorems 3.2 and 4.4, we will utilize the subsequent mountain pass theorem.

Theorem 2.4 ([17]). Let X endowed with the norm ‖.‖X , be a Banach space. Assume that φ ∈ C1(X;R)
satisfies the Palais− Smale condition. Also, assume that φ has a mountain pass geometry, that is,

(1) there exists two constants η > 0 and ρ ∈ R such that φ(u) ≥ ρ if ‖u‖X = η;
(2) φ(0) < ρ and there exists e ∈ X such that ‖e‖X > η and φ(e) < ρ.

Then, φ has a critical point u0 ∈ X such that u0 6= 0 and u0 6= e with critical value

φ(u0) = inf
γ∈P

sup
u∈γ

φ(u) ≥ ρ > 0,

where P denotes the class of the paths γ ∈ C([0, 1];X) joining 0 to e.

The key element in demonstrating Theorem 3.5 lies in introducing a modified version of the symmetric
pass theorem.
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Theorem 2.5 ([18]). Let X be an infinite dimensional Banach space and I ∈ C1(X,R) satisfy the
following two assumptions:

(A1). I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the Palais-Smale condition (PS);
(A2). For each k ∈ N, there exists an Ak ∈ Γk such that sup

u∈Ak
I(u) < 0, Where Γk denote the family of

closed symmetric subsets A of X such that 0 /∈ A and γ(A) ≥ k with

γ(A) := inf{k ∈ N;∃h : A→ Rk\{0}such that h is continuous and odd}
is the genus of A.

Then I(u) admits a sequence of critical points uk such that I(uk) < 0; uk 6= 0 and uk → 0 as k →∞.

Lastly, we bring to attention the Weierstrass type theorem, which will be employed in the demonstra-
tion of theorem 4.1.

Theorem 2.6 ([7]). Assume that X is a reflexive Banach space and the function Φ : X 7→ R is coercive
and (sequentially) weakly lower semicontinuous on X. Then, Φ is bounded from below on X and attains
its infimum on X.

3. The superlinear case

In this section, we discuss the case (i) and establish, under certain conditions on the number λ and
the function f , the existence and multiplicity of weak solutions.

In this case, the Euler-Lagrange functional related to problem (1.1) is given by

Φi(u) =

∫
Ω

(
|∇u|p(x)

p(x)
+
|∇u|q(x)

q(x)

)
dx+

∫
∂Ω

(
|u|p(x)

p(x)
+
|u|q(x)

q(x)

)
dσ

− λ
∫
∂Ω

|u|α(x)

α(x)
dσ −

∫
∂Ω

F (x, u)dσ, for all u ∈W 1,p(x)(Ω).

Definition 3.1. We say that u ∈W 1,p(x)(Ω) is a weak solution of problem (1.1) in the case (i) if :∫
Ω

(
|∇u|p(x)−2 + |∇u|q(x)−2

)
∇u∇ϕdx+

∫
∂Ω

(
|u|p(x)−2 + |u|q(x)−2

)
uϕdσ

= λ

∫
∂Ω

|u|α(x)−2uϕdσ +

∫
∂Ω

f(x, u)ϕdσ, for all ϕ ∈W 1,p(x)(Ω).

It is clear that the critical points of Φi are the weak solutions of our problem.

3.1. The existence results.

Theorem 3.2. Assume that (H0), (H1) and (H2) are satisfied. If α+ < p−, then there exists λ∗ > 0
such that for any λ ∈ (0, λ∗) the problem (1.1) has at least a nontrivial weak solution.

The proof of Theorem 3.2 will be based on the mountain pass theorem (refer to Theorem 2.4). To
accomplish this, we have structured our proof in the following manner:

Throughout this subsection, we operate under the framework of Theorem 3.2

Lemma 3.3. The functional Φi satisfies the Palais-Smale condition.

Proof. Let c ≥ 0 and (un) be a sequence in W 1,p(x)(Ω) such that |Φi(un)| < c and Φ
′

i(un) → 0 as
n → ∞. First, let’s demonstrate the boundedness of (un)n. To do this, we use contradiction to argue
and suppose that ‖un‖ → ∞, up to a subsequence.Then, applying (H2), for sufficiently big n we obtain

1 + c+ ‖un‖ ≥ Φi(u)− 1

θ
〈Φ
′

i(un), un〉

≥
(

1

p+
− 1

θ

)
ρp(un) +

(
1

q+
− 1

θ

)
ρq(un)− λ

(
1

r−
− 1

θ

)∫
∂Ω

|un|α(x)dσ

−
∫
∂Ω

(
F (x, un)− 1

θ
f(x, un)un

)
dσ

≥
(

1

p+
− 1

θ

)
ρp(un)− λ

(
1

r−
− 1

θ

)∫
∂Ω

|un|α(x)dσ

−
∫
{x∈∂Ω;|un(x)|>l}

(
F (x, un)− 1

θ
f(x, un)un

)
dσ

− |∂Ω| sup{|F (x, t)− 1

θ
f(x, t)t|;x ∈ ∂Ω, |t| ≤ l}.
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According to the fact that

|u(x)|α(x) ≤ |u(x)|α
+

+ |u(x)|α
−

; ∀x ∈ Ω̄,

we deduce that for all u ∈W 1,p(x)(Ω), we have∫
∂Ω

|u|α(x)dσ ≤
∫
∂Ω

|u|α
+

dσ +

∫
∂Ω

|u|α
−
dσ.

