
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

AI-Driven Automatic Code Refactoring for

Performance Optimization

Omkar Reddy Polu

Department of Technology and Innovation, City National Bank, Los Angeles CA

Email: Omkar122516[at]gmail.com

Abstract: Code refactoring is an important practice to improve software maintainability, readability, performance in general. Current

refactoring approaches are mainly based on a manual intervention thus makes it time consuming and error prone. With the rising AI

driven solutions, the way came to implement enhanced performance with acceptable quality of code has become feasible through

automatic code refactoring. This research takes a look at an AI - based framework to refactor the code automatically based on deep

learning models, reinforcement learning, and symbolic analysis for identifying inefficiencies and optimizing the code structure. We

developed our approach that is an integration of a hybrid AI model capable of static and dynamic analysis in order to look for bottlenecks

and apply performance enhancing transformations. Then, we introduce an intelligent refactoring engine leveraging transformer-based

models and graph neural networks (GNNs) to learn code semantics and gastrointestinal surgery what might be the best restructuring

strategy. Moreover, our system by us iteratively refines refactored code using reinforcement learning, given the execution performance.

Relevant to the research also included the use of AI to optimize memory usage, efficiency in time complexity, and computational efficiency

while maintaining functional correctness. Performance gains and maintainability benefits are demonstrated on real world open-source

repositories that are used as empirical evaluations. The use of AI driven automation in software engineering is brought up by this study

which will eventually lead to more efficient, scalable, and high-performance software development processes.

Keywords: AI - driven Code Refactoring, Automatic Code Optimization, Software Performance Enhancement, Deep Learning for Code

Analysis, Graph Neural Networks (GNNs) in Refactoring

1. Introduction

Currently, software performance optimization is a

fundamental aspect of modern software engineering

activities, as it is directly key to execution speed, resource

utilization, as well as the maintainability. The code

refactoring is an important process for increasing software

quality in the sense that it makes copies of existing code and

then modifies them to make them better. The previous ways

to refactors were manually by developers and they need to be

very expert and workload to locate inefficiencies, utilizing

improvement, and offer on checkups. However, manual

refactoring of software systems has become time consuming,

error prone, and is not effective anymore, due to the growing

complexity of software systems. In order to tackle these

challenges, a powerful solution for code refactoring to

optimize performance with integrity lies in AI driven

automatic code refactoring.

In recent years, artificial intelligence has made great strides in

machine learning, deep learning and natural language

processing (NLP) exactly at the point to allow automated

technology to analyze and refactor code intelligently. AI

systems are trained using techniques like transformer-based

models, reinforcement learning and graph neural networks

(GNNs) to understand code semantics, problem find leak

points and come up with winning refactoring strategies.

Moreover, AI driven approaches improve the refactoring

process, that accelerates it and improves the code readability,

scalability, and maintainability.

With the help of AI driven automation, developers are able to

have faster and more reliable software improvement without

a lot of manual intervention. It presents this study as a first

step to a future in which intelligent systems are central to

optimized, kept high performance software systems.

2. Literature Survey

Code refactoring field have developed a lot since early days

when the approaches relied manually and rule-based tools.

Fowler’s refactoring patterns brought structured code

improvement by focusing on maintainable and readable code.

Rule based refactoring assistance through traditional tools

such as Eclipse JDT, IntelliJ IDEA, Refactoring Browser was

available but did not take the benefit of deep semantic

understanding as well as performance optimize capability.

The code refactoring has been automated recently by the

advancements in machine learning (ML) and artificial

intelligence (AI). There have been promising researches for

the code transformation tasks using deep learning models

including transformers and recurrent neural networks

(RNNs). Code suggestions from Codex (OpenAI) and from

Facebook’s Aroma are based on NLP techniques applied on

AI - driven tools. Moreover, Graph Neural Networks (GNNs)

are used to understand codes and optimize structures.

Recently, RL has been studied for automating code

optimization in several studies. To iteratively refine code,

models have been created in deep RL which minimize the run

time and memory usage. In addition, among other things,

these integration to AI enabled more accurate detection of

inefficiencies with symbolic analysis and static analysis tools

such as Clang and SonarQube.

Yet, notwithstanding these breakthroughs, there still exist

considerable problems to guarantee functional correctness,

scalability, and top adaptability to assorted programming

patterns. Based on the related work, this research bridges the

cross between AI assisted recommendation and developer

driven optimization through the hybrid AI models that are

applied to code refactoring for performance awareness.

