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EXPLORING NONTRIVIAL SOLUTIONS FOR STEKLOV BOUNDARY VALUE
PROBLEMS WITH (p(z),¢(z))-LAPLACIAN

A. LAKHDI, B. KARIM AND M. R. SIDI AMMI

ABSTRACT. In this study, we demonstrate that a Steklov boundary value problem involving (p(z), q(x))-
Laplacian has nontrivial weak solutions in diverse situations. The mountain pass theorem and a con-
ventional Weierstrass type theorem are the basis for the existence results. We used the symmetric
mountain pass theorem to derive our multiplicity results.

Keywords: (p(x),¢(z))-Laplacian operator, Mountain Pass Theorem, Steklov eigenvalue problem,
Weierstrass type theorem.

1. INTRODUCTION

We consider the following nonhomogeneous Steklov eigenvalue problem

Ap(x)u + Aq(z)u =0 in Q,
(Va2 4 [Tt -2) 85 — g ) — |uf )2 — [ufs 20 on 9

where A u = div(|Vu[P(*)=2Vu) is the p(x)-Laplacian operator, € is a bounded domain in RY(N >
2), 9% is the normal derivative of the outer unit on 92, p,q € C4+(Q) := {m € C(Q) : min, g m(z) > 1}
such that ¢(.) < p(.) and g is a function fulfilling appropriate conditions.

For m € C*(2), we denote

(1.1)

m~ =minm(z); m" =maxm(z);
€ z€Q

and

00, if p(z) > N.

The study of differential equations and variational problems with variable exponents has garnered
attention due to both their intriguing mathematical properties and their significant applications in fields
such as fluid mechanics, material science, and biological systems. Understanding the behavior of solutions
to these problems is essential for accurate modeling in these areas.

One notable example is the model for electrorheological fluids with p(z)-growth developed by Ra-
jagopal and Ruzicka (see [27, 28]). These fluids change their mechanical properties in response to an
electric field E(z). In the steady-state case, the model is described by the equation

—div S(z,E(v)) = g(z,v,Dv), dive =0,

where v is the fluid velocity, £(v) is the symmetric part of the gradient Dv, and the ”extra stress” tensor
S satisfies

N— .
pa(x):{ %a lfp(l')<N7

D?S(x,2) > v(1 + |2[*) =) =2/2]q,
with p(z) = p(|E|?) and E given.

Similarly, models have been developed for thermo-rheological fluids, where viscosity is affected by
temperature (see [3, 36, 37]). For example, the differential system modeling the ”thermistor problem”
includes equations such as

—div(p(z)|DulP™~2Du) = 0.

These models are crucial for the design of advanced materials and systems in engineering. In image
processing, the p(x)-Laplacian operator is used to restore images by smoothing while preserving edges,
which is important for noise reduction (see [6]):

—Apyu = I(z) —u,
where I(z) is the original noisy image and wu is the restored image. This technique is vital for improving
the quality of visual data in various technologies. Other applications include elasticity problems (see
[26, 35]), variational integrals with nonstandard growth (see [1, 23]), and fluid flow in porous media (see

[4)-
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Recently, there has been significant interest in nonhomogeneous eigenvalue problems involving oper-
ators with variable exponent growth conditions, such as the p(z)-Laplacian. These operators present
unique challenges due to their nonhomogeneous nature, which renders many analytical techniques that
work for constant exponent cases ineffective. For example, the Lagrange multiplier theorem does not
apply to many problems involving these operators, indicating greater complexity compared to problems
involving standard p-Laplacian operators.

Our research is also motivated by the challenges in obtaining multiple solutions in the superlinear
case and other complexities in applying variational methods. Specifically, we must demonstrate that the
operator ®; (see Lemma 3.3) has the (S;) property, a compactness condition crucial for establishing
other important properties, such as the Palais-Smale condition, within a variational framework.

In the following, we provide a concise yet comprehensive overview of the current state of research in
this field.

The constant case where p(z) = p and ¢(z) = ¢ (p and ¢ are constants) has been extensively investi-
gated, as noted by the authors in the survey [22], which outlines several key applications of these results.
Furthermore, in [30], variational methods combined with critical point theorems are utilized to explore
these problems.

Regarding the case p(z) = ¢(x), Numerous researchers have investigated elliptic equations with p(z)-
Laplacian subjected to different types of boundary conditions in both bounded domains as discussed in
[12, 19, 33], and in unbounded domains as detailed in [11, 15, 34]. Some studies establish the uniqueness
of solutions, while others confirm the existence of two, three, multiple, or even infinitely many solutions.
Particularly, in [19], A. Zerouali et al. studied the problem

Dpyu = |uP® =2y in Q,
\Vu\p(“)_Q% = g(z,u) on 99,

and established, under suitable assumptions on g, the existence of weak solutions.

For further information and specific insights regarding variable exponent problems, we recommend
interested readers to consult the references [11, 12, 24, 25].

