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Abstract: This study addresses the growing electricity demand in Goma, DRC, amidst limited energy resources. By integrating Artificial 

Neural Networks (ANNs) with optimization techniques, the research proposes an interconnection network to enhance resource sharing 

and improve forecasting for electricity production and demand. The ANN model achieved 90% accuracy in energy distribution, reducing 

computation time and optimizing costs. Results underscore the critical role of resource management and policy reforms in ensuring 

sustainable energy solutions. 
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1. Introduction 
 

Energy is a cornerstone of national development, serving as 

the driving force behind industrialization and the foundation 

for nearly all human activities and services. It is essential for 

production, transportation of people and goods, raw material 

processing, and trade. 

 

To be utilized, primary energy—such as coal, natural gas, oil, 

solar, and wind—must be converted into various forms, with 

electrical energy being the most widely used. Since the 1970s, 

research has demonstrated a direct correlation between 

electrical energy consumption and a nation's gross domestic 

product (GDP), highlighting its critical role in overall and 

sectoral economic growth. [1]. Consequently, the stability and 

availability of electrical energy are intrinsically linked to a 

country's GDP and overall economic development. 

 

Goma, situated in the eastern Democratic Republic of Congo, 

faces a critical energy crisis. As of 2023, the city had an 

estimated population of 2.3 million, with an electricity 

demand of 55 MW—far surpassing the available supply of 

approximately 19.9 MW. This limited supply is shared among 

four main providers: SNEL (8 MW), Virunga Énergie (5.6 

MW), NURU (1.3 MW), and SOCODEE, which distributes 5 

MW sourced from Virunga Énergie [2] [3]. This shortage 

results in an electricity access rate of less than 50%, 

negatively impacting the quality of basic services and 

hindering the city's socio-economic development. 

Furthermore, the independent operation of energy providers 

exacerbates the instability and low reliability of the electrical 

grid. 

 

To address Goma's energy challenges, several projects have 

been proposed, including the construction of the MATEBE 2 

hydroelectric power plant at RWANGUBA, the 

interconnection of SNEL with the NELSAP community, and 

the development of the NURU 2 solar power plant. These 

initiatives aim to meet the growing electricity demand and 

improve the quality of life for the city's residents.   

 

Despite these efforts, Goma continues to face significant 

challenges due to limited electricity sources. This article 

proposes a strategy for the economic distribution of electrical 

energy to ensure a reliable, high-quality energy supply in 

sufficient quantities, while optimizing costs and minimizing 

losses. The proposed strategy relies on production and 

demand forecasts and includes:   

• A neural network to predict energy demand;   

• Neural networks to forecast power plant production;  

• A multilayer perceptron for economically allocating 

demand, accounting for production unit constraints and 

enabling a five-hour forecast.   

 

The primary objective of this paper is to optimize energy 

management in Goma by leveraging advanced technical and 

economic solutions.   

 

The article presents a comprehensive literature review of prior 

research on load distribution optimization using various 

methodologies. It outlines the study's context, details the 

adopted methodology, and provides an analysis and 

interpretation of the results. Finally, it evaluates the 

effectiveness of the proposed optimization method by 

comparing it with classical approaches. 

 

 

Paper ID: SR25120191055 DOI: https://dx.doi.org/10.21275/SR25120191055 967 

http://www.ijsr.net/
mailto:gershwmpawase@gmail.com
mailto:Olivermushage@gmail.com
mailto:twizdau@gmail.com
mailto:jhtsoch@gmail.com


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 1, January 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

2. Literature Review 
 

The use of artificial neural networks in the field of energy and 

electrical grids is extensive and diverse. These networks are 

employed to address issues related to reliability, security, 

optimization, stability, and safety. In the area of optimization, 

numerous researchers have explored various aspects and 

techniques incorporating artificial intelligence. 

 

Miodrag et al. in their study propose a hybrid method that 

combines artificial neural networks with an iterative 

approach. Utilizing a multilayer perceptron trained via 

gradient descent to predict the penalty factor, the method 

significantly reduces computation time from 31.5 seconds to 

1.08 seconds while ensuring high accuracy in the optimal 

distribution of contributions from production units [4]. 

 

Kumar et al. in their study propose to use artificial neural 

networks to enhance efficiency and reduce computation time. 

The results demonstrate a 50% reduction in computation time 

with an accuracy of 1%, outperforming classical methods [5]. 

 

Naama et al. propose a hybrid method that combines a genetic 

algorithm with a Newtonian analytical method to optimize 

power distribution in an electrical network. Artificial 

intelligence is employed for lossless optimization, while the 

Newton-Raphson method is used to calculate losses. 

