Impact Factor 2024: 7.101

On Leap Zagreb Polynomials of Generalized **Transformation Graphs**

N. K. Raut

Ex. Head, Dept. of Physics, Sunderrao Solanke Mahavidyalaya Majalgaon, Dist: Beed, (M.S.) India Email: rautnk87[at]gmail.com

Abstract: In 2017, Naji et al. introduced the concept of leap Zagreb indices of a graph based on the second degree of vertices [1]. For a graph G, the leap first Zagreb polynomial is defined as: $LM_1(G,x) = \sum_{uv \in E(G)} x^{d_2(u) + d_2(v)}$, where $d_2(v)$ is d_2 -distance degree of vertex $v \in E(G)$ V(G). In this paper leap first, second, hyper leap first and second Zagreb polynomials of some generalized transformation graphs G^{xy} , $\overline{G^{xy}}$, G^{xyz} and $\overline{G^{xyz}}$ are studied in triangle with pendant edge graph and path graph P4.

Keywords: Hyper leap Zagreb polynomial, generalized transformation graph, leap degree, leap Zagreb polynomial, line vertex, path graph, point vertex and triangle with pendant edge graph

1. Introduction

Let G = (V, E) be a graph with vertex set V(G) and edge set E(G). The degree of a vertex $u \in V(G)$ is denoted by $d_G(u)$ and is the number of vertices adjacent to u. The edge connecting the vertices u and v is denoted by uv [2-3]. All graphs considered here are finite, undirected and simple. A topological index is a numerical parameter mathematically derived from the graph structure. In graph theory the leap degree or second degree of a vertex refers to the number of vertices that are at a distance of two from that vertex. Leap degree (second degree) is the denoted by $d_2(v)$. A transformation graph is a general term that refers to a graph obtained from another graph G by some transformation, such as: line graph L(G), total graph T(G), complement graph \overline{G} and subdivision S(G) etc. The procedure of obtaining a new graph from given graph using adjacency (or non-adjacency) and incidence (non-incidence) relationship between elements of a graph is known as transformation graph. There are four transformations of G^{xy} as G^{++}, G^{--}, G^{--} and their complements: $\overline{G^{++}}, \overline{G^{+-}}, \overline{G^{-+}}$ and $\overline{G^{--}}$. For three variables x,y,z there are eight distinct 3-permutations of $\{+,-\}$ so has eight corresponding graph transformations. The generalized transformation graph Gxy is a graph whose vertex set is $V(G) \cup E(G)$ and $\alpha, \beta \in V(G^{xy})$. Then α and β are adjacent in G^{xy} if and only if (a) and (b) holds:

a) $\alpha, \beta \in V(G), \alpha, \beta$ are adjacent in G if x = + and α, β not adjacent in G if x = -.

b) $\alpha \in V(G)$ and $\beta \in E(G), \alpha, \beta$ are incident in G if y = + and α , β not incident in G if y = -.

The complement or inverse of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if and only if they are not adjacent in G. That is to generate the complement of a graph, one fills all the missing edges required to form a complete graph and removes all the edges that were previously there. Therefore \overline{G} has n vertices and $\binom{n}{2}$ - m

edges. The degree of a vertex v in \overline{G} is $d_{\overline{G}}(v) = n - 1$ $d_{G}(v)$.

We use the following lemma for defining $d_G(e)$. Lemma: Let G be a graph with $u,v \in V(G)$ and $e = uv \in E(G)$ then $d_G(e) = d_e = d_u + d_v - 2$.

The transformation graph G^{xy} is just the semi-total point graph G which was introduced by Sampathkumar et al. [4]. The polynomials $M_1(G,x)-M_5(G,x)$ and $M_{a,b}(G,x)-$ Zagreb $M_{a,b}^1(G,x)$ was defined and studied for HAC₅C₆C₇[p,q] in [5]. Distance based topological indices of generalized transformation graphs were studied in [6]. The Zagreb indices and Zagreb polynomials of transformation graphs was studied by [7-9]. Wu and Meng generalized the concept of total graph to a total transformation graph G^{xyz} with $x,y,z \in \{-,+\}[10]$. Sombor index of generalized transformation graphs Gxy and their complements were computed by H.S.Ramane et al. [11]. Leap reduced reciprocal Randic and leap reduced second Zagreb indices of some graphs were investigated in [12]. Some degree based topological indices of generalized transformation graphs and their complements were computed in [13]. The forgotten indices and their complements of transformation graphs are investigated in [14-15]. Some degree based topological indices of transformation graphs [16-21] and topological polynomials of generalized transformation graphs were obtained in [22-24]. Eccentricity based topological indices of transformation graph were discussed by S.M.Hosamani [25]. Study on basic properties of transformation graphs was found in [26-27]. Some leap indices of graphs are defined and studied by Kulli [28]. Leap Zagreb indices of generalized xyz-point-line transformation graphs $T^{xyz}(G)$ when z = 1 were discussed with transformation graphs in [29]. Gourava first, second indices, hyper first and second Gourava indices were computed by [30].In $HAC_5C_6C_7[p,q]$, where p is the number of pentagons in one row and q is the number of periods in the whole lattice. The edge partition in $HAC_5C_6C_7[p,q]$ is $|E_{2,3}|=4p, |E_{1,3}|=2p$ and