To our knowledge, no articles have been published on the existence results for this class of Steklov
problems with the (p(z),q(z))-Laplacian. The authors employ a variational approach to investigate
the existence and multiplicity results of Steklov elliptic equations involving the (p(z), ¢(z))-Laplacian,
incorporating concepts from the previously mentioned literature.

Our aim is to establish conditions on the function g that are sufficient for the existence of nontrivial
weak solutions to problem (1.1) under the given cases :

i) g(z,u) = f(z,u) + Mu|*®~2u, A € RT and a € C(Q);
i) g(z,u) = Af(x,u), A >0,

The following conditions on f are enumerated, but it is important to note that these conditions do

not have to be satisfied simultaneously.

(HO) f:08 x R — R is continuous.
(H1) There exists d > 0 and s € C (Q) with pT < s~ < st < p?(z), such that

()] < d[t)*@,

forae. € 9 and allt € R.
(H’1) There exists d > 0 and s € C () with sT < p~, such that

()] < d[t)*®,

for a.e. x € 02 and all t € R.
(H2) There exists u > p™ and [ > 0 such that

0 < pF(x,t) < f(z,t)t,
for a.e. € 9 and all [t| > [, where F(x,t) = fot f(z,s)ds.

(H3) For a.e. x € 9N and all t € R, f(x, —t) = —f(x,1).
(H4) There exists to > 0 such that F(z,to) > 0 a.e. x € 9.
t
(H5) For all z € 99, lim @t 0.
|t|]—+oo [¢[P()—1
f(z,1)

(H6) For all z € 09, ‘tlllr_>n0 @1

In this paper, our first and last results rely on the utilization of the mountain pass theorem (see, [2]).
The determination of critical points of functionals has become an essential approach for solving elliptic

=0.
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equations and variational problems due to its substantial intuitive appeal and practical significance. The
second and third ones are based on a variant of symmetric mountain pass theorem.

This paper comprises four sections. The second section present basic properties related to the Lebesgue
and Sobolev spaces with variable exponents. Additionally, we compile the essential components of our
proofs. The proofs for our primary outcomes under case (i) are detailed in section three, while section
four is dedicated to addressing case (ii).

2. PRELIMINARIES

In this section, it is necessary to explore the theory related to generalized Lebesgue-Sobolev spaces.
However, for the sake of convenience, we will focus on only few aspects within the theory.
We introduce the generalized Lebesgue space

LP@(Q) = {u :Q cRY = R is measurable and / JuP@ dz < +oo} )
Q

p(z)
de <15,

possessing the Luxemburg norm

|u|LP(z)(Q) := inf {a >0; /
Q

which is separable and reflexive Banach space (see, [13]).
Let us define the space

(67

W@ () = {u e L70(@) / [Vl € L@},

equipped with the norm

p(x) p(x)
[l := inf {a >0; / ulz) dx+/ V@) ™ g < 1} C Yue Whr@(Q),
Ql @ Ql «
Proposition 2.1. [9] Let u € W) (Q).
Let ||ul| :== |Vu| o) (o) + [ulpoe) 90)- Then the norm |lull is a norm on WP (Q) which is equivalent

to ||ullq.

Proposition 2.2. [11, 20, 10]

(1) WEP®)(Q) is a separable and reflexive Banach space;
(2) If h € C(Q) and h(z) < pP(z) for any x € Q, then the embedding from WP (Q) to LM (09)
18 compact and continuous.

The mapping p, : WP@)(Q) — R defined by

pow)i= [ [Fup@do+ [ (o,
Q oQ
plays a crucial role in handling the Lebesgue-Sobolev spaces with variable exponents.
Proposition 2.3. [9] For u,ur € W'"?@)(Q); k=1,2,..., we have
. . - +
(1) \lull = 1 implies [[ul]? < pp(u) < |lul[”;
(2) llull <1 implies |[ul[P" < pp(u) < [[ul[" .
To prove Theorems 3.2 and 4.4, we will utilize the subsequent mountain pass theorem.

Theorem 2.4 ([17]). Let X endowed with the norm ||.||x, be a Banach space. Assume that ¢ € C1(X;R)
satisfies the Palais — Smale condition. Also, assume that ¢ has a mountain pass geometry, that is,

(1) there exists two constants n > 0 and p € R such that ¢(u) > p if ||ullx = n;
(2) #(0) < p and there exists e € X such that |le||x > n and ¢(e) < p.

Then, ¢ has a critical point ug € X such that ug # 0 and ug # e with critical value
¢(uo) = inf sup d(u) > p >0,
where P denotes the class of the paths v € C([0,1]; X) joining 0 to e.
The key element in demonstrating Theorem 3.5 lies in introducing a modified version of the symmetric

pass theorem.
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Theorem 2.5 ([18]). Let X be an infinite dimensional Banach space and I € CY(X,R) satisfy the
following two assumptions:

(A1). I(u) is even, bounded from below, I(0) =0 and I(u) satisfies the Palais-Smale condition (PS);

(Az). For each k € N, there exists an Ay, € 'y such that sup I(u) < 0, Where Iy, denote the family of
u€Ay

closed symmetric subsets A of X such that 0 ¢ A and v(A) > k with
v(A) == inf{k € N;3h : A — R*\{0}such that h is continuous and odd}
18 the genus of A.
Then I(u) admits a sequence of critical points uy such that I(uy) < 0; up # 0 and ur, — 0 as k — oo.