Simulation results demonstrate that this hybrid approach is 

more efficient, faster, and more robust than using either 

method alone, providing satisfactory outcomes in terms of 

both speed and accuracy [6]. 

 

Syai’in et al. in their propose an Optimal Power Flow (OPF) 

method using an artificial neural network trained with data 

derived from the classical particle swarm optimization 

method. The results indicate a deviation of only 0.12% 

between the predicted and actual values, along with faster 

execution compared to the classical approach [7]. 

 

Mountassir et al. propose the use of artificial neural networks 

to predict energy demand in smart electrical grids. 

Considering energy consumption as a nonlinear time series 

problem, they adopt the CRBM (Conditional Restricted 

Boltzmann Machine) method, a stochastic machine learning 

model. The results show that this method can predict the 

energy consumption of an office building over a week with 

hourly resolution, surpassing advanced methods like ANN, 

due to its probabilistic power [8]. 

 

Kadir et al. study a method for solving the power flow 

problem based on a multilayer perceptron, combined with a 

differential optimization algorithm to generate training data. 

The results show that this approach effectively solves static, 

dynamic, and complex power flow problems without 

resorting to traditional iterative methods. It can also be used 

for the dynamic optimization of power flow, control, and fault 

prediction, without requiring simulations or complex 

software that is costly in terms of resources or time [9]. 

 

The research highlights a convergence in using artificial 

neural networks (ANNs), often integrated with hybrid 

approaches, to optimize the production and distribution of 

electrical energy. These methods, built on multi-layer 

perceptron, are combined with techniques such as genetic 

algorithms (Naama et al., 2007), the Newton-Raphson 

method (Naama et al., 2007), particle swarm optimization 

(Syai'in et al., 2010), differential algorithms (Kadir et al., 

2019), and gradient descent approaches (Miodrag et al., 

1996). Classical optimization methods are frequently 

employed to generate training data. 

 

This paper employs a combination of advanced optimization 

techniques and neural network models. The Kuhn-Tucker 

method is used to generate optimization data, while the 

Gauss-Seidel method assesses network losses. Optimal power 

flow minimizes electricity production costs and system 

constraints by optimizing unit contributions and reducing 

losses. The KRON-based B-coefficient method calculates 

power losses. For forecasting, the study uses LSTM networks 

with a many-to-many architecture to predict solar power 

production and electricity demand based on 48-hour historical 

data. A multilayer perceptron addresses optimal demand 

distribution, adhering to production limits and constraints. 

The methodology also adopts synchronous interconnection 

for stable operation, resource sharing, and enhanced 

reliability, leveraging identical production source frequencies 

and automatic control mechanisms. 

 

The results demonstrate significant improvements in 

computation time and accuracy: computation time reductions 

of up to 50% (Kumar et al., 1995) or down to 1.08 seconds 

(Miodrag et al., 1996), with minimal prediction errors, such 

as a deviation of only 0.12% (Syai'in et al., 2010). These 

hybrid methods also exhibit greater robustness and 

adaptability to complex problems, such as predicting non-

linear time series (Mountassir et al., 2018) or dynamically 

optimizing power flow (Kadir et al., 2019). 

 

3. Methodology 
 

The following are the approaches and tools used in this paper. 

 

3.1 Description of Goma's Electrical Infrastructure 

 

Electricity plays a central role in sustainable development, 

impacting both economic recovery and industrialization. The 

city of Goma is powered by the public utility SNEL and 

private companies: Virunga Energie, NURU, and 

SOCODEE. 

• SNEL provides 8 MW of electricity to Goma from the 

Ruzizi hydroelectric plant near Bukavu via a high-voltage 

(HV) line of 75 kV, reduced to 70 kV at Goma [10]. The 

company plans to import 70 MVA from Ethiopia through 

the NELSAP project. 

• Virunga Energie, affiliated with the Congolese Institute 

for Nature Conservation (ICCN), produces 12.6 MW from 

the Matebe power plant, delivering 5.6 MW to Goma via 

a 33 kV line. An ongoing electrification project includes 

the construction of the Rwanguba plant (28 MW) to meet 

the growing demand. 

• NURU SARL operates a hybrid solar power plant with a 

capacity of 1.3 MW in the Ndosho neighborhood, 

distributing electricity at 11 kV. Additionally, NURU is 

constructing the NURU 2 plant in the Lac-Vert 

neighborhood, with a projected capacity of 3.8 MW, to 

further meet increasing demand. 
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• SOCODEE manages a 33 kV distribution network and 

rents 5 MW from Virunga Energie to supply Goma. 