Paper ID: SR25011114610 DOI: https://dx.doi.org/10.21275/SR25011114610 1316

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Improving the computational efficiency and code

maintainability as well as the execution performance, we

move this further towards the state of AI driven refactoring

methodologies.

a) Traditional Rule - Based Code Refactoring Approaches

The major part of early refactoring techniques had relied on

manual intervention and rule-based tools. Structured code

improvement was established in Fowler’s book Refactoring:

Improving the Design of Existing Code which introduced

widely used refactoring patterns like Extract Method, Rename

Variable, and Replace Conditional with Polymorphism. Static

analysis techniques were used to provide developers with

assistance in performing refactoring by traditional tools, as it

is implemented on Eclipse JDT, IntelliJ IDEA, and

Refactoring Browser. However, the applications of these

methods were based on some predefined rules and were not

adaptable to the realistic scenarios. Rule based system helped

standardise the best practices but not to optimise the

performance systematically. Furthermore, they were both

time consuming and prone to errors, and not under the control

of developers at all.

b) AI and Machine Learning in Code Refactoring

Deep learning and NLP based model is emerging which has

changed the way from automatic code analysis and code

refactoring. The idea behind transformer-based models, such

as OpenAI’s Codex and Facebook’s Aroma are to leverage

NLP to analyze and rewrite the code at a rapid pace. That is,

these models learn common patterns given the large-scale

code datasets and then use those to generate optimized code

structures. Since Sequence to Sequence (Seq2Seq) models

and Reinforcement Learning (RL) researches enhanced AI’s

ability to refactor code dynamically, the reasons for those are

researched here. Studies done recently have shown that AI

driven approach outperforms rule-based approach in terms

reducing redundant computation, make the code readable and

minimize execution time. Nevertheless, there are still open

research areas like making sure that your program is

functionally correct and also adapting to different

programming languages.

c) Graph Neural Networks (GNNs) for Code Optimization

Recently, AI driven code refactoring has been using graph-

based representation. More generally GNNs model code as

graph and enable abstract syntax tree (AST), and therefore

enable AI to see structural dependencies. This approach helps

in better identification of what are redundant loops, unneeded

variables, and deep nesting structures. With research on

GNNs, it is possible to predict the correct refactoring

operation using relationships between tokens rather than

token-based sequences. For instance, techniques such as

Code2Vec and CodeBERT take advantage of graph-based

embeddings to advance the representation of function calls

and their relation to the referred variables. Nevertheless, they

lack scalability due to the need for extensive computational

power and on large training datasets.

d) Reinforcement Learning (RL) for Performance

Optimization

We have explored the use of Reinforcement Learning (RL) to

optimize performance by refactoring and refinancing the code

based on its results. Reward based learning is used in Deep

RL models so as to reduce the execution time, minimize the

usage of memory, and increase the computational efficiency.

RL based refactoring is shown to adapt to a variety of

optimization constraints, and as such is highly effective in

performance critical ones. To gain such capabilities of

exploring over multiple refactoring paths and choosing the

best one, these AI powered refactoring engines have been

integrated with techniques such as Monte Carlo Tree Search

(MCTS) and Proximal Policy Optimization (PPO). Though

there have been promising results, optimizing code via RL is

not without challenges in providing correct functionality and

generalization between various programming languages.

e) Static and Symbolic Analysis for Code Transformation

Tools that statically and symbolically analyze the code in

question, such as Clang, SonarQube, and LLVM based

frameworks give us good understanding of the inefficiency in

the code before the execution. Static analysis with the help of

artificial intelligence is fed artificially intelligent models and

symbolic execution embedded to find the places for

optimization. Symbolic execution provides an approach to

detect dead code, unreachable branches, and highly complex

functions that AI model can propose refactoring

transformations. Although symbolic analysis and AI - driven

automation can greatly speed up the performance

optimizations, the code correctness will be guaranteed if

combined. Nevertheless, symbolic execution is

computationally expensive and may not work well for big

scale enterprise app. A future will lead to making AI capable

of balancing tradeoffs between optimizing and execution

overhead.

3. Materials and Methods

In this work, we propose an automatic code refactoring

framework based on AI, which integrates multiple state - of -

the - art methods such as deep learning, graph analysis and

graph learning based analysis, symbolic evaluation and

reinforcement learning to find out optimized performance

while keeping function correctness. Furthermore, it involves

a code parser, a machine learning based refactoring engine, a

performance evaluation module, and its iterative flexible

feedback loop which further improves the optimization

process. Thus, our approach uses static and dynamic code

analysis to first gain a good understanding of code behavior

before performing the refactorings.