Lastly, we bring to attention the Weierstrass type theorem, which will be employed in the demonstra-
tion of theorem 4.1.

Theorem 2.6 ([7]). Assume that X is a reflexive Banach space and the function ® : X — R is coercive
and (sequentially) weakly lower semicontinuous on X. Then, ® is bounded from below on X and attains
its infimum on X.

3. THE SUPERLINEAR CASE

In this section, we discuss the case (i) and establish, under certain conditions on the number A\ and
the function f, the existence and multiplicity of weak solutions.
In this case, the Euler-Lagrange functional related to problem (1.1) is given by

|Vulp() |vu|q(w)> / (|up(w) |u|q(w)>
D;(u) = /( + dz + + do
W=\ T oo \p@ T 4@
—)\/ [ F(z,u)do, for all u € WP (Q).
0!

o ofz) 9

Definition 3.1. We say that u € W'P)(Q) is a weak solution of problem (1.1) in the case (i) if :

/ (IVal®)=2 4 [Vu|9)-2) VuVpdo+ / (172 4 )22 wgpdor
Q o

= /\/ [u|*®) =2 updo + / [z, u)edo, for all p € WHPE) ().
a0 a9
It is clear that the critical points of ®; are the weak solutions of our problem.

3.1. The existence results.

Theorem 3.2. Assume that (H0), (H1) and (H2) are satisfied. If ot < p~, then there exists A > 0
such that for any A € (0, A\y) the problem (1.1) has at least a nontrivial weak solution.

The proof of Theorem 3.2 will be based on the mountain pass theorem (refer to Theorem 2.4). To
accomplish this, we have structured our proof in the following manner:
Throughout this subsection, we operate under the framework of Theorem 3.2

Lemma 3.3. The functional ®; satisfies the Palais-Smale condition.

Proof. Let ¢ > 0 and (u,) be a sequence in W?(#)(Q) such that |®;(u,)| < ¢ and ®;(u,) — 0 as
n — oo. First, let’s demonstrate the boundedness of (uy),. To do this, we use contradiction to argue
and suppose that ||u,|| — 0o, up to a subsequence.Then, applying (H2), for sufficiently big n we obtain

1,
L+ c+ [lua| Z(I)i(u)_g D, (un), un)

(D, (un), un
S R O TAs
—/ <F(1:,un) - ;f(z,un)un> do
a0

1 1 1 1
> (- _ = _ - _ a(z)

1
— / (F(w,un) — f(x,un)un) do
{209 up (2)[>1} 0

— 109 sup{|F(z, t) — éf(:z:,t)ﬂ;x € 00, ] < 1.
Volume 14 Issue 10, October 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper |D: SR241226033316 DOI: https://dx.doi.org/10.21275/SR241226033316



International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

According to the fact that
fu(@)|*) < Ju(@)|*" + u(@)|*"; Vo e
we deduce that for all u € WHP()(Q), we have

/ |u|”‘(‘”)d0§/ |u|a*da+/ lu|* do.
o0 [019] o

Since at < p~ < p?(x) for any = € Q, then by Proposition 2.2, WP(#)(Q) is continuously and compactly
embedded in L' (9Q) and in L (8€). It follows that there exists two positive constants Cy and Cs
such that

/ [u[*@do < Cy[ul ™+ Collul*,  Yue WHPE(Q),
15}9)

Thus
[ o <erlull®” it ul <1,
o0

and
[ o < el il 2 1
o0

Where ¢; is a positive constant. Now using Proposition 2.3 and (H2), we deduce that, for sufficiently
large n,
1 1

- +
e+ 1t funl 2 (5 = 5 ) unlP” = 3 unl®

— 100l sup{| P, 1) — ¢ fo 1)t € 09, 1] < 1.

Dividing by ||u, || and letting n — oo in the above inequality, since a™ < p~, then we obtain a
contradiction. This proves that (uy,), is bounded in W1P(#)(Q). For a subsequence still denoted (ty, )y,
we have u, — u weakly in W'P®)(Q), u, — u strongly in LP(®)(9Q), in L2*)(9Q) and in L®)(9Q).
Therefore, (®;(uy,), tn — u) — 0, Loo [tnP@ =20, (uy, — w)do — 0, [o, [un]*® 2w, (u, — u)do — 0,
Joq 1tal“® 2w, (u, — u)do — 0 and by (H1), we have [, f(z,u,)(un, — u)do — 0. Thus,

/ Ve, PP =2V, (Vu, — Vu) dz + / |V, |7 =2V, (Vu, — Vu) dz — 0.
Q Q

Since [, |Vun|P® =2V, (Vu, — Vu)dzr and [, |Vu,|?™~2Vu, (Vu, — Vu)dz have the same sign, then
each term converges to 0. Then