 

With a rapidly increasing energy demand estimated at 55 MW 

[3], this growth is driven by accelerated urbanization and 

Goma’s attractiveness due to its economic development and 

migration from conflict-affected areas.  

The city of Goma has an installed load of 91.9 MVA, 

distributed across four main networks: SNEL (53.6%), 

Virunga Energie (20.1%), SOCODEE (24%), and NURU 

(2.3%). Figure 1 presents a map of these networks in Goma, 

with a background showing the DRC map and North Kivu 

province highlighted in blue. 

 

 
Figure 1: Spatial distribution of HT and MT networks in Goma 

3.2 Data Collection and Processing Tools  

 

This study investigates the use of artificial neural networks to 

optimize the distribution of electrical energy in Goma, with 

the goals of optimizing production resources and 

standardizing the cost per kilowatt for subscribers. It presents 

a method for forecasting demand and production over a 5-hour 

time horizon, utilizing data collected from energy companies 

and online databases, such as Kaggle. 

 

For optimization, the data will be generated using the Kuhn-

Tucker method [11], and network losses will be assessed with 

the Gauss-Seidel method. Time-series forecasting will be 

performed using LSTM neural networks, while a perceptron 

will address the optimization challenges. Interconnecting the 

networks is a crucial step in achieving this objective. 

 

Python (via ANACONDA) will be employed for data 

analysis, design, and testing, while ETAP 19 will be used for 

modeling the power grid. 

 

3.3 Power grid interconnection 

 

The interconnection of electrical networks can be 

synchronous, requiring identical frequencies (50 Hz or 60 Hz), 

or asynchronous, operating with either identical or different 

frequencies. The most used method is synchronous 

interconnection, which connects networks via an AC 

connection line and ensures stable operation through 

automatic generator control and power flow management 

devices [12]. The interconnection enhances flexibility, 

resource sharing, and network reliability. In this study, the 

synchronous method will be adopted due to the identical 

frequencies of the production sources. 

 

 

 

3.4 Optimum Power Flow 

 

Optimal power flow aims to minimize the cost of electricity 

production while respecting the constraints of the network and 

equipment. This method optimizes the contribution of each 

production unit, reduces losses in the lines, penalizes costly or 

inefficient units, and limits the environmental impact. The 

objective is achieved by minimizing a function related to 

production cost [13]. The cost function is given by formula 

(1). 

                               (1) 

 𝐶𝑖 is the production cost of the generator unit 𝑖. The cost of 

production can be influenced by factors such as resource 

availability, maintenance costs, generator performance, line 

losses, market conditions, investment costs, capital, and 

generated power, typically represented by a second-order 

polynomial, as given in formula (2). 

 

                  (2) 

 

𝑃𝑖  is the production power of unit 𝑖. The power plants are 

constrained by their minimum and maximum production 

limits, as shown in equation (3), and must meet the demand 

plus network losses, in compliance with the equality 

constraint defined in equation (4). 

 

                      (3) 

                  (4) 

 

PD and PL represent the power demand and network losses, 

respectively. 
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To optimize the distribution of electrical energy while 

accounting for equality and inequality constraints, the Kuhn-

Tucker iteration method is employed. This method is based on 

the Lagrange equation, as presented in equation (5). 

 

             (5) 

 

λ is the Lagrange multiplier, and the minimum of the function 

is achieved when its partial derivatives are equal to zero, 

leading to equation (6). 

 

         (6) 

The power losses caused by the transit of the generated power 

Pi in the network are determined using the KRON method, 

adopted by KIRCHMAYER, and referred to as the B-

coefficient method [11] [14]. This method evaluates the power 

flow within the network. The simplest formula can be used 

when exchanges between upstream networks are minimal. It 

is calculated using equation (7). 

 

                      (7) 

 

The coefficient Bii can be calculated by determining the partial 

derivative of the loss function with respect to the generated 

power, as defined in equation (8). 

 

                        (8) 

 

The power contribution for a power plant will then be 

calculated using equation (9). 

 

                     (9) 

 

After calculating the contribution of each source, the equality 

and inequality constraints must be verified. If any constraint 

is violated, λ must be updated, and a source's contribution will 

be set to its maximum if its production exceeds the maximum 

limit [11]. The errors on the equality constraint and on λ are 

then defined according to equation (10). 

          (10) 

The variation of λ is computed using a Taylor series expansion 

of the Lagrange function's partial derivative, as expressed in 

equation (11). 