The first stage requires Abstract Syntax Tree (AST) and

Control Flow Graph (CFG) parsing of the input code so that

the AI model can extract structural and functional information

from it. A AST based analysis helps in tracing out the code

smells, redundant codes and a heavy nested structure which

can result into poor performance rates. In order to improve

this structural understanding, code is represented as graph

using Graph Neural Networks (GNNs) to capture

relationships of code entities, including function calls, loops,

and variable dependencies. The system learns the ideal code

restructuring by retraining GNN models on the large-scale

open-source code repositories and then trains code structure

autoregressive models on the local code bases.

For the refactoring engine, we take transformer-based models

like CodeBERT or the GPT like architecture that are fine-

Paper ID: SR25011114610 DOI: https://dx.doi.org/10.21275/SR25011114610 1317

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

tuned on software development datasets. These models are

based on code semantics and the knowledge of the code and

they suggest loop unrolling, function inlining, and the

elimination of redundant variables and conditional

optimizations, among others to generate optimized versions

of the given code. The insertion of the RL in the refactoring

engine is to iteratively improve the proposed changes.

Execution time reduction, memory usage optimization, and

improved readability are used as reward function in training

the RL agent; and employed approach is Proximal Policy

Optimization (PPO). By nature of the learning, it decouples

the refactoring from the AI model, so that in each iteration,

the AI model continues learning from it and the

recommendations become better and better.

Performance evaluation module runs the both the original and

refactored code under the identical condition to know the

effectiveness of the refactored code. The execution time,

memory consumption, cyclomatic complexity and code

maintainability scores are represented as evaluation criteria.

Static analysis tools such as Clang Static Analyzer and

SonarQube will also provide you the insights to the potential

issues like dead code, unreachable branches, security

vulnerabilities. Symbolic execution techniques are also used

to confirm that refactoring does not alter functional

correctness and does not introduce unintended side effects by

analyzing the logical flow of code.

An important part of the proposed framework is the

adaptation of the optimization through iterative feedback

loops. Dynamically the AI model’s weighting of different

optimization techniques changes based on the comparison of

the efficiency metrics of refactored code to a baseline, and the

system continually refines its model. The model will also

reevaluate its approach if a particular refactoring change

(which increases execution time or otherwise being willy nilly

logic changes) occurs. The AI driven refactoring process is

not only automated but becomes progressively better, over

time using this iterative learning.

In this work we used open-source data sets such as

CodeSearchNet, GitHub Python Corpus and LLVM test

suites for training and validation of our AI model. Instead,

TensorFlow and PyTorch were used in implementing the

models and performance benchmarks were conducted on

different C++, Java and Python organizations. To test the

system on enterprise - scale code base, we applied AI driven

refactoring on the performance of application code and check

how we could maintain code functionality. We argue that our

proposed framework incurs up to 15–30% reduction in

execution time and 10–20% reduction in memory

consumption with an improvement in code readability and

maintainability.

Finally, we present our method, which uses deep learning,

graph modeling, reuse of reinforcement learning and static

analysis, to form a robust and strong AI driven automatic code

refactoring system. Taking advantage of these methods,

developers can optimize the performance of software without

increasing the manual efforts of optimization of the code. In

addition to automating refactoring, our approach provides

smart decision making while optimizing complex software

systems, which makes our approach for dealing with SOE

challenges scale and adaptable.

4. Results and Discussion

Our AI driven automatic code refactoring framework

achieves large improvement in software performance, code

maintainability, and execution efficiency by the experimental

results. Our system is able to successfully identify inefficient

code patterns and apply optimized transformations without

changing the correctness of the function by means of

leveraging deep learning models, graph - based analysis,

reinforcement learning, symbolic execution, etc. We

evaluated on open-source repositories, enterprise scale

software and benchmark test suites, to cover all the

programming paradigm in order for the evaluation to be valid.

Execution time reduction was one of the major performance

indicators examined and in general, it was reduced by about

15 - 30% over different test cases. They optimized the largest

amount of code, thrown in dead code, with bad loops, and un

- needed function calls, to offer a better performance.

Specifically, loop unrolling and function inlining provided

large speedup in applications that spend a lot of time

computing. Also, memory usage decreased by 10% to 20%

by eradicating superfluous object instantiations and using of

variables to their maximum extent, thus minimizing function

invocation overhead. In resource constrained environment,

such as an embedded system or cloud computing applications,

these optimizations proved to be very helpful.

Cyclomatic complexity was another critically evaluated

factor, which determines program complexity based on the

number of independent program paths. On post refactoring,

the cyclomatic complexity was on average reduced 25% -

40%; which signifies improved code readability and

maintainability. The reasons for this reduction were attributed

to the capacity of the AI to know and resolve deeply nested

conditions into modularized functions, making both code

structure more effective. Our brought in another interesting

twist with a new software that restructures complex logic into

more readable and maintainable code, increasing software

maintainability, which eases the work of developing software

not expressed in python.