Since α+ < p− < p∂(x) for any x ∈ Ω̄, then by Proposition 2.2, W 1,p(x)(Ω) is continuously and compactly

embedded in Lα
+

(∂Ω) and in Lα
−

(∂Ω). It follows that there exists two positive constants C1 and C2

such that ∫
∂Ω

|u|α(x)dσ ≤ C1‖u‖α
+

+ C2‖u‖α
−
, ∀u ∈W 1,p(x)(Ω),

Thus ∫
∂Ω

|u|α(x)dσ ≤ c1‖u‖α
−

if ‖u‖ ≤ 1,

and ∫
∂Ω

|u|α(x)dσ ≤ c1‖u‖α
+

if ‖u‖ ≥ 1.

Where c1 is a positive constant. Now using Proposition 2.3 and (H2), we deduce that, for sufficiently
large n,

c+ 1 + ‖un‖ ≥
(

1

p+
− 1

θ

)
‖un‖p

−
− λc′1‖un‖α

+

− |∂Ω| sup{|F (x, t)− 1

θ
f(x, t)t|;x ∈ ∂Ω, |t| ≤ l}.

Dividing by ‖un‖p
−

and letting n → ∞ in the above inequality, since α+ < p−, then we obtain a
contradiction. This proves that (un)n is bounded in W 1,p(x)(Ω). For a subsequence still denoted (un)n,
we have un ⇀ u weakly in W 1,p(x)(Ω), un → u strongly in Lp(x)(∂Ω), in Lq(x)(∂Ω) and in Lα(x)(∂Ω).

Therefore, 〈Φ′i(un), un − u〉 → 0,
∫
∂Ω
|un|p(x)−2un(un − u)dσ → 0,

∫
∂Ω
|un|q(x)−2un(un − u)dσ → 0,∫

∂Ω
|un|α(x)−2un(un − u)dσ → 0 and by (H1), we have

∫
∂Ω
f(x, un)(un − u)dσ → 0. Thus,∫

Ω

|∇un|p(x)−2∇un (∇un −∇u) dx+

∫
Ω

|∇un|q(x)−2∇un (∇un −∇u) dx→ 0.

Since
∫

Ω
|∇un|p(x)−2∇un(∇un −∇u)dx and

∫
Ω
|∇un|q(x)−2∇un(∇un −∇u)dx have the same sign, then

each term converges to 0. Then ∫
Ω

|∇un|p(x)−2∇un(∇un −∇u)dx→ 0.

According to the fact that the mapping ∆p(x) is of type (S+) (see, [12]). We deduce that un → u strongly

in W 1,p(x)(Ω). Which completes the proof. �

Lemma 3.4. With the same assumptions as in Lemma 3.3, we obtain the following results:

(1) There exists a constant λ∗ > 0 such that for every λ ∈ (0, λ∗), there are R > 0 and ρ > 0
satisfying Φi(u) ≥ R > 0 for all u ∈W 1,p(x)(Ω) where ‖u‖ = ρ.

(2) There exists a function ϕ ∈W 1,p(x)(Ω) such that ϕ > 0 and Φi(tϕ)→ −∞ as t→ +∞.

Proof.

(1) We have

Φi(u) =

∫
Ω

(
|∇u|p(x)

p(x)
+
|∇u|q(x)

q(x)

)
dx+

∫
∂Ω

(
|u|p(x)

p(x)
+
|u|q(x)

q(x)

)
dσ

− λ
∫
∂Ω

|u|α(x)

α(x)
dσ −

∫
∂Ω

F (x, u)dσ.

By applying (H1), for every ‖u‖ < 1, we have

Φi(u) ≥ ‖u‖
p+

p+
− λc1
α−
‖u‖α

−
− k1‖u‖s

−
,

where c1, k1 > 0. Consequently, we have

Φi(u) ≥ ‖u‖p
+

(
1

p+
− λc1
α−
‖u‖α

−−p+ − k1‖u‖s
−−p+

)
. (3.1)
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Let λ > 0 be given. We define the function ψλ : (0,+∞)→ R by the formula

ψλ(t) =
λc1
α−

tα
−−p+ + k1t

s−−p+ . (3.2)

One can easily show that ψλ(t) is continuous on the interval (0,+∞). Given that s− > p+ ≥
p− > α+ ≥ α− > 1, we conclude that

lim
t→0+

ψλ(t) = lim
t→+∞

ψλ(t) = +∞.