                 (11) 

 

The optimal power flow algorithm using the Kuhn-Tucker 

method is executed as illustrated in the flowchart shown in 

Figure 2. 

 
Figure 2: OPF Algorithm using Kun-Trucker method 

 

3.5 Gauss-Seidel method 

 

The Gauss-Seidel method is an iterative technique used in 

electricity to solve power flow problems. In this work, it is 

employed to determine voltages or active and reactive powers 

at buses, enabling the calculation of network losses [11]. 

Equation (12) presents the voltages at the buses, while 

equation (13) represents the powers. 

   (12) 

 (13) 

 and : indices of the buses;  : active power at bus ;  : 

reactive power at bus ; : admittance between bus  and bus 

j;  conjugate of the voltage at bus  during iteration . 

 voltage at bus  during iteration . 

 

After solving the power flow equations, the losses in the 

network can be calculated. The losses between two buses and 

 are the sum of the complex powers transmitted from bus 
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 to bus  and  transmitted from bus  to bus , as given by 

equation (14). 

                    (14) 

 

3.6 Recurrent Neural Network 

 

A recurrent neural network (RNN) is a type of neural network 

designed to process sequential data or time series. RNNs 

process each element of a sequence successively, maintaining 

a hidden state that acts as a memory of past information. At a 

given time , the outputs of the hidden cells depend on their 

outputs at the previous time , allowing distant events 

in time to be connected [15]. 

 

Long Short-Term Memory networks (LSTMs), an advanced 

variant of Recurrent Neural Networks (RNNs), address the 

challenge of vanishing or exploding gradients by enabling the 

effective learning and retention of long-term dependencies. 

Unlike traditional RNNs, LSTMs distinguish between short-

term information, represented by the hidden state, and long-

term information, encapsulated in the cell state. Figure 3 

illustrates the architecture of a standard LSTM cell, which 

includes a forget gate to regulate the retention and disposal of 

information. The system of equations (Equation 15) describes 

the mathematical relationships governing the interactions 

between the various components of the LSTM cell [15]. 

This research uses LSTM networks with a many-to-many 

architecture to predict 5-hour solar production of Photovoltaic 

(PV) power plant and electricity demand in Goma, based on 

the previous 48 hours of data. 

 
Figure 3: LSTM cell with a forget gate [15] 

 

   (15) 

 

3.7 Multilayer perceptron 

 

The multilayer perceptron is a widely used neural network 

where data flows from input to output without feedback. It is 

used to create complex nonlinear mathematical functions [16]. 

In this research, it will be employed to solve the optimal 

demand distribution problem, considering production limits 

while respecting the equality constraint. Figure 4 illustrates a 

perceptron with two hidden layers, each containing five 

neurons, two input neurons, and one output neuron. 

 
Figure 4: Multilayer perceptron 

 

For a perceptron with n layers, each composed of neurons with 

an activation function , if  are the input data 

matrices for layers , are the weight 

matrices, and are the bias matrices, then the 

output matrix is defined by equations (16). 

                 (16) 

 

3.8 Training Artificial Neural Networks 

 

In this study, neural networks are used to predict the future 

production of each unit, energy demand, and the optimal 

contribution of sources for the next five hours. An LSTM 

sequence-to-sequence model, followed by a multilayer 

perceptron, is employed to analyze historical data and forecast 

over a 5-hour. The Adam optimizer was chosen for its 

efficiency in deep learning tasks. Training involves forward 

propagation, error calculation using the Mean Squared Error 

(MSE) function, presented in Equation (17), and 

backpropagation to update the network's parameters. 

                   (17) 

: the true value; 

 : the predicted value; 

 : the total number of pairs  

 

4. Results 
 

4.1 Design of the interconnection network 

 

The interconnection network aims to facilitate energy 

exchange between systems, optimize costs and resources, and 

enhance reliability, stability, and flexibility. It utilizes existing 

distribution lines, including sources such as NURU 2, 

Rwanguba for Virunga Energy, and NELSAP for SNEL. The 

interconnection is carried out at 33 kV, with the substation 

located at Mugunga. Figure (5) illustrates the location of the 

interconnection substation on the map, while Figure (6) 

presents the principle of the interconnection network. 

Paper ID: SR25120191055 DOI: https://dx.doi.org/10.21275/SR25120191055 971 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 1, January 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 
Figure 5: Location of interconnection station and substation 

 
Figure 6:  Interconnection network 

The transformers will be considered ideal. To simplify the 

power flow study in this network, it is essential to adapt the 

transformer connections into a π-structure model. 