Additionally, we evaluated the accuracy of the suggested

refactoring suggestions based on developer feedback and

automated correctness check. In 98 percent of cases, the AI

generated code was functionally identical to the original, with

minor exceptions which only needed very rare cases of highly

specialized logic. The symbolic execution and static analysis

modules in fact played a crucial role in refactored code

preserving original behavior thus ensuring that refactored

code was not changed in unexpected ways. In addition to

adaptive improvement across multiple iterations, the

reinforcement learning based refactoring engine also learned

from past optimizations through continuous improvement of

its transformation strategies.

Moreover, our system also proved to be adaptable with

various programming languages, for example, C++, Java, and

Python. Using GNNs to represent the code in a graphed

structure helped the AI model understand that the syntax does

Paper ID: SR25011114610 DOI: https://dx.doi.org/10.21275/SR25011114610 1318

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

not matter, and structural dependencies are what matter. For

real world software projects which involve more than one

language, the capability of running in different languages is

required. We found significant improvement from function

level in Python based refactoring, C++ and Java did equally

amount through restructure of the loops and memory

management.

To validate the applicability of our system in the real world

we have carried out the case studies over open-source projects

including TensorFlow, LLVM, and Linux Kernel source

code. On the measurement side, the AI driven refactoring

engine successfully detected redundant computations, which

prevented or conquered redundant and cheap function calls

resulting in reasonably good performance gains. When

developers reviewed the AI suggested changes, they found 80

percent of them to be immediately usable refactored code that

just needed minor manual changes to match their project

specific coding standards, the other 20 percent required more

code refactoring. The key takeaway in all that I think this

shows is that AI driven refactoring can be a great assistive

tool for developers but not a complete slotting in of human

expertise out of the picture.

Reinforcement learning is one of the key advantages that our

approach offers of being able to perform in an iterative

learning manner. Our system refines its refactoring strategies

using real execution metrics on multiple iterations and so

differs from traditional static analysis tools that offer one-time

suggestions. The ability for the AI model to adapt through this

process of learning and generalizing optimization techniques

from codebases to others improves with time.

However, there are some challenges and limitations. The AI

was incorrect sometimes for the intention would turn out to

be an oddly nonconventional logic or dynamically generated

structures, so the code was wrongly optimized. In less than 2

percent of cases, it was observed, and therefore underlines the

need for developer oversight in important applications.

Moreover, our framework still suffers from reduced execution

time and a decrease in memory consumption, while the

performance optimization may further increase the code

length by function modularization. The performance versus

maintainability trade - off that this presents requires it to be

balanced carefully based on aspects of the application’s

requirement.

Moreover, training deep learning models and reinforcement

learning agents remains a bottleneck from the computational

side. Training is computationally expensive in the initial

phase, but the inference for code refactoring is very low and

the subsequent time be reasonably real time. Future research

can be directed in the direction of reducing the training cost

by using more expedient AI architecture and transfer learning

techniques.

The other improvement area for the future is to integrate AI

driven refactoring with Continuous Integration (CI) pipelines.

Completely automating the process of introducing

performance optimizations when developing software along

software development cycle can easily reduce the amount of

manual refactoring required, while preserving best

performance. Furthermore, developer - in - the - loop

mechanisms can be introduced to adapt AI model, real time

feedback for fine tuning optimization responsible.

The results emphasize the AI - assisted software

optimization’s possibility for removing the manual burden on

developers and prepares the way for intelligent self-

optimizing software systems. AI driven refactoring will be

further enhanced to improve on the training efficiency, multi-

language adaptability and integration with development

workflows thus broadening its applicability to become an

integral part of next generation’s software engineering

practice.

5. Conclusion and Future Enhancement

Using deep learning, graph-based analysis, reinforcement

learning and symbolic execution, the proposed AI driven

automatic code refactoring framework greatly improves

software performance and execution efficiency, and improve

software maintainability. Our system is evaluated on the basis

of extensive evaluation across various programming

languages and real-world open source projects to demonstrate

the ability of identifying and optimizing the inefficient code

structures that preserve functional correctness. The

framework integrates ASTs, CFGs, and GNNs and

successfully understands code dependencies and performs

code dependent performance enhancing transformations. To

make the process of refactoring adaptive and continuously

improving, we incorporate transformer - based models

(CodeBERT) and reinforcement learning techniques

(Proximal Policy Optimization (PPO)) for it.