/ |V, [P =2V, (Vu, — Vu)dz — 0.
Q

According to the fact that the mapping A,y is of type (Sy) (see, [12]). We deduce that u,, — u strongly
in W1P(®)(Q). Which completes the proof. d

Lemma 3.4. With the same assumptions as in Lemma 3.3, we obtain the following results:
(1) There exists a constant N\, > 0 such that for every A € (0,\.), there are R > 0 and p > 0
satisfying ®;(u) > R > 0 for all u € WP (Q) where ||u|| = p.
(2) There exists a function ¢ € WHPE)(Q) such that o > 0 and ®;(te) — —co as t — +oc.
Proof.
(1) We have

o= [ (S + ) e [, (B + )

|ua(z)da—/ F(x,u)do
oo a(z) o9 7 .

By applying (H1), for every |lu|| < 1, we have

—-A

+
e

B > T = 2% e g
where c1, k1 > 0. Consequently, we have
+ 1 Ac a —pt s —pt
Biu) 2 P (o = 22l = k). (3.1)
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Let A > 0 be given. We define the function v : (0, +00) — R by the formula
\ep _
a(t) = a—c_lt"‘ RN S (3.2)

One can easily show that 1, (¢) is continuous on the interval (0,+o0c). Given that s= > p™ >
p~ >aT >a” > 1, we conclude that

t1—1>I(§1+ VAlt) = t—lggloo YA(#) = oo,

Therefore, there exists a t. > 0 such that 0 < ¥ (t.) = (Iglin )1/},\ (t), where t, is given by the
te (0,400
equation

’ A - _
Ux(t) = %(Q_ A L Y Y (U ey 1}

1
Hence, t, = (%) * 7% . An easy computation shows that
57—1J+
Ya(ty) = K.As=—2= — 0 as A — 0, where K > 0. (3.3)
From (3.1), (3.2), and (3.3), we deduce that there is a positive constant A, such that for every
A € (0,\,), one can choose R > 0 and p > 0 such that ®;(u) > R > 0 for all u € WP@)(Q)
with |ul| = p.
(2) By the condition (H2), we can conclude that there exists a positive function a(x) such that for
all |7| > 1, F(z,7) > a(z)|7]? for a.e. z € 9. Consequently, for ¢ > 1, we get
" 7" A
®i(tu) < —pp(u) + ——pg(u) —
)= () = paw) = =

— |89 inf{|F(z, t); € O, [t| < I}

- te/ a(x)|u|?do.
{z€o;|u(x)|>1}

Since § > pt > p~ > ¢7, it follows that ®;(tp) — —oco as t — +oo with ¢(z) = |u(z)| +1 +¢,
for all x € Q, where ¢ > 0. Therefor, for a fixed u # 0, we can choose e = ty such that |le| > p
and ®;(e) < 0.

|u|*®) do

O

Proof of Theorem 3.2. 1t is clear that ®;(0) = 0 < R. Therefore, by Lemmas 3.3-3.4 and Theorem
2.4, we deduce that, for every A € (0, A,), problem (1.1) admits at least one nontrivial weak solution in
whr)(Q). O

Example 1.

For N =2, let Q = (0,7)?, take p(z) = 3+ 1 sin(z1 +a2), ¢(z) = 2+ 1 sin(z1 —z3). Note that q(z) < p(z)
for all z € Q. Let’s define:

1
f(z,u) = [u|™ ™2y where m(x) = 4 + 3 sin(zqx2).
Define a(.) as a continuous function such that ot < p~. For ezample:
1
alz) =2+ 1 cos(z1 + x2).

In this case, the problem (1.1) becomes :

Ap(z)u + Aq(x)u =0 imn €,
(|Vulp®) =2 4 |Vu|q(””)’2)g“ || = 20p 4 M| @) =2 — [u|P@) =2y — |u|9®) =2y on 09,

L =

(3.4)

The function f(.,.) is continuous on dQ x R because (x,u) — |u|™®) 2w is continuous in both x and u,
which means that (HO) is satisfied.
Given f(x,u) = |[u|™®)~2u, we have:

|f ()] = [¢ )
This can be bounded by d|t|*®) 1 with d = 1 and s(z) = m(x). We can easily see that p(z) varies
between 3 and 3.5, and m(x) varies between 4 and 4.33, then p™ = 3.5 and s~ = 4, ensuring the
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condition pT < s~ < st < p?(x) is met. Consequently, (H1) is also satisfied.
For f(z,u) = |u|™®)~2u, we have

t
1

F(x,t :/ 5|25 ds = ——[¢t|™®),

@n=[ s meld

Then,
flx, )t = [t|™®),
To satisfy the condition (H2), let p=m~—. We get:

m
F(z,t) = TS
PP (@,t) = it
Since m~ < m(z), we have:
KO
m(z)
thus:

.
m(x)
ensuring that the condition is satisfied for |t| > 1 with an appropriate choice of .