 

The Nuru-Interconnection Station line, 4 km long, will be 

sized for a maximum power of 6.6 MW, corresponding to 75% 

utilization of its capacity. Considering 8% losses of voltage, 

95% efficiency, a power factor of 0.85, and a voltage of 11 

kV, its characteristics are calculated using equation (18). 

                (18) 

The Nuru-Interconnection Station line is defined by a cable 

cross-section of 185 mm² and a phase-to-phase spacing of 1 

meter.  

 

The characteristics of the interconnection network are 

presented in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Interconnection networks characteristics  
                         Power Plant 

Characteristics 
SNEL 

Virunga Energie/ 

SOCODEE 
NURU 

NELSAP 

(project) 

Maximum Power (MW) 12 10 1.3 100 

Minimum Power (MW) 3 0 0 0 

Installed Load (MW) 49,3 40,5 2,1 - 

Power Factor 0,85 0,85 0,85 - 

Project (MW) - 28 3,7 - 

Transmission Line Length (Km) 136,5 79 4 93 

Transmission Line Section (mm2)  70 148 185 2x70 

Distance between cables (m)  2 1.5 1 3 

cable material ALAC ALMELEC ALAC ALAC 

Cable arrangement flag flag vault flag 

Transmission voltage (kV)  70 33 11 220 

Repartition Voltage (kV) 15 33 11 - 

5.2 The prediction of electrical energy demand 

 

The primary objective of this work is to design a neural 

network capable of predicting electrical energy demand. This 

demand can fluctuate based on various factors, including 

weather conditions, time of day, GDP, kilowatt-hour price, 

and more. In this research, demand prediction is primarily 

based on variables such as time, date, and day type (weekday 
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or weekend). Figure 7 illustrates the correlation between these 

factors and energy demand. 

 

 
Figure 7:  Electricity demand correlations. 

 

Figure 7 indicates a moderate correlation between demand and 

the hour of the day, and a weak correlation between demand 

and whether it is a weekend or not. Therefore, the prediction 

of demand based on historical demand associated with the 

date is carried out using the ANN model presented in Table 2. 

 

Table 2: ANN model for demand prediction 
LAYER (TYPE) OUTPUT SHAPE PARAM # 

LSTM_1 (LSTM) (None, 48, 64) 17408 

LSTM_2 (LSTM) (None, 64) 33024 

DENSE_1  (None, 128) 8320 

DENSE_2  (None, 3) 387 

TOTAL PARAMS: 59139 (231.01 KB) 

TRAINABLE PARAMS: 59139 (231.01 KB) 

NON-TRAINABLE PARAMS : 0 (0.00 BYTE) 

 

The model presented in Table 2 uses a sequence of 48 input 

data, processed by two LSTM layers and a two-layer 

perceptron for the output. It contains 59,139 trainable 

parameters and uses the "elu" activation function. The 

training, carried out in 12 minutes over 5 iterations and 3,633 

data batches, aims to capture temporal dependencies and 

perform a final regression. The training curve is illustrated in 

Figure 8. 

 
Figure 8:  Training curve of electricity demand predict. 

 

Figure 8 shows a gradual reduction in prediction error, with 

an MSE of 0.015 for training data and 0.011 for test data after 

5 iterations, indicating that the model effectively captures 

temporal relationships. Figure 9 illustrates the predictions 

over a five-hour sequence, comparing actual demand (blue 

curve) with predicted demand (red curve). 

 
Figure 9:  Prediction curve of electricity demand. 

 

Figure 9 shows the model's performance in predicting 

electrical energy demand, with a maximum error of 1.43% 

compared to the actual demand. 

 

5.3 The prediction of PV production 

 

A photovoltaic solar power plant converts solar energy into 

electricity, with its production influenced by meteorological 

factors such as temperature and irradiation. The production 

dataset includes measured electric power, ambient 

temperature, module temperature, irradiation, and time. The 

correlation between these variables is analyzed, as shown in 

Figure 10. 

 

 
Figure 10:  Correlation among PV production variables 

 

Figure 10 highlights a strong correlation between the power 

produced and irradiation, a significant correlation with 

module temperature. A moderate correlation is observed with 

ambient temperature, while time shows a weak correlation 

with other variables. Consequently, a neural network model 

based on LSTM layers and dense layers, as described in Table 

3, will be used to predict future production by considering past 

data and weather history. 