Volume 14 Issue 10, October 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Impact Factor 2024: 7.101

 $|E_{3,3}|$ =24pq-6p [31]. The leap first and second Zagreb polynomials are defined as

$$LM_1(G,x) = \sum_{uv \in E(G)} x^{d_2(u) + d_2(v)}.$$
 (1)

$$LM_2(G, x) = \sum_{uv \in E(G)} x^{d_2(u) \times d_2(v)}.$$
 (2)

Hyper leap-Zagreb polynomials are defined as [32]

$$\text{HLM}_1(G, \mathbf{x}) = \sum_{\mathbf{u}\mathbf{v} \in E(G)} \mathbf{x}^{[d_2(\mathbf{u}) + d_2(\mathbf{v})]^2}.$$
 (3)

$$HLM_2(G, x) = \sum_{uv \in E(G)} x^{[d_2(u) \times d_2(v)]^2}.$$
 (4)

For a figure of triangle with pendant edge graph and its transformation graphs we refer to [13] and path graph P_4 to [15, 29]. The symbols and notations are standard, taken from books of graph theory [33-35]. The leap first, second, hyper leap first and second Zagreb polynomials are obtained for triangle with pendant edge graph and path graph P_4 in generalized transformation graphs G^{xy} , $\overline{G^{xyz}}$ and G^{xyz} , $\overline{G^{xyz}}$.

2. Materials and methods

There are four transformations of a graph G^{xy} and four for their complements $\overline{G^{xy}}$. For three variables x,y,z there are eight distinct 3-permutations of $\{+,-\}$ so eight corresponding graph transformations in G^{xyz} and $\overline{G^{xyz}}$. The d₂-distance degree for point vertices and line vertices along with edge partitions in transformation graphs G^{xy} , $\overline{G^{xy}}$ and G^{xyz} , $\overline{G^{xyz}}$ of triangle with pendant edge graph [13] and path graph P₄ [15, 29] are determined to compute leap and hyper leap Zagreb polynomials. The triangle with pendant edge graph is shown in figure (1) and path graph P₄ in (2).

3. Results and discussion

The vertex v of G^{xy} corresponding to a vertex v of G is referred to as a point vertex and vertex e of G^{xy} corresponding to an edge e of G is referred to as a line vertex.

Triangle with pendant edge graph

Proposition 1.1. Let G be a graph with n vertices and m edges. Let $u \in V(G)$ and $e \in E(G)$. Then the d_2 -distance degree of point and line vertices in G^{xy} are

(i)
$$d_{2(G^{++})}(u) = (n+m-1)-2d_G(u)$$
 and $d_{2(G^{++})}(e) = n+m-3$.

(ii)
$$d_{2(G^{+-})}(u) = (n+m-1)-2d_G(u)$$
 and $d_{2(G^{+-})}(e) = m+1$.

(iii)
$$d_{2(G^{-+})}(u) = m$$
 and $d_{2(G^{-+})}(e) = n+m-3$.

$$(iv)d_{2(G^{--})}(u) = 2d_G(u)$$
 and $d_{2(G^{--})}(e) = m+1$.

Proposition1.2. Let G be a graph with n vertices and m edges. Let $u \in V(G)$ and $e \in E(G)$. Then d_2 -distance degree of point and line vertices in $\overline{G^{xy}}$ are

$$(i)d_{2(\overline{G^{++})}}(u)=2d_G(u) \text{ and } \ d_{2(\overline{G^{++})}}(e)=2.$$

(ii)
$$d_{2(\overline{G^{+-}})}(u) = 2d_{G}(u)$$
 and $d_{2(\overline{G^{+-}})}(e) = n-2$.

$$(iii)d_{2\overline{(G^{-+})}}(u)=\text{n-1 and }d_{2\overline{(G^{-+})}}(e)=2.$$

$$(iv)d_{2(G^{--})}(u) = (n+m-1)-2d_G(u)$$
 and $d_{2(G^{--})}(e) = n-2$.

Theorem 1.1: The leap first Zagreb polynomial of G^{++} transformation graph is $4x^{2((n+m-1)-2d_G(u))} + 8x^{(2n+2m-4)-2d_G(u)} + 4x^{2(n+m-3)}$.