Therefore, there exists a t∗ > 0 such that 0 < ψλ(t∗) = min
t∈(0,+∞)

ψλ(t), where t∗ is given by the

equation

ψ
′

λ(t∗) =
λc1
α−

(α− − p+)tα
−−p+−1
∗ + k1(s− − p+)ts

−−p+−1
∗ = 0.

Hence, t∗ =
(
λc1(p+−α−)
α−k1(s−−p+)

) 1

s−−α−
. An easy computation shows that

ψλ(t∗) = K.λ
s−−p+

s−−α− → 0 as λ→ 0, where K > 0. (3.3)

From (3.1), (3.2), and (3.3), we deduce that there is a positive constant λ∗ such that for every
λ ∈ (0, λ∗), one can choose R > 0 and ρ > 0 such that Φi(u) ≥ R > 0 for all u ∈ W 1,p(x)(Ω)
with ‖u‖ = ρ.

(2) By the condition (H2), we can conclude that there exists a positive function a(x) such that for
all |τ | > l, F (x, τ) ≥ a(x)|τ |θ for a.e. x ∈ ∂Ω. Consequently, for t > 1, we get

Φi(tu) ≤ tp
+

p−
ρp(u) +

tq
+

q−
ρq(u)− λtα

−

α+

∫
∂Ω

|u|α(x)dσ

− |∂Ω| inf{|F (x, t);x ∈ ∂Ω, |t| ≤ l}

− tθ
∫
{x∈∂Ω;|u(x)|>l}

a(x)|u|θdσ.

Since θ > p+ ≥ p− > q+, it follows that Φi(tϕ) → −∞ as t → +∞ with ϕ(x) = |u(x)| + l + ε,
for all x ∈ Ω̄, where ε > 0. Therefor, for a fixed u 6≡ 0, we can choose e = tϕ such that ‖e‖ > ρ
and Φi(e) < 0.

�

Proof of Theorem 3.2. It is clear that Φi(0) = 0 < R. Therefore, by Lemmas 3.3-3.4 and Theorem
2.4, we deduce that, for every λ ∈ (0, λ∗), problem (1.1) admits at least one nontrivial weak solution in
W 1,p(x)(Ω). �

Example 1. 0
For N = 2, let Ω = (0, π)2, take p(x) = 3+ 1

2 sin(x1+x2), q(x) = 2+ 1
4 sin(x1−x2). Note that q(x) ≤ p(x)

for all x ∈ Ω. Let’s define:

f(x, u) = |u|m(x)−2u where m(x) = 4 +
1

3
sin(x1x2).

Define α(.) as a continuous function such that α+ < p−. For example:

α(x) = 2 +
1

4
cos(x1 + x2).

In this case, the problem (1.1) becomes :{
4p(x)u+4q(x)u = 0 in Ω,
(|∇u|p(x)−2 + |∇u|q(x)−2)∂u∂ν = |u|m(x)−2u+ λ|u|α(x)−2u− |u|p(x)−2u− |u|q(x)−2u on ∂Ω,

(3.4)

The function f(., .) is continuous on ∂Ω×R because (x, u)→ |u|m(x)−2u is continuous in both x and u,
which means that (H0) is satisfied.
Given f(x, u) = |u|m(x)−2u, we have:

|f(x, t)| = |t|m(x)−1.

This can be bounded by d|t|s(x)−1 with d = 1 and s(x) = m(x). We can easily see that p(x) varies
between 3 and 3.5, and m(x) varies between 4 and 4.33, then p+ = 3.5 and s− = 4, ensuring the

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Paper ID: SR241226033316 DOI: https://dx.doi.org/10.21275/SR241226033316 856 

Volume 14 Issue 10, October 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 



condition p+ < s− < s+ < p∂(x) is met. Consequently, (H1) is also satisfied.
For f(x, u) = |u|m(x)−2u, we have

F (x, t) =

∫ t

0

|s|m(x)−2s ds =
1

m(x)
|t|m(x).

Then,

f(x, t)t = |t|m(x).

To satisfy the condition (H2), let µ = m−. We get:

µF (x, t) =
m−

m(x)
|t|m(x).

Since m− < m(x), we have:
m−

m(x)
< 1,

thus:

µF (x, t) =
m−

m(x)
|t|m(x) ≤ |t|m(x) = f(x, t)t,

ensuring that the condition is satisfied for |t| > l with an appropriate choice of l.
By Theorem 3.2, there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) the problem (3.4) has at least a
nontrivial weak solution.

3.2. The multiplicity results.

Theorem 3.5. Assume that f : ∂Ω×R 7→ R is a Carathéodory function satisfying the conditions (H’1),
(H2) and (H3). If α+ < q− ≤ q+ < p−. Then, there exists λ0 > 0, such that for any λ > λ0 there exists
a sequence (uk) of nontrivial weak solutions for the problem (1.1) in the case (i). Moreover, uk → 0, as
k →∞.