 

Table 3: ANN model for production PV prediction 
LAYER (TYPE) OUTPUT SHAPE PARAM # 

LSTM_1 (LSTM) (None, 48, 100) 42400 

LSTM_2 (LSTM) (None, 48, 64)             42240 

LSTM_3 (LSTM)   (None, 32)                 12416 

DENSE_1 (DENSE) (None, 128)                4224 

DENSE_2 (DENSE) (None, 32)                 4128 

DENSE_3 (DENSE) (None, 5)                  165 

TOTAL PARAMS: 105573 (412.39 KB) 

TRAINABLE PARAMS: 105573 (412.39 KB) 

NON-TRAINABLE PARAMS : 0 (0.00 BYTE) 
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The model presented in Table 3 processes an input sequence 

of 48 time-series data, passing through multiple layers: 100, 

64, and 32 LSTM modules, followed by a three-layer 

perceptron with 128, 32, and 5 neurons. It has 105,573 

trainable parameters and utilizes the "elu" activation function. 

The training, conducted over 8 iterations with 422 batches of 

size 32, takes around 6.37 minutes. The training curves are 

shown in Figures 11. 

 

 
Figure 11: Training curve of PV production predict 

 

The graph in Figure 11 shows a continuous decrease in 

prediction error. After 8 iterations, the mean squared error is 

0.068 for the training data and 0.064 for the test data, 

reflecting a very low learning error. This indicates that the 

model has effectively captured the relationships between 

meteorological data and the production of a photovoltaic 

power plant. Figure 12 presents the photovoltaic production 

forecasts over a five-hour period: the blue curve represents the 

actual production, while the red curve shows the predicted 

values. 

 
Figure 12:  Prediction curve of PV production. 

 

Figure 12 shows the model's performance in predicting 

electrical production of PV, with a maximum error of 9.9% 

compared to the actual production. 

 

5.4 The economic load dispatch 

 

Economic dispatch involves optimally allocating the demand 

for electrical energy among power plants, minimizing 

production costs and network losses while adhering to 

equality and inequality constraints. For this work, the main 

object is to optimize production costs in real-time using neural 

network models. It relies on an ANN trained using the Kuhn-

Tucker method. 

 

5.4.1 Cost function 

The cost function is quadratic in form. For SNEL, the average 

price for distribution is $ 0.078/kWh, representing the linear 

production coefficient [17]. We will consider NELSAP's 

production cost to be identical to that of SNEL, and for Nuru, 

a cost proportional to production. Some billing details are 

presented in Table 4. 

 

Table 4: Some distributions bill [17] [18] 
Power Plants Price ($) Energy (KWh) 

Virunga Energie / 

SOCODEE 

270 1082,1 

50 200,4 

300 1202,3 

SNEL / NELSAP 
0,0888 1 

10 96 

NURU 0,4 1 

 

The resolution of the cost function (Equation (2)) using the 

data from Table 4 allows for determining the cost function of 

Equation (19). 

 (19) 

Pvir : the production of the Matebe power plants. 

PNuru : the production of Nuru power plants  

PSNEL : Goma's quota of the Ruzizi power plants' production. 

PNEL : Goma’s quota of NELSAP line  

 

The function in Equation (17) indicates a linear increase in 

total production cost of 400, 78, 249.43, and 78 for each 

additional 1 MWh from the Nuru, Ruzizi, Matebe, and 

NELSAP sources, respectively, with fixed costs of 

approximately 31.93$/h. 

 

5.4.2 Optimization of production costs 

The function to be optimized is the cost function. The problem 

formulation is built around the Lagrange equation (20). 

  (20) 

The dynamic equality and inequality constraints are given in 

Equations (21) and (22). 

  (21) 

      (22) 

The iterative Kuhn-Tucker method generated a dataset with 

1,524 entries to train the artificial neural network. Each entry 

details the inequality constraints of each power plant, the 

demand, and the outputs to economically meet the demand. 

Correlations between these variables are shown in Figure 13. 

 
Figure 13:  Correlation among economic dispatch variables 
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Figure 13 indicate a strong correlation between power plant 

outputs and demand, as production must meet demand. 

Virunga Energie (Matebe) shows the highest correlation 

(~0.8), followed by NELSAP (~0.7), SNEL (Ruzizi) (~0.5), 

and the solar plant Nuru (~0.2). These differences are due to 

variations in production costs, availability, and losses during 

production and transport. Nuru is most affected by its high 

production cost, while Ruzizi faces challenges from transport 

losses and limited availability. 

 

Correlations between outputs and constraints indicate that 

low-cost plants operate near their maximum limits: NELSAP 

(~0.85), SNEL (~0.7), and Matebe (~0.5). Meanwhile, Nuru's 

production is strongly tied to its lower limit (~0.65). 