Proof: Partition the edge set $E(G^{++})$ in three sets E_1, E_2 and E_3 , where $E_1 = \{uv \mid u, v \in E(G)\}, E_2 = \{ue \mid the \ vertex \ u \ is incident to the edge e in <math>G\}$ and $E_3 = \{ef \mid e, f \in E(G)\}$ and so $|E_1|=4, |E_2|=8$ and $|E_3|=4.$ By using proposition (1.1) we have if $u \in V(G)$ then $d_{2(G^{++})}(u) = (n+m-1)-2d_G(u)$ and if $e \in E(G)$ then $d_{2(G^{++})}(e) = n+m-3$.

$$\begin{split} LM_1(G,x) &= \sum_{uv \in E(G^{++})} x^{d_2(G^{++})(u) + d_2(G^{++})(v)} \\ &= \sum_{uv \in E_1(G^{++})} x^{((n+m-1) - 2d_G(u)) + ((n+m-1) - 2d_G(u))} + \\ &\sum_{uv \in E_2(G^{++})} x^{((n+m-1) - 2d_G(u)) + (n+m-3)} + \\ &\sum_{uv \in E_3(G^{++})} x^{(n+m-3) + (n+m-3)} \\ &= 4x^{2((n+m-1) - 2d_G(u))} + 8x^{(2n+2m-4) - 2d_G(u)} + 4x^{2(n+m-3)}. \end{split}$$

Theorem 1.2: The leap second Zagreb polynomial of $\overline{G^{++}}$ transformation graph is $2x^{(2d_G(u))^2} + 8x^{4d_G(u)} + 2x^4$.

Proof: Partition the edge set $E(\overline{G^{++}})$ in three sets E_1,E_2 and E_3 , where $E_1 = \{uv \mid u,v \in E(G)\}, E_2 = \{ue \mid the vertex \ u \text{ is not incident to the edge } e \text{ in } G \}$ and $E_3 = \{ef \mid e,f \in E(G)\}$ and so $|E_1|=2,|E_2|=8$ and $|E_3|=2.$ By using proposition (1.2) we have if $u \in V(G)$ then $d_{2(\overline{G^{++}})}(u)=2d_G(u)$ and if $e \in E(G)$ then $d_{2(\overline{G^{++}})}(e)=2$.

$$\begin{split} & LM_2(G,x) = \sum_{uv \in E(\overline{G^{++}})} x^{d_{2(G^{++})}(u) \times d_{2(G^{++})}(v)} \\ & = \sum_{uv \in E_1(\overline{G^{++}})} x^{(2d_G(u)) \times (2d_G(u))} + \sum_{uv \in E_2(\overline{G^{++}})} x^{2d_G(u) \times (2)} + \\ & \sum_{uv \in E_3(\overline{G^{++}})} x^{2 \times 2} \\ & = 2x^{(2d_G(u))^2} + 8x^{4d_G(u)} + 2x^4. \end{split}$$

Path graph P4

Proposition 2.1.Let G be a graph with n vertices and m edges. Let $u \in V(G)$ and $e \in E(G)$. Then the d_2 -distance degree of point and line vertices in G^{xy} are

(i)
$$d_{2(G^{++})}(u) = 6-2d_G(u)$$
 and $d_{2(G^{++})}(e) = m+1$.

(ii)
$$d_{2(G^{+-})}(u) = 6-2d_G(u)$$
 and $d_{2(G^{+-})}(e) = m+1$.

(iii)
$$d_{2(G^{-+})}(u) = 3$$
 and $d_{2(G^{-+})}(e) = m+1$.

(iv)
$$d_{2(G^{--})}(u) = 2d_G(u)$$
 and $d_{2(G^{--})}(e) = m+1$.

Proposition 2.2. Let G be a graph with n vertices and m edges. Let $u \in V(G)$ and $e \in E(G)$. Then d_2 -distance degree of point and line vertices in $\overline{G^{xy}}$ are

(i)
$$d_{2(G^{++})}(u) = n-2$$
 and $d_{2(G^{++})}(e) = n-2$.

(ii)
$$d_{2\overline{(G^{+-})}}(u) = n-2$$
 and $d_{2\overline{(G^{+-})}}(e) = n-2$.

(iii)
$$d_{2(G^{-+})}(u) = n-1$$
 and $d_{2(G^{-+})}(e) = n-2$.

(iv)
$$d_{2(\overline{G^{--}})}(u) = 6-2d_G(u)$$
 and $d_{2(\overline{G^{--}})}(e) = n-2$.

Theorem 2.1: The hyper leap first Zagreb polynomial of G^{++} transformation graph is $3x^{(2(6-2d_G(u))^2}+6x^{(6-2d_G(u)+n)^2}+2x^{(2n)^2}$.