We show that the symmetric mountain-pass theorem (see Theorem 2.5) can be applied. We have
divided the proof into a sequence of lemmas.

Lemma 3.6. Given the assumptions stated in Theorem 3.5, the functional Φi is an even function,
bounded from below, satisfies the Palais-Smale (PS) condition, and we have Φi(0) = 0.

Proof. By the properties of f , it is obvious that Φi ∈ C1, Φi is even and Φi(0) = 0.
Using (H’1), we obtain

Φi(u) ≥
∫

Ω

(
|∇u|p(x)

p(x)
+
|∇u|q(x)

q(x)

)
dx+

∫
∂Ω

(
|u|p(x)

p(x)
+
|u|q(x)

q(x)

)
dσ

− λ
∫
∂Ω

|u|α(x)

α(x)
dσ − k

∫
∂Ω

|u|s(x)

s(x)
dσ

≥ 1

p+
ρp(u) +

1

q+
ρq(u)− λ

α−

∫
∂Ω

|u|α(x)dσ − k

s−

∫
∂Ω

|u|s(x)dσ

≥ 1

p+
ρp(u)− λ

α−

∫
∂Ω

|u|α(x)dσ − k

s−

∫
∂Ω

|u|s(x)dσ.

Since α+ < p− < p∂(x) and s+ < p− < p∂(x), then by Proposition 2.2, there exist two positive constants
c1 and c2 such that

Φi(u) ≥ 1

p+
ρp(u)− c1λ

α−
‖u‖α

+

− c2k

s−
‖u‖s

+

, if ‖u‖ > 1,

and

Φi(u) ≥ 1

p+
ρp(u)− c1λ

α−
‖u‖α

−
− c2k

s−
‖u‖s

−
, if ‖u‖ ≤ 1,

Now using Proposition 2.3, we have

Φi(u) ≥ 1

p+
‖u‖p

−
− c1λ

α−
‖u‖α

+

− c2k

s−
‖u‖s

+

, if ‖u‖ > 1,

and

Φi(u) ≥ 1

p+
‖u‖p

+

− c1λ

α−
‖u‖α

−
− c2k

s−
‖u‖s

−
, if ‖u‖ ≤ 1.

As p− > α+ and p− > s+, Φi is bounded from below. This finishes the proof.
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Lemma 3.7. Assume that α+ < q− ≤ q+ < p−. Then for each k ∈ N∗, there exists an Hk ∈ Γk such
that: sup

u∈Hk
Φi(u) < 0.

Proof. Let v1, v2, · · · , vk ∈ C∞(RN ) such that

{x ∈ ∂Ω; vi(x) 6= 0} ∩ {x ∈ ∂Ω; vj(x) 6= 0} = ∅
if i 6= j and

|{x ∈ ∂Ω; vi(x) 6= 0}| > 0, ∀i, j ∈ {1, 2, · · · , k}.
Take Fk = span{v1, v2, · · · , vk}; we have dimFk = k. Denote S = {v ∈ W 1,p(x)(Ω); ‖v‖ = 1} and for
0 < t ≤ 1, Hk(t) = t(Fk ∩ S). For all t ∈]0, 1], we have γ(Hk(t)) = k. We claim that for any k ∈ N∗,
there exists tk ∈]0, 1] such that sup

u∈Hk(tk)

Φi(u) < 0. Indeed, for k ∈ N∗, 0 < t ≤ 1, and using (H ′1), we

have

sup
u∈Hk(t)

Φi(u) ≤ sup
v∈Fk∩S

Φi(tv)

≤ sup
v∈Fk∩S

{∫
Ω

tp(x)

p(x)
|∇v|p(x)dx+

∫
Ω

tq(x)

q(x)
|∇v|q(x)dx+

∫
∂Ω

tp(x)

p(x)
|v|p(x)dσ

+

∫
∂Ω

tq(x)

q(x)
|v|q(x)dσ −

∫
∂Ω

F (x, tv)dσ − λ
∫
∂Ω

tα(x)

α(x)
|v|α(x)dσ

}
≤ sup

v∈Fk∩S

{
tp
−

p−
ρp(v) +

tq
−

q−
ρq(v)− λt

α+

α+

∫
∂Ω

|v|α(x)dσ

}

≤ sup
v∈Fk∩S

{
tp
−

p−
+
tq
−

q−
ρq(v)− λt

α+

α+

∫
∂Ω

|v|α(x)dσ

}
.