 

To predict optimal outputs for each unit based on demand and 

production constraints, a simple neural network model will be 

used, as detailed in Table 5. 

 

Table 5: ANN model for economic dispatch prediction 
LAYER (TYPE) OUTPUT SHAPE PARAM # 

DENSE_1 (DENSE) (None, 16) 160 

DENSE_2 (DENSE) (None, 32) 544 

DENSE_3 (DENSE) (None, 16) 528 

DENSE_4 (DENSE) (None, 4) 68 

TOTAL PARAMS: 1300 (5.08 KB) 

TRAINABLE PARAMS: 1300 (5.08 KB) 

NON-TRAINABLE PARAMS: 0 (0.00 BYTE) 

 

The model is a multilayer perceptron with 16 input neurons 

connected to a 9-dimensional input vector. These 16 neurons 

are fully connected to 32 neurons, followed by 16 neurons 

fully connected to 4 output neurons, representing the power 

plant outputs. The network has 1,300 trainable parameters and 

uses the "ReLU" activation function. 

 

Training consists of 50 iterations on a dataset of 1,219 

samples, grouped into batches of size 16, taking 

approximately 111 milliseconds. The precision error training 

curve is shown in Figure 14. 

 
Figure 11: Training curve of PV production predict. 

 

The curve in Figure 4 shows a gradual decrease in error. After 

50 iterations, the prediction error is approximately 0.0029 for 

the training data and 0.0026 for the test data, corresponding to 

an accuracy of 98.2% for training data and 90% for test data. 

Table 6 presents an evaluation of the model on 5 samples 

compared to the classical method. Each row describes the 

inequality constraints of the production units, the demand, the 

optimal dispatch according to the classical method and the 

predictions, along with the average error

 

Table 6: Testing the ANN model for predicting dispatch considering the dynamics of demand and production units. 
 Inequality constraints 

Demand 

(MWh) 

Optimum dispatch Average 

Error  

(%)  
  SNEL 

(MWh) 

NELSAP 

(MWh) 

Virunga 

Energie (MWh) 

Nuru 

(MWh) 

 SNEL 

(MWh) 

NELSAP 

(MWh) 

Virunga Energie 

(MWh) 

Nuru 

(MWh) 

1 Min 1.59 0.984   0.2    0.91 
29.76 

Real 6.989 9.065 16.17 0.919 1.32 

Max 6.98 9.065   28.1 1.17 Predict 7.890 9.136 16.53 0.510 

2 Min 0.101 0.949 2.65 0.54 
45.05 

Real 7.148 15.94 27.21 0.542 0.63 

Max 7.14 15.94 37.8 2.94 Predict 8.086 16.25 27.23 0.565 

3 Min 1.016 1.517 2.75   0.63 
51.23 

Real 8.649 29.35 16.6 0.637 0.71 

Max 8.64 29.35  32.19 4.70 Predict 9.662 29.76 16.75 0.629 

4 Min 2.36 0.826 1.039 0.12 
40.98 

Real 7.198 25.47 10.93 0.123 1.14 

Max 7.19 25.47 30.88  0.83 Predict 8.237 25.68 10.52 0.467 

5 Min 2.79 3.326 1.81    0.85 
30.11 

Real 5.894 23.12 1.81 0.854 0.99 

Max 8.90 24.57    37.23 1.27 Predict 6.330 23.35 1.472 0.592 

Table 16 shows a maximum error of 1.32% across five 

samples, demonstrating that the model effectively learned the 

economic dispatch of electrical energy, making it possible to 

replace the classical Kuhn-Tucker method with 90% accuracy. 

 

 

 

 

5.5 Evaluation of the Method Set 

 

In this evaluation, we measure the losses generated by the 

method using artificial intelligence compared to the classical 

method, as well as the time required for optimization. The five 

future productions and demands are predicted with fixed 

limits. The results of this evaluation are presented in Table 7 

and table 8. 
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Table 7: Evaluation of the ANN optimization model considering static productions 
NO.  Demand 

(MW) 

Optimum dispatch (MW) Times 

(ms) 

Losses 

(MW) 