Proof. Partition the edge set $E(G^{++})$ in three sets E_1, E_2 and E_3 , where $E_1 = \{uv \mid u, v \in E(G)\}, E_2 = \{ue \mid the vertex u \text{ is incident}\}$

Volume 14 Issue 10, October 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Impact Factor 2024: 7.101

to the edge e in G}and $E_3=\{ef|e,f\in E(G)\}$ and so $|E_1|=3,|E_2|=6$ and $|E_3|=2.By$ using proposition (2.1) we have if $u\in V(G)$ then $d_{2(G^{++})}(u)=6-2d_G(u)$ and if $e\in E(G)$ then $d_{2(G^{++})}(e)=n$.

$$\begin{split} & \text{HLM}_1(G, x) = \sum_{uv \in E(G^{++})} \ x^{(d_{2(G^{++})}(u) + d_{2(G^{++})}(v))^2} \\ & = \sum_{uv \in E_1(G^{++})} x^{(6-2d_G(u)) + (6-2d_G(u))^2} + \\ & \sum_{uv \in E_2(G^{++})} x^{(6-2d_G(u) + n)^2} + \sum_{uv \in E_3(G^{++})} x^{(n+n)^2} \\ & = 3x^{(2(6-2d_G(u))^2} + 6x^{(6-2d_G(u) + n)^2} + 2x^{(2n)^2}. \end{split}$$

Theorem 2.2: The hyper leap second Zagreb polynomial of $\overline{G^{++}}$ transformation graph is $10x^{16}$.

Proof: Partition the edge set $E(\overline{G^{++}})$ in three sets E_1,E_2 and E_3 , where $E_1 = \{uv|u,v \in E(G)\}, E_2 = \{ue \mid the \ vertex \ u \ is not incident to the edge e in G} and <math>E_3 = \{ef|e,f \in E(G)\}$ and so $|E_1|=3,|E_2|=6$ and $|E_3|=1.By$ using proposition (2.2) we have if $u \in V(G)$ then $d_{2(G^{++})}(u)=n-2$ and if $e \in E(G)$ then $d_{2(G^{++})}(e)=2$.

$$\begin{split} & \text{HLM}_2(\text{G,x}) = \sum_{uv \in E(\overline{G^{++}})} \ x^{(d_{2(\overline{G^{++}})}(u) \times d_{2(\overline{G^{++}})}(v))^2} \\ & = \sum_{uv \in \ E_1(\overline{G^{++}})} x^{((n-2) \times (n-2))^2} + \ \sum_{uv \in \ E_2(\overline{G^{++}})} x^{((n-2) \times 2)^2} + \\ & \sum_{uv \in \ E_3(\overline{G^{++}})} x^{(2 \times 2)^2} \\ & = 10 x^{16}. \end{split}$$

Proposition 3.1. Let G be a graph with n vertices and m edges. Let $u \in V(G)$ and $e \in E(G)$. Then the d_2 -distance degree of point and line vertices in G^{xyz} are

(i)
$$d_{2(T^{001})(G)}(u) = n$$
 and $d_{2(T^{001})(G)}(e) = m$.

(ii)
$$d_{2(T^{0+1})(G)}(u) = 5.4$$
 and $d_{2(T^{0+1})(G)}(e) = m+1$.

(iii)
$$d_{2(T^{011})(G)}(u) = n-1$$
 and $d_{2(T^{011})(G)}(e) = 0$.

(iv)
$$d_{2(T^{++1})(G)}(u) = 0$$
 and $d_{2(T^{++1})(G)}(e) = 4$.

Proposition 3.2. Let G be a graph with n vertices and m edges. Let $u \in V(G)$ and $e \in E(G)$. Then the degree of point and line vertices in $\overline{G^{xyz}}$ are

$$\begin{array}{lll} \text{(i)} \ d_{2\overline{(T^{001})}(G)}(u) = 0 \ \text{and} \ d_{2\overline{(T^{001})}(G)}(e) & = \text{m-1.} \\ \text{(ii)} d_{2\overline{(T^{0+1})}(G)}(u) & = 2,3 \ \text{and} \ d_{2\overline{(T^{011})}(G)}(e) = m+1. \\ \text{(iii)} \ d_{2\overline{(T^{011})}(G)}(u) & = 1,2 \ \text{and} \ d_{2\overline{(T^{011})}(G)}(e) = m-1. \\ \text{(iv)} \ d_{2\overline{(T^{++1})}(G)}(u) & = 2,3 \ \text{and} \ d_{2\overline{(T^{++1})}(G)}(u) = m+1. \end{array}$$

Theorem 3.1: The leap first Zagreb polynomial of $T^{001}(G)$ transformation graph is $3x^{2(n-1)}$.

Proof: Partition the edge set $E(T^{001}(G))$ in three sets E_1,E_2 and E_3,so $|E_1|=0,|E_2|=0$ and $|E_3|=3$.By using proposition (3.1) we have if $u\in V(G)$ then $d_{2(T^{001}(G))}(u)=n$ and if $e\in E(G)$ then $d_{2(T^{001}(G))}(e)=n-1$.

$$\begin{split} LM_1(T^{001}(G),x) &= \\ \sum_{uv \in E(T^{001}(G))} x^{d_{2(T^{001}(G))}(u) + d_{2(T^{001}(G))}(v)} \\ &= \sum_{uv \in E_1(T^{001}(G))} x^{(n) + (n)} + \sum_{uv \in E_2(T^{001}(G))} x^{(n) + (n-1)} + \\ &\sum_{uv \in E_3(T^{001}(G))} x^{(n-1) + (n-1)} \\ &= 3x^{2(n-1)}. \end{split}$$

Theorem 3.2: The leap first Zagreb polynomial of $(\overline{T^{0+1}(G)})$ transformation graph is $3x^{2(n-2)}+6x^{(2n-2)}+x^{2n}$.