Since W 1,p(x)(Ω) is continuously embedded in W 1,q(x)(Ω), then there exists a constant c0 > 0 such that
‖v‖q(x) ≤ c0‖v‖, ∀u ∈ W 1,p(x)(Ω) and since v ∈ S, then ‖v‖ = 1 which means that ‖v‖q(x) ≤ c0. Thus∥∥∥ vc0 ∥∥∥q(x)

≤ 1. We get then by Proposition 2.3

ρq

(
v

c0

)
=

∫
Ω

|∇v|q(x)

c
q(x)
0

dx+

∫
∂Ω

|v|q(x)

c
q(x)
0

dσ ≤ 1. (3.5)

We know that 0 < c
q(x)
0 ≤ max(cq

−

0 , cq
+

0 ) := M , which implies that 1

c
q(x)
0

≥ 1
M . Thus

ρq

(
v

c0

)
≥ ρq(v)

M
. (3.6)

Combining (3.5) and (3.6), we find
ρq(v) ≤M.

Let c̄ = min
v∈Fk∩S

∫
∂Ω

|v|α(x)dσ > 0 and since 1 < q− < p− and 0 < t ≤ 1, then we get

sup
u∈Hk(t)

Φi(u) ≤ t
q−

q−
+
tq
−
M

q−
− λc̄tα

+

α+

≤tq
−
(

1 +M

q−
− λc̄

α+tq−−α+

)
.

At this point, since α+ < q−, we can find a positive constant λ0 such that for every λ > λ0, there exists
a sufficiently small tk ∈ (0, 1] satisfying

1 +M

q−
− λc̄

α+tq
−−α+

k

< 0.

Then, we have
sup

u∈Hk(tk)

Φi(u) < 0.

This completes the proof. �

Proof of Theorem 3.5. By applying Lemmas 3.6, 3.7 and Theorem 2.5, it follows that the problem
(1.1) possesses a sequence of weak solutions (uk) for which Φi(uk) < 0 and lim

k→+∞
uk = 0. �
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Example 2. Let Ω be the unit disk in R2, i.e., Ω = {x ∈ R2 : ‖x‖ < 1}. Its boundary is ∂Ω = {x ∈ R2 :
‖x‖ = 1}.
We need continuous functions α(x), q(x), and p(x) on Ω such that α(x) < q(x) < p(x) for all x ∈ Ω.
For simplicity, let:

α(x) = 2 +
1

2
(‖x‖ − 1) , q(x) = 3 +

1

4
(‖x‖ − 1) , p(x) = 4 +

1

8
(‖x‖ − 1)

This ensures α(x) < q(x) < p(x) for all x ∈ Ω.
We need to define f : ∂Ω× R→ R that satisfies (H1’), (H2), and (H3).
Let’s define:

f(x, t) =

{
d|t|s(x)−2t if |t| ≤ 1

d|t|µ−2t if |t| > 1

where s(x) = 2.5 + 1
2 (‖x‖ − 1), which is a function in C+(Ω) with s+ < p− = 3.875, d > 0 and

µ = 5 > p+ = 4.
Now, we check the hypotheses:
For |t| ≤ 1,

|f(x, t)| = d|t|s(x)−1 ≤ d|t|s(x)−1

Since s(x) < p(x) for all x ∈ Ω, f satisfies (H1’).
For |t| > 1,

F (x, t) =

∫ t

0

f(x, s) ds =

∫ t

0

d|s|µ−2s ds =
d

µ
|t|µ

Then,

0 < µF (x, t) = d|t|µ = f(x, t)t

ensuring 0 < µF (x, t) ≤ f(x, t)t for |t| > l = 1.
For t ∈ R,

f(x,−t) = −f(x, t)

remains true due to the symmetry in the definition. Finally, by Theorem 3.5, there exists λ0 > 0, such
that for any λ > λ0 there exists a sequence (uk) of nontrivial weak solutions for the problem (1.1) in this
case.

4. The sublinear case

In case (ii) of the problem (1.1), the associated energy functional Φii, which is defined on W 1,p(x)(Ω),
is given by:

Φii(u) =

∫
Ω

(
|∇u|p(x)

p(x)
+
|∇u|q(x)

q(x)

)
dx+

∫
∂Ω

(
|u|p(x)

p(x)
+
|u|q(x)

q(x)

)
dσ

− λ
∫
∂Ω

F (x, u) dσ.

(4.1)

And we have

〈Φ′ii(u), v〉 =

∫
Ω

(
|∇u|p(x)−2 + |∇u|q(x)−2

)
∇u∇vdx+

∫
∂Ω

(
|u|p(x)−2 + |u|q(x)−2

)
uvdσ

− λ
∫
∂Ω

f(x, u)vdσ, for any u, v ∈W 1,p(x)(Ω).

(4.2)

As in the third section, the weak solutions of problem (1.1) given by (4.2) are exactly the critical
points of Φii defined by (4.1).

4.1. The existence results.

Theorem 4.1. Assume that f : ∂Ω × R 7→ R is a function satisfying the conditions (H0), (H4) and
(H5). Then, there exists a constant λ1 > 0, such that for every λ > λ1, the problem (1.1) in the case
(ii) has at least one nontrivial weak solution.