By Theorem 3.2, there exists A\, > 0 such that for any A € (0,\.) the problem (3.4) has at least a
nontrivial weak solution.

pk(z,t) = [t < ™) = f(z, t)t,

3.2. The multiplicity results.

Theorem 3.5. Assume that f : 90 X R — R is a Carathéodory function satisfying the conditions (H’1),
(H2) and (H3). If ot < q= < qT < p~. Then, there exists A\g > 0, such that for any A > \g there exists
a sequence (ug) of nontrivial weak solutions for the problem (1.1) in the case (i). Moreover, uy — 0, as
k — oo.

We show that the symmetric mountain-pass theorem (see Theorem 2.5) can be applied. We have
divided the proof into a sequence of lemmas.

Lemma 3.6. Given the assumptions stated in Theorem 8.5, the functional ®; is an even function,
bounded from below, satisfies the Palais-Smale (PS) condition, and we have ®;(0) = 0.

Proof. By the properties of f, it is obvious that ®; € C!, ®; is even and ®;(0) = 0.
Using (H'1), we obtain

|Vu|P) |vu|q(w)> / (|u|p(m) u|q(w))
O, (u 2/( + dz + + do
W= J 0w T oo\ p@) T 4@
f/\/ u|a($)dak/ [l 4
N 04(33) 0 5(1‘)

1 1 A k
> —pp(u)+ —p u——/ ua(m)da——/ ul*®do
o)+ (= = [ =/

1 A k "
> () - 2= [l @do = = [ o
p & N S 0

Since ot < p~ < p?(x) and sT < p~ < p?(z), then by Proposition 2.2, there exist two positive constants
c1 and ¢y such that

1 A k
@) > oppl) = =l =l ] > 1,

and ) \ L
() 2 —pplw) = =l =l il < 1,

Now using Proposition 2.3, we have

1 - 1A + ok + .
O L e L A
and ) \ L
@) > P = Sl = Sl ] < 1

Asp™ > at and p~ > s, ®; is bounded from below. This finishes the proof.
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Lemma 3.7. Assume that at < ¢~ < ¢q" < p~. Then for each k € N*, there exists an Hy, € T such
that: sup ®;(u) < 0.

u€Hy
Proof. Let vy, v, ,vx € C°(RY) such that

{z € 09Q; vi(x) # 0} N{x € IV vj(x) #0} =0

if i # j and

Take F}, = span{vi,vq,--- ,vx}; we have dim Fj, = k. Denote S = {v € W'P@)(Q); |jv|| = 1} and for

0<t<1, Hp(t) = t(Fr N S). For all ¢t €]0,1], we have v(Hy(t)) = k. We claim that for any k € N*,

there exists ¢ €]0,1] such that sup ®;(u) < 0. Indeed, for £ € N*, 0 < ¢t < 1, and using (H'1), we
ueEHy (g

have "

sup P;(u) < sup P;(tv)
u€Hy (t) veEFLNS

(@) (@) (@)
sup {/ \Vv|p(m)dx+/ / ——|v|P® do
verns Ja p(@) o () o p(z)

ta(x) (@)
+/ —— |p|"®) do — F(z,tv)do — A |v|0‘(z)d0}
a0 ¢(x) a0 a(z)

IN

IN

vEFLNS p

P a4 olz
sup { —p,(v )+*pq 7/ Bl )do}

- - +
tP td te
— + —pq(v) — )‘T/ 0]*®do & .
veFRNS | P q at Joa

Since W1P(#)(Q) is continuously embedded in W14(*)(Q), then there exists a constant co > 0 such that
lvllgz) < collvll, Yu € WLP)(Q) and since v € S, then |v|| = 1 which means that lv]lq(z) < co. Thus

IN
wn
=

ko]

%H ) < 1. We get then by Proposition 2.3
q(z
v Vola®) vla@)
Pq <> = | q(‘x) der/ | l‘((r) do < 1. (3.5)
Co Q ¢ o cj
We know that 0 < Cg(w) < max(cg; , Cg+) M, which implies that (ﬁ) > ﬁ Thus
v Pq(v)
W)= M 3.6
Pa <Co) - M (3.6)

Combining (3.5) and (3.6), we find
pq(v) < M.

Let ¢= min / |v|°‘(£)da >0and since 1 < ¢~ <p~ and 0 <t <1, then we get
veEFLNS a0
- - +
t4 t4 M Aet®
sup b (u) < + :

weH,(t) q- q at
<t (1+M_ )\f +)'
= ¢ atte—a

At this point, since a™ < ¢~, we can find a positive constant \g such that for every A > \g, there exists
a sufficiently small ¢ € (0, 1] satisfying
1+ M Ac

< 0.
E——
q attd

Then, we have

sup  P;(u) < 0.
uGHk(tk)

This completes the proof. O

Proof of Theorem 3.5. By applying Lemmas 3.6, 3.7 and Theorem 2.5, it follows that the problem
(1.1) possesses a sequence of weak solutions (uy) for which ®;(uy) < 0 and i liIE up = 0. O
—+00
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Example 2. Let Q be the unit disk in R?, i.e., Q = {x € R? : ||z|| < 1}. Its boundary is 0Q = {x € R? :
Jall = 1}.