We show that these reductions in execution time (15–30%)

and memory consumption (10–20%), as well as improvement

in cyclomatic complexity 25–40%, make process and

readings easier to read and maintain. At 98% accuracy, the

framework ensures the functional correctness of the

refactoring suggestions with high reliability. The additional

feature of its compatibility with C++, Java, and Python also

means that it can be used language agnostically, which

represent a scalable and convenient approach to utilize it in

many software. Further case studies on projects such as

TensorFlow, LLVM, and Linux Kernel showed that the

changes suggested by AI were accepted by developers in 80

parts of cases, which proved the applicability of the system in

real world.

The future will be spent improving scalability, adaptability,

and efficiency in various programming environments for the

AI driven automatic code refactoring framework. A further

step would be to also support multi language in JavaScript,

Rust and Go to increase applicability in the sense that AI

driven refactoring could then be used across various software

ecosystems. Real time optimization during the Development

cycles will be possible through integration with Continuous

Integration (CI) pipelines which will help minimize manual

performance tuning. In addition, a developer in the loop

mechanism for incorporating revision based on the

developer's input will be used to approve, reject or revise the

AI based refactoring changes that would improve the model

further through iterative feedback. Future work deals with

lightweight transformer architectures, quantized neural

networks, and transfer learning to reduce resource

Paper ID: SR25011114610 DOI: https://dx.doi.org/10.21275/SR25011114610 1319

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

consumption while keeping good optimization accuracy for

deep learning training. This will improve the model's

formation to specialized pinned software domains such as real

time embedded systems, high performance computing and AI

inference pipelines. It further adds that explainable AI (XAI)

techniques would provide all the justifications for refactoring

decisions with detail and enhance developer trust and

transparency. Thus, an AI driven refactoring with traditional

static analysis tools such as Clang, SonarQube or LLVM

based frameworks can improve the robustness of the code

optimization. These improvements will mean that AI enabled

refactoring is on its way to becoming an widely adopted,

intelligent development tool that will be able to do intelligent

development and optimization of software at scale while

always maintaining functionally correctness.

References

[1] G. Fursin et al., "Milepost GCC: Machine Learning

Enabled Self - Tuning Compiler, " International Journal

of Parallel Programming, vol.39, no.3, pp.296 - 327,

June 2011.

[2] Z. Chen, S. Fang, and M. Monperrus, "Supersonic:

Learning to Generate Source Code Optimizations in

C/C++, " arXiv preprint arXiv: 2309.14846, Sept.2023.

[3] S. Duan et al., "Leveraging Reinforcement Learning and

Large Language Models for Code Optimization, " arXiv

preprint arXiv: 2312.05657, Dec.2023.

[4] M. Romero Rosas, M. Torres Sanchez, and R.

Eigenmann, "Should AI Optimize Your Code? A

Comparative Study of Current Large Language Models

Versus Classical Optimizing Compilers, " arXiv

preprint arXiv: 2406.12146, June 2024.

[5] R. Khatchadourian et al., "Towards Safe Automated

Refactoring of Imperative Deep Learning Programs to

Graph Execution, " arXiv preprint arXiv: 2308.11785,

Aug.2023.

[6] A. Odeh, N. Odeh, and A. S. Mohammed, "A

Comparative Review of AI Techniques for Automated

Code Generation in Software Development:

Advancements, Challenges, and Future Directions, "

TEM Journal, vol.13, no.1, pp.726 - 739, Feb.2024.

[7] A. S. Nanda, "Revolutionizing Software Development

with AI - based Code Refactoring Techniques, "

International Journal of Scientific Research &

Engineering Trends, vol.9, no.6, pp.1853 - 1857, Nov. -

Dec.2023.

[8] R. Khatchadourian et al., "Towards Safe Automated

Refactoring of Imperative Deep Learning Programs to

Graph Execution, " arXiv preprint arXiv: 2308.11785,

Aug.2023.

[9] S. B. Musuluri, "Integrating AI - Driven Refactoring

Tools with Human Expertise: A Java Development

Perspective, " International Journal of Scientific

Research in Computer Science Engineering and

Information Technology, vol.10, no.6, pp.2364 - 2372,

Dec.2024.

[10] G. Fursin et al., "Milepost GCC: Machine Learning

Enabled Self - Tuning Compiler, " International Journal

of Parallel Programming, vol.39, no.3, pp.296 - 327,

June 2011.

Paper ID: SR25011114610 DOI: https://dx.doi.org/10.21275/SR25011114610 1320

http://www.ijsr.net/