To prove our Theorem 4.1, we will apply the Weierstrass type theorem 2.6. We start with the following
two Lemmas.

Lemma 4.2. For any λ > 0, the functional Φii is (sequentially) weakly lower semicontinuous.
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Proof. The same approach used in the proof of Lemma 5 in [5], by replacing the term
∫

Ω
|u|p(x)
p(x) dx by∫

∂Ω
|u|p(x)
p(x) dσ, shows that the functional

u 7→
∫

Ω

(
|∇u|p(x)

p(x)
+
|∇u|q(x)

q(x)

)
dx+

∫
∂Ω

(
|u|p(x)

p(x)
+
|u|q(x)

q(x)

)
dσ

defined on W 1,p(x)(Ω) is weakly lower semicontinuous. At the same time, hypotheses (H5) implies the
existence of a positive constant k′ such that

|f(x, t)| ≤ k′(1 + |t|p(x)−1) for all t ∈ R and a.e x ∈ ∂Ω. (4.3)

Hence, since W 1,p(x)(Ω) is compactly embedded to Lp(x)(∂Ω), standard arguments infer that Φii is
weakly lower semicontinuous for every λ > 0 and the proof of the lemma is complete. �

Lemma 4.3. For any λ > 0, the functional Φii given by (4.1) is coercive and satisfies the Palais-Smale
condition.

Proof. We first show that Φii is coercive. To do this, fix ε > 0. Using condition (H5), we can find δ > 0
such that

|f(x, t)| ≤ ε|t|p(x)−1 for all |t| ≥ δ and a.e. x ∈ ∂Ω.

By integrating this inequality, we obtain

|F (x, t)| ≤ ε |t|
p(x)

p−
+ max
|s|≤δ

|f(x, s)||t| for all t ∈ R. (4.4)

Applying Proposition 2.3, we find that for any u ∈W 1,p(x)(Ω) with ‖u‖ > 1,∫
Ω

(
|∇u|p(x)

p(x)
+
|∇u|q(x)

q(x)

)
dx+

∫
∂Ω

(
|u|p(x)

p(x)
+
|u|q(x)

q(x)

)
dσ ≥ 1

p+
‖u‖p

−
. (4.5)

From inequalities (4.4) and (4.5), we deduce that for any u ∈W 1,p(x)(Ω) with ‖u‖ > 1,

Φii(u) ≥
(

1

p+
− λε

p−

)
‖u‖p

−
− λ

∫
∂Ω

max
|s|≤δ

|f(x, s)||u| dσ.

Choose ε small enough so that 1
p+ −

λε
p− > 0. Moreover, due to the continuity of f and to the continuous

embedding W 1,p(x)(Ω) ↪→ L1(∂Ω), there exists k” > 0 such that

Φii(u) ≥
(

1

p+
− λε

p−

)
‖u‖p

−
− λk”‖u‖ for all u ∈W 1,p(x)(Ω) with ‖u‖ > 1.

As p− > 1, we have Φii(u)→ +∞ as ‖u‖ → +∞, which implies that Φii is coercive. We will now show
that Φii satisfies the Palais-Smale condition. To do this, let c ≥ 0 and (un)n ⊂W 1,p(x)(Ω) be a sequence
such that |Φii(un)| < c and Φ′ii(un) → 0 as n → +∞. Since Φii is coercive, it is straightforward to see
that (un)n is bounded. To show that (un)n has a subsequence converging to a critical point of Φii, we
follow the same approach as in the proof of Lemma 3.3, using (4.3) in place of (H1) and Φii instead of
Φi. Thus, Φii satisfies the Palais-Smale condition, completing the proof of the lemma. �

We are now able to show Theorem 4.1.

Proof of Theorem 4.1. Applying Theorem 2.6 along with Lemmas 4.2 and 4.3, we conclude that there
exists a global minimizer u1 for Φii in W 1,p(x)(Ω). This minimizer u1 also provides a weak solution to
the problem (1.1) in case (ii). The next question is whether u1 is nontrivial. To address this, we need
to examine the conditions that ensure the nontriviality of u1. It is evident that, for every λ > 0, the
following inequality holds:

Φii(u1) ≤ Φii(u) for all u ∈W 1,p(x)(Ω). (4.6)

Using (H4), we can choose λ1 > 0 as follows

λ1 =

 sup
u∈W 1,p(x)(Ω),u 6=0

λ
∫
∂Ω
F (x, u)dσ∫

Ω

(
|∇u|p(x)
p(x) + |∇u|q(x)

q(x)

)
dx+

∫
∂Ω

(
|u|p(x)
p(x) + |u|q(x)

q(x)

)
dσ

−1

.
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Assumption (H4) ensures that for every λ > λ1, there exists a function ω ∈W 1,p(x)(Ω) such that

Φii(ω) =

∫
Ω

(
|∇ω|p(x)

p(x)
+
|∇ω|q(x)

q(x)

)
dx+

∫
∂Ω

(
|ω|p(x)

p(x)
+
|ω|q(x)

q(x)

)
dσ

− λ
∫
∂Ω

F (x, ω)dσ < 0.