We need continuous functions a(z), q(z), and p(x) on Q such that a(z) < q(z) < p(x) for all x € Q.
For simplicity, let:

a(@) =2+ 3 (lell =1), ) =3+ Iz~ 1), p()=4+ 5 (Jl - 1)

This ensures a(x) < q(z) < p(z) for all x € Q.
We need to define f: 02 x R — R that satisfies (H1’), (H2), and (HS).
Let’s define:

dit|*=2t  if|t| > 1

where s(z) = 2.5+ L (||z]| — 1), which is a function in C(Q) with s* < p~ = 3.875, d > 0 and
w=>5>pt =4

Now, we check the hypotheses:

For |t| <1,

dit]s @2t f |t <1
ﬂ%ﬂ:{|| 1t <

|f (@, )] = "™~ < e
Since s(x) < p(x) for all x € Q, f satisfies (H1’).
For |t| > 1,
t t d
Plat) = / P, s)ds = / dls|2s ds = L]t
0 0 K
Then,
0 < uF(x,t) =dt|" = f(z,t)t

ensuring 0 < puF(z,t) < f(x,t)t for |t] > 1= 1.
Fort e R,

f(xv 7t) = 7f($,t)
remains true due to the symmetry in the definition. Finally, by Theorem 3.5, there exists Ao > 0, such
that for any XA > Ao there exists a sequence (uy) of nontrivial weak solutions for the problem (1.1) in this
case.

4. THE SUBLINEAR CASE

In case (i) of the problem (1.1), the associated energy functional ®;;, which is defined on WP(®)(Q),

is given by:
p(z) q(z) p(z) q(x)
o = [ (I Uy [ () Y,
o\ p) q(x) aa \ P(x)  q(z) (4.1)

- A F(x,u)do.
o)

And we have

(@ (u),v) :/ (|Vu|p(”’)_2 + |Vu|‘Z(I)_2) VuVudz +/ (|u|p(“”)_2 + |u|q(l)_2) wvdo
Q o0 (42)

—A f(z,u)vdo,  for any u,v € lep(x)(Q).
Felo)

As in the third section, the weak solutions of problem (1.1) given by (4.2) are exactly the critical
points of ®;; defined by (4.1).

4.1. The existence results.

Theorem 4.1. Assume that f : 9Q X R — R is a function satisfying the conditions (HO), (H4) and
(H5). Then, there exists a constant Ay > 0, such that for every X > A1, the problem (1.1) in the case
(ii) has at least one nontrivial weak solution.

To prove our Theorem 4.1, we will apply the Weierstrass type theorem 2.6. We start with the following
two Lemmas.

Lemma 4.2. For any A > 0, the functional ®;; is (sequentially) weakly lower semicontinuous.
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dxb

Proof. The same approach used in the proof of Lemma 5 in [5], by replacing the term fQ p

(x)
/. 50 Jul” 2 do, shows that the functional

p(@)
|Vu[P®) | V|2 lu[P®) w2
U + dx + + do
o\ pz) q(x) oo \ p(z)  q(z)
defined on WP(*)(Q) is weakly lower semicontinuous. At the same time, hypotheses (H5) implies the
existence of a positive constant k' such that

|f(z, )] <K' (14 [tP®1Y) for all t € R and a.e x € 9. (4.3)

Hence, since W'?(®)(Q) is compactly embedded to LP(*)(99), standard arguments infer that ®;; is
weakly lower semicontinuous for every A > 0 and the proof of the lemma is complete. (I

Lemma 4.3. For any A > 0, the functional ®;; given by (4.1) is coercive and satisfies the Palais-Smale
condition.

Proof. We first show that ®;; is coercive. To do this, fix € > 0. Using condition (H5), we can find § > 0
such that

|f(x,t)] < elt|P@~1 for all |t| > 6 and a.e. z € HQ.
By integrating this inequality, we obtain

t|p(@)
Fa,) < e

+ max |f(z,s)|[t| for all t € R. 4.4
- max|f ()l (44)

Applying Proposition 2.3, we find that for any v € W'P®)(Q) with |lu| > 1,

|V |P(®) |qu(:c)> / <u|p(x) |u|Q(w)) 1 _
+ dr + + do > —||ul|? . 4.5
L+ oo\ 2@ q@) prid (4.5)

From inequalities (4.4) and (4.5), we deduce that for any u« € WP (Q) with |lul| > 1,

Biu) > (1—) Jul” <A [ x| 7o, sl o

Choose € small enough so that p% — 1% > 0. Moreover, due to the continuity of f and to the continuous
embedding WP (Q) < L'(9Q), there exists k” > 0 such that