Proof: Partition the edge set $E(\overline{T^{0+1}(G)})$ in three sets E_1,E_2 and $E_3,$ so $|E_1|=3,|E_2|=6$ and $|E_3|=1.$ By using proposition (3.2) for figure refer we have, if $u\in V(G)$ then $d_{2\overline{(T^{0+1}(G))}}(u)=2,3$ and if $e\in E(G)$ then $d_{2\overline{(T^{0+1}(G))}}(e)=n$. We compute leap first Zagreb polynomial for $d_{2\overline{(T^{0+1}(G))}}(u)=2$,

$$\begin{split} & LM_{1}(\overline{(T^{0+1}(G),x}) \\ & = \sum_{uv \in E(\overline{T^{+01}(G)})} x^{d_{2}\overline{(T^{0+1}(G))}(u) + d_{2}\overline{(T^{+01}(G))}(v)} \\ & = \sum_{uv \in E_{1}\overline{(T^{0+1}(G))}} x^{(n-2) + (n-2)} + \\ & = \sum_{uv \in E_{2}\overline{(T^{0+1}(G))}} x^{(n-2) + (n)} + \sum_{uv \in E_{3}\overline{((T^{0+1}(G)))}} x^{n+n} \\ & = 3x^{2(n-2)} + 6 x^{(2n-2)} + x^{2n}. \end{split}$$

The computed values leap and hyper leap Zagreb polynomials are given in the tables (1-3).

Table 1: LM₁(G,x), LM₂(G,x), HLM₁(G,x) and HLM₂(G,x) of G^{xy} , $\overline{G^{xy}}$ in triangle with pendant edge graph

	Table 1: LM ₁ (G,x), LM ₂ (G,x), HLM ₁ (G,x) and HLM ₂ (G,x) of G^{xy} , G^{xy} in triangle with pendant edge graph				
Polyno mial→	$LM_1(G,x)$	$LM_2(G,x)$	HLM ₁ (G,x)	HLM ₂ (G,x)	
G	$4x^{2((n+m-1)-2d_G(u))}+$	$4x^{(n+m-1-2d_G(u))^2}+8$	$4x^{4((n+m-1)-2d_G(u))^2}+$	$4x^{(n+m-1-2d_G(u))^4}+8$	
G++	$8x^{(2n+2m-4)-2d_G(u)} +$	$x^{(n+m-1-2d_G(u))(n+m-3)} +4$	$8x^{((2n+2m-4)-2d_G(u))^2} +$	$x^{[(n+m-1-2d_G(u))(n+m-3)]^2} +4$	
	$4x^{2(n+m-3)}$	$X^{(n+m-3)^2}$	$4x^{(2(n+m-3))^2}$	$X^{(n+m-3)^4}$	
C	$4x^{2(n+m-1-2d_G(u))}+8$	$4x^{(n+m-1-2d_G(u))^2}+8$	$4x^{(2(n+m-1-2d_G(u))^2}+8$	$4x^{(n+m-1-2d_G(u))^4}+8$	
G+-	$x^{(n+2m-2d_G(u))} + 2x^{2(m+1)}$	$x^{(n+m-1-2d_G(u))(m+1)} + 2x^{(m+1)^2}$	$x^{((n+2m-2d_G(u))^2} + 2x^{4(m+1)^2}$	$x^{[(n+m-1-2d_G(u))(m+1)]^2} +2x^{(m+1)^4}$	
C	$2x^{2m}+8x^{(n+2m-3)}+$	$2x^{m^2} + 8x^{m(n+m-3)} + 4x^{(n+m-3)^2}$	$2x^{4m^2} + 8x^{(n+2m-3)^2} +$	$2x^{m^4} + 8x^{(m(n+m-3))^2} + 4x^{(n+m-3)}$	
G-+	$4x^{2(n+m-3)}$		$4x^{4(n+m-3)^2}$		
C	$2x^{4d_G(u)} + 8x^{2d_G(u)+m+1} + 2$	$2x^{(2d_G(u))^2} + 8x^{(2d_G(u)(m+1))} + 2$	$2x^{(4d_G(u))^2}+8$	$2x^{(2d_G(u))^4} + 8x^{(2d_G(u)(m+1))^2} + 2$	
G	x ^{2(m+1)}	$X^{(m+1)^2}$	$x^{(2d_G(u)+(m+1))^2} + 2x^{(2(m+1))^2}$	$X^{(m+1)^4}$	
G++	$2x^{4d_G(u)} + 8x^{2+d_G(u)} + 2x^4$	$2x^{(2d_G(u))^2} + 8x^{4d_G(u)} + 2x^4$	$2x^{(2d_G(u))^2} + 8x^{(2+d_G(u))^2} +$	$2x^{(2d_G(u))^4} + 8x^{(4d_G(u))^2} + 2x^{16}$	
u · ·			2x ¹⁶		
G+-	$2x^{4d_G(u)} + 8x^{2d_G(u)+n-2} + 4$	$x^{(2d_G(u))^2} + 8x^{(2d_G(u)(n-2))} + 4$	$2x^{(4d_G(u))^2}+8$	$x^{(2d_G(u))^4} + 8x^{(2d_G(u)(n-2))^2} + 4$	
u ·	x ²⁽ⁿ⁻²⁾	$x^{(n-2)^2}$	$x^{(2d_G(u)+(n-2))^2} +4x^{4(n-2)^2}$	$x^{(n-2)^4}$	
G-+	$4x^{2(n-1)} + 8x^{n+1} + 2x^4$	$4x^{(n-1)^2} + 8x^{2(n-1)} + 2x^4$	$4x^{4(n-1)^2} + 8x^{(n+1)^2} + 2x^{16}$	$4x^{(n-1)^4} + 8x^{(2(n-1))^2} + 2x^{16}$	