(4.7)

We conclude from (4.6) and (4.7) that

Φii(u1) ≤ Φii(ω) for all λ > λ1. (4.8)

Since we have Φii(0) = 0, (4.8) gives u1 6= 0. Thus, for λ > λ1, the problem (1.1) in the case (ii) admits
a nontrivial weak solution, which completes the proof of Theorem 4.1. �

Example 3. Let Ω = (0, 1)2 and x = (x1, x2). Define:

p(x) = 3 + x1x2

q(x) = 2 +
x1x2

2

It is clear that q(x) < p(x) for all x ∈ Ω = [0, 1]2.
Define f : ∂Ω× R→ R by

f(x, u) =
u

1 + |u|
In this case, we have the problem{

4p(x)u+4q(x)u = 0 in Ω,
(|∇u|p(x)−2 + |∇u|q(x)−2)∂u∂ν = λ u

1+|u| − |u|
p(x)−2u− |u|q(x)−2u on ∂Ω,

(4.9)

The function f satisfies the following hypotheses:
Hypothesis (H0): f is continuous in both variables x and t.
Hypothesis (H4): Let t0 = 1. Then for x ∈ ∂Ω:

F (x, t0) =

∫ t0

0

f(x, s) ds =

∫ 1

0

s

1 + |s|
ds > 0

Hypothesis (H5): For all x ∈ ∂Ω:

lim
|t|→+∞

f(x, t)

|t|p(x)−1
= lim
|t|→+∞

t
1+|t|

|t|3+x1x2−1
= lim
|t|→+∞

1

|t|2+x1x2(1 + |t|)
= 0

since 2 + x1x2 ≥ 2 and 1 + |t| grows linearly with t. Therefore, by Theorem 4.1, there exists a constant
λ1 > 0, such that for every λ > λ1, the problem (4.9) has at least one nontrivial weak solution.

4.2. The multiplicity results.

Theorem 4.4. Assume that f : ∂Ω × R 7→ R is a function satisfying the conditions (H0), (H4)-(H6).
Then, the problem (1.1) has at least two nontrivial weak solutions for every λ > λ1 in the case (ii), where
λ1 is the one found in Theorem 4.1.

The proof of this theorem is basically relies on Theorems 4.1 and 2.4.
Theorem 4.1 assures the existence of a nontrivial weak solution u1 to problem (1.1) in the case (ii), for
all λ > λ1. In order to find a second weak solution for all λ > λ1, we turn to Theorem 2.4. By Lemma
3.6, we know that Φii satisfies the Palais-Smale condition for all λ > 0. Since Φii(0) = 0 and u1 is a
nontrivial function with Φii(u1) < 0, as shown by equation (4.8), we now need to establish that Φii has
a mountain pass geometry for all λ > λ1. Specifically, we need to find two positive constants, ρ and
b < ‖u1‖, such that Φii(u) ≥ ρ for all u with ‖u‖ = b. To do this, choose ε > 0 and s ∈ C(Ω,R) such
that p+ < s− < s+ < p∂ . According to conditions (H5) and (H6), there exist δ1 ≥ 1 and δ2 > 0 such
that

|f(x, t)| ≤ ε|t|s(x)−1 for |t| > δ1 and for a.e. x ∈ ∂Ω,

|f(x, t)| ≤ ε|t|p(x)−1 for |t| < δ2 and for a.e. x ∈ ∂Ω.

It follows that there exists a constant k2 > 0 chosen sufficiently big to have the following inequality

|F (x, t)| ≤ ε|t|p(x) + k2|t|s(x) for all t ∈ R and a.e. x ∈ ∂Ω.
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This leads to

Φii(u) ≥
(

1

p+
− λε

)
ρp(u)− λk2

∫
∂Ω

|u|s(x)dσ

≥
(

1

p+
− λε

)
ρp(u)− λk2c‖u‖s−,

for all u ∈ W 1,p(x)(Ω) with ‖u‖ = b < 1 and c is a positive constant due to the continuous embedding
W 1,p(x)(Ω) ↪→ Ls(x)(∂Ω). Select ε to be sufficiently small so that 1

p+ − λε > 0. By Proposition 2.3, for

any λ > λ1 and u ∈W 1,p(x)(Ω) with ‖u‖ = b < 1, it follows that

Φii(u) ≥
(

1

p+
− λε

)
‖u‖p

+

− λk2c‖u‖s−.