Dji(u) > <pl+ - ;6) [ul|P” = MK ||u|  for all uw € WHPE)(Q) with |jul| > 1.
As p~ > 1, we have ®;;(u) — +00 as |lu|]| = 400, which implies that ®;; is coercive. We will now show
that ®;; satisfies the Palais-Smale condition. To do this, let ¢ > 0 and (u), C whr) (©) be a sequence
such that |®;;(un)| < ¢ and P, (u,) — 0 as n — +oo. Since ®;; is coercive, it is straightforward to see
that (up), is bounded. To show that (u,), has a subsequence converging to a critical point of ®;;, we
follow the same approach as in the proof of Lemma 3.3, using (4.3) in place of (H1) and ®;; instead of
®,;. Thus, &;; satisfies the Palais-Smale condition, completing the proof of the lemma. O

‘We are now able to show Theorem 4.1.

Proof of Theorem 4.1. Applying Theorem 2.6 along with Lemmas 4.2 and 4.3, we conclude that there
exists a global minimizer u; for ®;; in W1HP(®)(Q). This minimizer u; also provides a weak solution to
the problem (1.1) in case (ii). The next question is whether u; is nontrivial. To address this, we need
to examine the conditions that ensure the nontriviality of w;. It is evident that, for every A > 0, the
following inequality holds:

q)ii(ul) < (I)“(’U,) for all u € Wl,p(a’:)(g) (46)
Using (H4), we can choose A1 > 0 as follows

A A [oq F(z,u)do
1= sup p(z q(z p(z u|qa(®
WEW LR (2),u0 [ ('vul = 4 [Tl )) dz + [, (Iul 5+ |q‘(aﬁ))) do

p(x) q(x) p(z)
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Assumption (H4) ensures that for every A > \;, there exists a function w € W) (Q) such that

o [ (S s | (B

- )\/ F(z,w)do <0.
o9

We conclude from (4.6) and (4.7) that

(I)”(Ul) S (I)”‘(w) for all A > Al. (48)
Since we have ®;;(0) = 0, (4.8) gives u; # 0. Thus, for A > Aq, the problem (1.1) in the case (ii) admits
a nontrivial weak solution, which completes the proof of Theorem 4.1. O

Example 3. Let Q = (0,1)? and x = (z1,x2). Define:

p(x) = 3+ z129

a@) =2+ =7
2
It is clear that q(z) < p(x) for all x € Q = [0,1]2.
Define f: 00 xR — R by
u
f(z,u) = T4
In this case, we have the problem
Bpayu + Lgyu =0 in Q, @9)
(Va2 5 [Tul)2) 8% = Ay — a9 ~2u— [uf2) 20 on 00, -

The function f satisfies the following hypotheses:
Hypothesis (H0): f is continuous in both variables x and t.
Hypothesis (H4): Let to = 1. Then for x € 99

to 1 s
F = =
(x,t0) /0 f(z,s)ds /0 T+ ds >0
Hypothesis (H5): For all x € 09):

t
f(z,t) . T[] . 1
LA ] ——— = lim ———— =0
[t|—+oo [EPE) =L | Sqe0 [E3TT1T2—1 500 [E]2HE1%2 (1 4 |2])

since 2+ x1x9 > 2 and 1 + |t| grows linearly with t. Therefore, by Theorem 4.1, there exists a constant
A1 > 0, such that for every A > A1, the problem (4.9) has at least one nontrivial weak solution.

4.2. The multiplicity results.

Theorem 4.4. Assume that f : 00 X R — R is a function satisfying the conditions (HO0), (H4)-(HG6).
Then, the problem (1.1) has at least two nontrivial weak solutions for every A > Ay in the case (ii), where
A1 is the one found in Theorem 4.1.

The proof of this theorem is basically relies on Theorems 4.1 and 2.4.

Theorem 4.1 assures the existence of a nontrivial weak solution u; to problem (1.1) in the case (ii), for
all A > A;. In order to find a second weak solution for all A > Ay, we turn to Theorem 2.4. By Lemma
3.6, we know that ®;; satisfies the Palais-Smale condition for all A > 0. Since ®;;(0) = 0 and u; is a
nontrivial function with ®;;(u1) < 0, as shown by equation (4.8), we now need to establish that ®;; has
a mountain pass geometry for all A > A\;. Specifically, we need to find two positive constants, p and
b < |Ju1]|, such that ®;;(u) > p for all u with ||u|| = b. To do this, choose € > 0 and s € C(Q,R) such
that p* < s~ < sT < p?. According to conditions (H5) and (H6), there exist §; > 1 and 5 > 0 such
that

|f(z, )] < elt|* ™~ for [t| > §; and for ae. = € IQ,
|f(z,t)] < €e|t|P@~1 for |t| < d, and for a.e. = € AN,
It follows that there exists a constant ks > 0 chosen sufficiently big to have the following inequality

|F(z,t)| < €et|P™ + ko|t]*™®) for all t € R and a.e. x € Q.
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This leads to

1
Dji(u) > <+ - Ae) pp(u) — Akz/ u[*@ do
p o0

1 .
> (p+ - Ae) ppl) — Meacljull*~,
for all u € WP (Q) with |jul| = b < 1 and ¢ is a positive constant due to the continuous embedding

Whr)(Q) — L5®)(9Q). Select € to be sufficiently small so that p% — Ae > 0. By Proposition 2.3, for
any A > \; and u € WP (Q) with |ju| = b < 1, it follows that

1 + o
Dy (u) > <p+ - /\e> [[w||? — Akae||u|l®~.