Volume 14 Issue 10, October 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Impact Factor 2024: 7.101

<u>G</u>	$4x^{2(n+m-1-2d_G(u))}+8$	$4x^{(n+m-1-2d_G(u))^2}+8$	$4x^{4(n+m-1-2d_G(u))^2}+8$	$4x^{(n+m-1-2d_G(u))^4}+8$
	G	$X^{(2n+m-3-2d_G(u))}$	$X^{(n+m-1-2d_G(u))(n-2)}$	$X^{(2n+m-3-2d_G(u))^2}$

Table 2: $LM_1(G,x)$, $LM_2(G,x)$, $HLM_1(G,x)$ and $HLM_2(G,x)$ of G^{xy} , $\overline{G^{xy}}$ in path graph P_4

	1 abic 2. Livi (d,x), Livi (d,x), Thivi (d,x) and Thivi (d,x) or d , d · In path graph 14				
	$3x^{2(6-2d_G(u))}+6$	$3x^{(6-2d_G(u))^2}+6$	$3x^{4(6-2d_G(u))^2}+$	$3x^{(6-2d_G(u))^4}+6$	
G++	$x^{(10-2d_G(u))} + 2x^{2n}$	$x^{n(6-2d_G(u))} + 2x^{16}$	$6x^{(10-2d_{G}(u))^{2}} + 2x^{64}$	$x^{[n(6-2d_G(u))]^2} + 2x^{256}$	
G.	$3x^{2(6-2d_G(u))}+6$	$3x^{(6-2d_G(u))^2}+6$	$3x^{4(6-2d_G(u))^2}+6$	$3x^{(6-2d_G(u))^4}+6$	
G+-	$x^{(10-2d_G(u))} + x^{2n}$	$x^{\left(6-2d_{G}(u)\right)n}+x^{n^{2}}$	$x^{((10-2d_G(u))^2} + x^{4n^2}$	$x^{[(6-2d_G(u))n]^2} + x^{n^4}$	
G-+	$3x^{2(n-1)}+6x^{n+m}+$	$3x^{(n-1)^2}+6x^{(n-1)(m+1)}+$	$3x^{(2(n-1))^2} + 6x^{(n+m)^2} + 2x^{64}$	$3x^{(n-1)^4}+6$	
	$2x^{2(m+1)}$	$2x^{(m+1)^2}$		$x^{((n-1)(m+1))^2} + 2x^{(m+1)^4}$	
G	$3x^{2(2d_G(u))} + 6x^{(4+2d_G(u))}$	$3x^{(2d_G(u))^2} + 6x^{8d_G(u)}$	$3x^{(4d_G(u))^2} + 6x^{(4+2d_G(u))^2}$	$3x^{(2d_G(u))^4} + 6x^{(8d_G(u))^2}$	
G++	1ox ⁴	1ox ⁴	1ox ¹⁶	1ox ¹⁶	
G+-	11x ⁴	11x ⁴	$11x^{16}$	$11x^{16}$	
G-+	$3x^{2(n-1)}+6x^{(n+m-2)}+$	$3x^{(n-1)^2}+6x^{(n-1)(m-1)}+$	$3x^{(2(n-1))^2} + 6x^{(n+m-2)^2} +$	$3x^{(n-1)^4}+6$	
	$x^{2(m-1)}$	$X^{(m-1)^2}$	$X^{(2(m-1))^2}$	$x^{((n-1)(m-1))^2} + x^{(m-1)^4}$	
G	$3x^{2(6-2d_G(u))}+6$	$3x^{(6-2d_G(u))^2}+6$	$3x^{[2(6-2d_G(u))]^2}+6$	$3x^{(6-2d_G(u))^4}+6$	
	$x^{(n+m+1-2d_G(u))} +$	$x^{(6-2d_G(u))(m-1)} +$	$x^{(n+m+1-2d_G(u))^2} +$	$x^{[(6-2d_G(u))(m-1)]^2} +$	
	2x ^{2(m-1)}	$2x^{(m-1)^2}$	$2x^{(2(m-1))^2}$	$2x^{(m-1)^4}$	