Since p+ < s−, for sufficiently small b, there exists a constant ρ > 0 such that for all λ > λ1 > 0 and
u ∈ W 1,p(x)(Ω) with ‖u‖ = b < min{1, ‖u1‖}, we have Φii(u) ≥ ρ > 0. Consequently, we can now apply
Theorem 2.4 to find a second critical point u2 ∈W 1,p(x)(Ω) such that

Φii(u2) = inf
γ∈P

sup
u∈γ

Φii(u) ≥ ρ > 0.

This gives us the required result for problem (1.1), which is a second nontrivial weak solution.

Example 4. Let Ω = B(0, 1) be the unit ball in R2. Define p(x) and q(x) as functions depending on the
radial distance from the origin:

p(x) = 3 + sin(π‖x‖)

q(x) = 2 + sin(π‖x‖)

Here, ‖x‖ denotes the Euclidean norm of x. Clearly, for all x ∈ B(0, 1), we have q(x) < p(x) since
2 + sin(‖x‖) < 3 + sin(‖x‖).
Define f : ∂B(0, 1)× R→ R by:

f(x, u) =
sin(u)

1 + |u|p(x)

The problem (1.1) becomes{
4p(x)u+4q(x)u = 0 in Ω,

(|∇u|p(x)−2 + |∇u|q(x)−2)∂u∂ν = λ sin(u)
1+|u|p(x) − |u|

p(x)−2u− |u|q(x)−2u on ∂Ω,
(4.10)

Now, let’s verify the hypotheses for the function f :

- (H0) : f(x, t) = sin(t)
1+|t|p(x) is continuous in x and t since the sine function and the denominator are

continuous functions.
- (H4) : Take t0 = 1. Then, since ∂B(0, 1) is the boundary of the unit ball, it is the circle of radius 1
centered at the origin. On this boundary, ‖x‖ = 1 for all x ∈ ∂B(0, 1), and thus p(x) = 3.

F (x, t0) =

∫ 1

0

sin(1)

1 + 13
ds =

∫ 1

0

sin(1)

2
ds > 0

Hence, F (x, t0) > 0 almost everywhere on ∂B(0, 1).

- (H5) : For all x ∈ ∂B(0, 1),

lim
|t|→+∞

f(x, t)

|t|p(x)−1
= lim
|t|→+∞

sin(t)

|t|2(1 + |t|3)
= 0

- (H6) : For all x ∈ ∂B(0, 1),

lim
|t|→0

f(x, t)

|t|p(x)−1
= lim
|t|→0

sin(t)

|t|2(1 + |t|3)
= 0

By Theorem 4.4, the problem (4.10) has at least two nontrivial weak solutions for every λ > λ1, where
λ1 is the one found in Theorem 4.1.
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5. Conclusion and perspectives

In this paper, we studied a nonlinear elliptic problem driven by the (p(x), q(x))-Laplace operator in
a bounded domain. Using critical point theory, we proved existence and multiplicity theorems for this
problem under Steklov boundary conditions. Specifically, the use of several mountain pass theorems and
a traditional Weierstrass-type theorem proved to be effective. The methods and results presented in this
work are different from those concerning the (p, q)-Laplacian.

There are two kinds of difficulties encountered: firstly, selecting specific conditions that enable the
utilization of nonlinear analysis theorems; and secondly, effectively applying these theorems.

The findings from this study open several exciting avenues for future research, particularly in the area
of control theory. We propose the following research directions to explore the applications of (p(x), q(x))-
Laplacian problems in control systems, drawing on recent advances in the field:

Our results on (p(x), q(x))-Laplacian problems could be extended to investigate the controllability of
discrete-time semilinear systems. The framework for controllability developed in [21] can be adapted to
analyze how (p(x), q(x))-Laplacian operators influence the approximate controllability of discrete-time
fractional evolution equations. Future research could focus on applying these concepts to develop new
methods for ensuring controllability in systems governed by (p(x), q(x))-Laplacian equations.

Another promising direction is to explore approximate controllability in semilinear fractional control
systems. The methods described in [32] for analyzing semilinear delay control systems of fractional order
could be adapted to investigate the controllability of systems described by (p(x), q(x))-Laplacian differ-
ential equations. This research could lead to the formulation of new criteria for achieving approximate
controllability in such systems.

The theory developed for complete controllability of semilinear stochastic systems with delay in [31]
offers a foundation for extending the (p(x), q(x))-Laplacian framework to stochastic control systems.
Future research could explore how the results for complete controllability of stochastic systems can be
applied to (p(x), q(x))-Laplacian problems, potentially leading to new control strategies and methods for
managing stochastic dynamics in nonlinear systems.

By pursuing these future research directions, we aim to bridge the gap between theoretical advances in
(p(x), q(x))-Laplacian problems and practical applications in control theory. These efforts could lead to
the development of innovative control strategies and a deeper understanding of how nonlinear differential
equations can be managed in both deterministic and stochastic frameworks.
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