Since p* < s7, for sufficiently small b, there exists a constant p > 0 such that for all A > X\; > 0 and
u € WP (Q) with |lu| = b < min{1, ||u1]|}, we have ®;(u) > p > 0. Consequently, we can now apply
Theorem 2.4 to find a second critical point us € WP (Q) such that

Dji(uz) = 7116111; sup ®ji(u) > p > 0.
u€y

This gives us the required result for problem (1.1), which is a second nontrivial weak solution.

Example 4. Let Q = B(0,1) be the unit ball in R?. Define p(x) and q(x) as functions depending on the
radial distance from the origin:

p(x) = 3 +sin(r||z|))

a(x) = 2 + sin(xje])

Here, ||z|| denotes the Euclidean norm of x. Clearly, for all x € B(0,1), we have q(x) < p(x) since
2 +sin(|jz||) < 3 + sin(||z])).
Define f: 0B(0,1) x R - R by:

_ sin(u)
The problem (1.1) becomes
Ap(w)u + Aq(w)u =0 in €, 410
(V)2 4 [Vufs)-2) 28 = )=z -2 ong0, 10
Now, let’s verify the hypotheses for the function f:
- (HO) : f(x,t) = Sin) s continuous in x and t since the sine function and the demominator are

14[¢[P()
continuous functions.

- (H4) : Take to = 1. Then, since 0B(0,1) is the boundary of the unit ball, it is the circle of radius 1
centered at the origin. On this boundary, ||| =1 for all x € 0B(0,1), and thus p(z) = 3.

1 - 1 .
F(z,to) :/ sin(l) —/ SmQ(I) ds > 0
0 0

1+137
Hence, F(x,tg) > 0 almost everywhere on 0B(0,1).

- (H5) : For all x € 0B(0,1),

S o s
[t [EP@ =T jtjstoo [H2(1 + [t3)
- (H6) : For all x € 0B(0,1),
f(:mt) = lim % =0

1m —— =
[t—0 [P~ jelso [E2(1+ [¢?)

By Theorem /.4, the problem (4.10) has at least two nontrivial weak solutions for every A > A1, where
A1 is the one found in Theorem 4.1.
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5. CONCLUSION AND PERSPECTIVES

In this paper, we studied a nonlinear elliptic problem driven by the (p(x), ¢(x))-Laplace operator in
a bounded domain. Using critical point theory, we proved existence and multiplicity theorems for this
problem under Steklov boundary conditions. Specifically, the use of several mountain pass theorems and
a traditional Weierstrass-type theorem proved to be effective. The methods and results presented in this
work are different from those concerning the (p, ¢)-Laplacian.

There are two kinds of difficulties encountered: firstly, selecting specific conditions that enable the
utilization of nonlinear analysis theorems; and secondly, effectively applying these theorems.

The findings from this study open several exciting avenues for future research, particularly in the area
of control theory. We propose the following research directions to explore the applications of (p(z), ¢(z))-
Laplacian problems in control systems, drawing on recent advances in the field:

Our results on (p(z), ¢(x))-Laplacian problems could be extended to investigate the controllability of
discrete-time semilinear systems. The framework for controllability developed in [21] can be adapted to
analyze how (p(z),q(x))-Laplacian operators influence the approximate controllability of discrete-time
fractional evolution equations. Future research could focus on applying these concepts to develop new
methods for ensuring controllability in systems governed by (p(x), ¢(x))-Laplacian equations.

Another promising direction is to explore approximate controllability in semilinear fractional control
systems. The methods described in [32] for analyzing semilinear delay control systems of fractional order
could be adapted to investigate the controllability of systems described by (p(z), ¢(x))-Laplacian differ-
ential equations. This research could lead to the formulation of new criteria for achieving approximate
controllability in such systems.

The theory developed for complete controllability of semilinear stochastic systems with delay in [31]
offers a foundation for extending the (p(x),q(z))-Laplacian framework to stochastic control systems.
Future research could explore how the results for complete controllability of stochastic systems can be
applied to (p(x), g(x))-Laplacian problems, potentially leading to new control strategies and methods for
managing stochastic dynamics in nonlinear systems.

By pursuing these future research directions, we aim to bridge the gap between theoretical advances in
(p(x), g(z))-Laplacian problems and practical applications in control theory. These efforts could lead to
the development of innovative control strategies and a deeper understanding of how nonlinear differential
equations can be managed in both deterministic and stochastic frameworks.
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