Table 3: LM₁(G,x), LM₂(G,x), HLM₁(G,x) and HLM₂(G,x) of G^{xyz} , $\overline{G^{xyz}}$ in path graph P₄

T ⁰⁰¹ (G)	$3x^{n+2}$	3x ²ⁿ⁺¹	$3x^{(n+2)^2}$	$3x^{(2n+1)^2}$
$T^{0+1}(G)$	$3x^{10} + 6x^9 + x^{2n}$	$3x^{(n+1)^2} + 6x^{20} + x^{16}$	$3x^{4(n+1)^2} + 6x^{(2n+1)^2} + x^{4n^2}$	$3x^{225} + 6x^{200} + x^{256}$
$T^{011}(G)$	$12x^3$	00	12x ⁹	00
$T^{++1}(G)$	$6x^4 + 3x^8$	$3x^{(n)^2}$	$6x^{(n)^2} + 3x^{(2(n))^2}$	$3x^{(n)^4}$
$\overline{T^{001}(G)}$	$12x^2$	00	12x ⁿ	00
$\overline{\mathrm{T^{0+1}(G)}}$	$3x^{2(n-2)}+6x^{(n+2)}+x^{2(m+1)}$	$3x^{n}+6x^{2n}+x^{2(m+1)}$	$3x^{(n)^2} + 6x^{(2(n-1))^2} + x^{4(m+1)^2}$	$3x^{(n)^2} + 6x^{(2n)^2} + x^{(4(m+1))^2}$
$\overline{T^{011}(G)}$	$6x^{n-2}$	6x	$6x^{(n-2)^2}$	6x
$\overline{T^{++1}(G)}$	$3x^4+6x^6$	$3x^4+6x^8$	$3x^{16}+6x^{36}$	$3x^{16}+6x^{64}$

Figure 1: Triangle with pendant edge graph pen

Figure 2: Path graph P₄

Figure 1: Triangle with pendant edge graph and figure 2. Path graph P₄.

4. Conclusion

Leap first, second, hyper leap first, second Zagreb polynomials of G^{xy} , $\overline{G^{xy}}$ for triangle with pendant edge graph and also G^{xy} , $\overline{G^{xy}}$, G^{xyz} and $\overline{G^{xyz}}$ transformation graphs in path graph P_4 are obtained. The leap first Zagreb polynomial is equal to leap second Zagreb polynomial and hyper leap first Zagreb polynomial is equal to hyper leap second Zagreb

polynomial in $\overline{G^{++}}$ and $\overline{G^{+-}}$ transformation for path graph P₄. Leap second and hyper leap second Zagreb polynomial are zero for $T^{011}(G)$ and $\overline{T^{001}(G)}$.

References

- [1] A. M. Nazi, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim., 2 (2) (2017) 99-107.
- [2] M. R. R. Kanna, S. Roopa and H. L. Parshivamurthy, Topological indices of Vitamin D₃, International Journal of Engineering and Technology, 7 (4) (2018) 6276-6284.
- [3] R. Jummannaver, K. Narayankar and D. Selvan, Zagreb index and coindex of Kth generalized transformation graphs, Bulletin of the International Mathematical Virtual Institute, 10 (2) (2020) 389-402.
- [4] E. Sampathakumar, S. B. Chikkodimath, Semi-total graphs of a graph-I, The Karnatak University Journal, 18 (1973) 274-280.
- [5] A. U. Rehman, W. Khalid, Zagreb polynomials and redefined Zagreb indices of line graph of HAC₅C₆C₇ [p, q] nanotube, Open J. Chem., 1 (2018) 26-35.
- [6] M. M. Legese, S. A. Fufa, Distance based indices of generalized transformation graphs, SINET: Ethiopian Journal of Science, 42 (1) (2019) 1-9.