Production 

costs ($/H) SNEL NELSAP Virunga Energie Nuru 

1.  Real 25.713 4.347 16.893 5 1 151.8 1.53 3417.95 

Predict 25.752 4.645 17.516 5.436 0.648 25 1.606 3464.25 

2.  Real 27.427 4.70 18.309 5 1 126.23 1.58 3570.25 

Predict 27.425 5.024 18.719 5.24 0.509 26 1.64 3495.92 

3.  Real 28.709 4.964 19.369 5 1 121.7 1.62 3685.02 

Predict 28.760 5.277 19.554 5.017 0.39 23 1.65 3488.89 

4.  Real 29.572 5.142 20.084 5 1 167.25 1.65 3762.75 

Predict 29.805 5.475 20.207 4.8395 0.305 30 1.67 3482.58 

5.  Real 30.235 5.278 20.634 5 1 126.8 1.67 3822.69 

Predict 30.596 5.586 20.773 4.760 0.293 30 1.68 3517.35 

 

Table 8: Evaluation of the ANN optimization model considering SNEL and NELSAP as highly constrained 
NO.  Demand 

(MW) 

Optimum dispatch (MW) Times 

(ms) 

Losses 

(MW) 

Production costs 

($/H) SNEL NELSAP Virunga Energie Nuru 

1.  Real 25.713 4 5 19.347 1 93 3.63 5970.74 

Predict 25.752 4.824 5.038 20.055 1.263 25 3.85 6321.84 

2.  Real 27.427 4 5 21.503 1 90.7 4.07 6508.52 

Predict 27.425 4.666 5.309 22.068 1.395 24 4.26 6885.91 

3.  Real 28.709 4 5 22 1.901 293.7 4.19 6992.89 

Predict 28.760 4.633 5.507 23.369 1.462 26 4.53 7250.59 

4.  Real 29.572 4 5 22 2.783 178 4.21 7345.69 

Predict 29.805 4.599 5.732 24.292 1.493 25 4.74 7508.71 

5.  Real 30.235 4 5 22 3.464 143.8 4.22 7618.09 

Predict 30.596 4.574 5.902 24.990 1.516 26 4.89 7703.86 

 

Table 7 shows that the predicted outputs, based on the 

estimated demand, are very close to the results obtained using 

the classical method applied to measured demands. Regarding 

losses, those from the predictive method and the classical 

method are similar, with a maximum deviation of 60 kW. In 

terms of cost, the artificial intelligence-based method 

achieves further reductions in production costs but 

occasionally violates the lower limits of sources with high 

production costs, such as Virunga Energy and Nuru. Lastly, 

the computation time for this method is approximately five 

times faster than that of the classical method. 

 

However, when SNEL and NELSAP are unable to meet the 

demand, and Virunga Energy alone is insufficient, as shown 

in Table 8, the losses and production costs are almost double 

those in Table 7. Additionally, there is a violation of the 

production limits of SNEL and NELSAP, to the detriment of 

Nuru. Overall, this evaluation demonstrates that Nuru and 

Virunga Energy, due to their high production costs, are 

consistently disadvantaged when SNEL and NELSAP can 

meet the demand. These sources are only utilized during peak 

periods or when SNEL and NELSAP production is limited, 

leading to higher costs and losses. 

 

5. Discussion 
 

This study develops a strategy using neural networks to 

optimize the optimal allocation of energy demand while 

reducing losses in the transmission network. An LSTM 

network predicts electricity demand with high accuracy 

(maximum error of 1.43%) and estimates future production 

from solar power plants with a maximum error of 9.9%. 

Additionally, a multilayer perceptron, trained with data from 

the classical Kuhn-Tucker method, distributes the demand 

among production units with 90% accuracy and reduced 

computation time, outperforming classical methods in speed 

and simplicity. Applied to the Goma network, this approach 

unifies costs, enhances flexibility, and improves grid 

reliability while accounting for the dynamics of demand and 

production. 

 

Compared to other works, this research stands out for its 

integration of production unit dynamics. For instance, 

Mountassir (2018) employed CRBMs to predict demand with 

similar accuracy but on a smaller scale. For power flow 

optimization, the results align with those of Miodrag (1996), 

Naama (2007), and Kadir (2019), who also demonstrated that 

neural networks can replace classical methods with a slight 

loss in precision but a substantial gain in speed. However, this 

study goes further by proposing an optimal allocation over a 

sequence of several hours, anticipating events and enabling 

more reliable decisions. Despite limitations in technological 

infrastructure, this research paves the way for the 

development of smart grids and advanced management 

systems in electrical networks. 

 

6. Conclusion 
 

This study highlights the potential of Artificial Neural 

Networks in optimizing energy distribution in Goma. By 

integrating advanced forecasting models and interconnection 

networks, the approach achieves higher accuracy and faster 

computation times compared to classical methods. The 

findings emphasize the need for centralized energy 

management and infrastructure investments to ensure 

equitable and sustainable electricity distribution. Future 

research should explore real-time applications and scalability 

to other regions. 
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