Volume 14 Issue 10, October 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Impact Factor 2024: 7.101

- [7] B. Basavanagoad, P. Jakkanaavar, On the Zagreb polynomials of transformation graphs, International Journal of Scientific Research in Mathematical and Statistical Sciences, 5 (6) (2018) 328-335.
- [8] P. V. Patil, G. G. Yattinahali, Second Zagreb indices of transformation graphs and total transformation graphs, Open Journal of Discrete Applied Mathematics, 3 (1) (2020) 1-7.
- [9] B. Basavanagoud, I. Gutman and V. R. Desai, Zagreb indices of generalized transformation graphs and their complements, Kragujevac J. Sci., 37 (2015) 99-112.
- [10] L. Xu, B. Wu, Transformation graphs G⁻⁺⁻, Discrete Math., 308 (2008) 5144-5148.
- [11] H. S. Ramane, I. Gutman, K. Bhajantri and D. V. Kitturmath, Sombor index of some graph transformations, Communications in Combinatorics and Optimization, 8 (1) (2023) 193-205.
- [12] F. Dayan, M. Javaid and M. U. Ur. Rehman, On leap reduced reciprocal Randic and leap reduced second Zagreb indices of some graphs, Scientific Inquiry and Review, 3 (2) (2010) 28-35.
- [13] H. S. Ramane, R. B. Jummannaver and S. Sedghi, Some degree based topological indices of generalized transformation graphs and their complements, International Journal of Pure and Applied Mathematics, 109 (3) (2016) 493-508.
- [14] D. Maji, G. Ghorai, Computing F-index and Zagreb polynomials of the Kth generalized transformation graphs, Heliyon, 6 (2020) e05781, Cell Press, 1-10.
- [15] B. Basavanagoud, S. Policepatil, F-index and hyper-Zagreb index of generalized middle graphs, Annals of Mathematics and Computer Science, 6 (2022) 1-12.
- [16] G. R. Roshani, S. B. Chandralekha and B. Sooryanarayana, Some degree based topological indices of transformation graphs, Bulletin of the International Mathematical Virtual Institute, 10 (2) (2020) 225-237.
- [17] K. G. Mirajkar, Y. B. Priyanka, On the first and second Harary index of generalized transformation graphs G^{ab}, International Journal of Computational and Applied Mathematics, 12 (3) (2017) 779-801.
- [18] S. Hegde, A. Khan and Vinay Prasad T., First redefined Zagreb index of generalized transformation graph, International Journal of Science, Engineering and Management, 9 (3) (2022) 4-8.
- [19] C. S. Boraiah, R. G. Ravichandra and S. Badekara, Topological indices of transformation graphs of a complement graph, AIP Conference Proceedings, 2112, 020022 (2019) 1-10.
- [20] N. K. Raut, G. K. Sanap, SK index and SK₁ index of generalized transformation graphs, Quest Journals, Journal of Applied Mathematics, 9 (2) (2023) 29-38.
- [21] N. De, F-index of total transformation graphs, arXiv: 1606.05989v1 [CSDM] (2016) 1-10.
- [22] B. Basavanagoud, G. Veerapur, M-polynomial of generalized transformation graphs, Electronic Journal of Mathematical Analysis and Applications, 8 (2) (2020) 305-325.
- [23] P. Csikari, Graph polynomials and graph transformations in Algebraic Graph Theory, Ph. D.

- Thesis, Department of Computer Science, Eotvos Lorand University, Hungarian Academy of Sciences, 2012
- [24] B. Basavanagoud, E. Chitra, Zagreb polynomials of graph operations, International Journal of Applied Engineering Research, 15 (3) (2020) 287-293.
- [25] S. M. Hosamani, S. S. Shirakol, M. V. Kalyanshetti and I. N. Cangul, New eccentricity based topological indices of total transformation graphs, arXiv: 2008.1019v1 [math. CO] (2020) 1-22.
- [26] A. Rani, M. Imran, A. Razzaque and U. Ali, Properties of total transformation graphs for general sum connectivity, Hal-03430901, version 1, Complexity-2021, (2021) 1-6.
- [27] B. Wu, I. Meng, Basic properties of total transformation graphs, J. Math. Study, 34 (2001) 109-116.
- [28] V. R. Kulli, Leap indices of graphs, International Journal of Current Research in Life Sciences, 8 (1) (2019) 2998-3006.
- [29] B. Basavanagoud, Chitra E., On the leap Zagreb indices of generalized xyz-point-line transformation graphs T^{xyz} (G) when z = 1, International Journal of Mathematical Combinatorics, 2 (2018) 44-66.
- [30] J. M. Tousi, G. Ghods, Calculation of Gourava topological indices in HAC₅C₆C₇ [p, q] nanotubes, Journal of Information and Optimization Sciences, 44 (5) (2023) 823-834.
- [31] Y. Li, Li Yan, M. K. Jamil, M. R. Farahani, W. Gao and J. B. Liu, Four new/old vertex-degree based topological indices of HAC₅C₆C₇ [p, q] nanotubes, Journal of Computational and Theoretical Nanoscience, 14 (2017) 796-799.
- [32] V. R. Kulli, Leap hyper-Zagreb indices and their polynomials of certain graphs, International Journal of Current Research in Life Sciences, 7 (10) (2018) 2783-2791.
- [33] Narsing Deo, Graph Theory, Prentice-Hall of India, New Delhi (2007).
- [34] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
- [35] R. Todeschini, and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, 2000.

Volume 14 Issue 10, October 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net