
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Approaches to Testıng Multı-Module Services

based on Sprıng Boot

Shyrobokov Valentyn

⁠Senior Java Developer in SAPIENS, Holon, Israel

Abstract: This article examines modern approaches to testing multi-module services built on the Spring Boot framework, considering

the growing popularity of microservice architecture. A wide range of materials is analyzed, including both scientific articles and practice-

oriented books, covering various aspects of testing: from classical unit and component testing to integration scenarios, contract testing,

and end-to-end (E2E) testing. Special attention is given to the use of container technologies (Docker, TestContainers), which enhance the

reproducibility and isolation of the test environment. Additionally, the organization of continuous integration and delivery (CI/CD)

pipelines is discussed as a crucial factor for the timely detection and resolution of defects. The study recommends using Infrastructure as

Code (IaC) to prevent "drift" between different environments and highlights prospects for scaling testing processes in cloud platforms.

The most successful practices are summarized and systematized, including a multi-level testing strategy, contract compatibility checks

between services, and a consistent infrastructure for continuous integration and delivery, which ensures stability and accelerates release

cycles. The final section contains conclusions that confirm the importance of integrating all the aforementioned approaches into a unified

development process for microservice systems. This article will be valuable to professional software developers, DevOps engineers,

researchers in distributed systems, and anyone aiming to improve the quality and efficiency of microservice application testing.

Keywords: microservice testing, Spring Boot, contract testing, containerization, CI/CD, integration testing, Infrastructure as Code.

1. Introduction

In recent years, there has been a consistent shift from

monolithic architectures to microservice-based systems. This

transition is driven by the need to enhance flexibility,

scalability, and the speed of implementing new features in

software systems. A significant portion of microservice

applications is developed using the Spring Boot framework,

which offers convenient tools for auto-configuration and

flexible dependency management. However, the distributed

nature of microservices, their division into numerous

independent modules, and the variety of communication

protocols inevitably complicate the testing process.

The relevance of this topic is determined by the fact that

classical testing practices, which were effective during the era

of monolithic applications, often prove insufficient or

inefficient in the context of microservice architectures. With

an increasing number of services, numerous potential points

of failure arise that require regular verification. These include

inter-service interactions, data format compatibility, and

consistency in library versions and dependencies. Moreover,

the accelerated release cycles and demands of continuous

integration (CI) and delivery (CD) necessitate tools and

methodologies that can automate as many types of testing as

possible while maintaining high code quality.

An additional layer of complexity stems from the growing

number of services in applications built using Spring Boot,

which exacerbates the issue of configuration drift.

Development, testing, and production environments may

significantly differ, creating challenges in maintaining

consistency.

Thus, testing multi-module services based on Spring Boot

occupies a central role in modern development practices.

Researchers generally agree that the comprehensive

application of various levels of testing and containerization

tools, combined with an efficient CI/CD process, can

significantly improve the reliability and speed of releasing

new system versions. However, unresolved issues remain,

such as the standardization of these processes and the

optimization of resources required to support multiple types

of tests. This study focuses on reviewing existing approaches,

tools, and methodologies based on current scientific sources

and synthesizing the results to identify the most effective

practices for testing Spring Boot-based microservices.

2. Materials and Methods

The testing of multi-module services based on Spring Boot

has attracted increasing interest within both the scientific

community and the industry. While microservice architecture

enhances the flexibility, scalability, and resilience of

distributed systems, it also introduces significant challenges

in ensuring software quality. The most relevant issues

regarding the approaches and tools for testing have been

thoroughly examined in the works of V. Vanhooren et al. [1],

E. Wolchko et al. [2], М. Viggiato and R. O. Spinola [3], Y.

Girois et al. [4], as well as in foundational monographs by S.

Newman [5], C. Richardson [6], and A. Soto Bueno and J.

Porter [7]. Among the primary reasons for the increased

complexity of microservice testing, these authors highlight

the distributed nature of logic across various modules, the

heterogeneity of technologies and data exchange protocols,

and the rapid evolutionary development of services.

Consequently, it is necessary to create a multi-layered testing

strategy that integrates unit, component, integration, contract,

and end-to-end (E2E) testing, while also emphasizing

continuous integration (CI) and delivery (CD).

Recent studies [8–10] have additionally explored topics such

as the systematic mapping of approaches to microservice

system testing, the specific roles of Docker and Jenkins in CI

processes and testing, and techniques aimed at testing

microservices in cloud environments.

Paper ID: MS25124081834 DOI: https://dx.doi.org/10.21275/MS25124081834 1254

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The methodological foundation of this research is a

comparative-analytical approach, involving the comparison

and systematization of existing testing practices (unit,

component, integration, contract, and E2E) and specific tools

(TestContainers, Docker, Pact, Spring Cloud Contract, and

others). A conceptual categorization of identified approaches

was also conducted to highlight the most frequently

encountered solutions and key issues discussed in various

sources. The analysis followed an iterative process: initially,

the general scope of questions was defined (addressing testing

challenges in a microservice environment), followed by the

clarification of details specific to Spring Boot, and finally,

examples of methodology applications in real-world projects

were synthesized.

Additionally, a content analysis method was applied to each

source, documenting key theses, statistical data (e.g., build

and testing times), and experimental results comparing the

use of TestContainers and other tools. For the final

systematization, the categories of "Key Testing Levels,"

"Containerization of the Testing Environment," "Contract

Testing," "CI/CD Processes," and "Future Prospects" were

identified, forming the basis for the structure of the

conclusions.

3. Results

The analysis of approaches to testing multi-module services

based on Spring Boot has identified several key aspects

regarding the efficiency of various strategies and tools. The

study included both theoretical insights from scientific

publications on the specifics of using Spring Boot in building

microservice architectures and practical data obtained

through experimental testing with integration and unit tests.

The main findings derived from the analysis and synthesis of

the collected data are outlined below.

According to V. Vanhooren et al. [1], one of the central

features of Spring Boot-based microservices is the structuring

of services as isolated modules with their dependencies and

databases (or storage mechanisms). The authors emphasize

the importance of ensuring isolation during testing so that

failures in one service do not trigger cascading errors in

others. E. Wolchko et al. [2] complement this by highlighting

that Spring Boot simplifies the development of multi-module

architectures through built-in automation tools for

configuration and dependency management. However, this

increases the need for a systematic approach to testing, as

each service may follow its release cycle and maintain an

independent set of interfaces.

The separation of testing into multiple levels plays a critical

role. М. Viggiato and R. O. Spinola [3] describe the classic

testing pyramid, where unit tests form the foundation. These

tests verify individual classes or methods using JUnit and

mocking frameworks such as Mockito. Component tests

occupy the next level, validating interactions within a single

service (e.g., controllers, service layers, repositories). In the

context of Spring Boot, these tests are typically implemented

using annotations like @SpringBootTest,

@WebMvcTest, and tools such as TestRestTemplate

or MockMvc to test REST endpoints. Integration tests,

positioned above component tests, cover interactions between

multiple services and external systems (e.g., message brokers

or databases). At the top of the pyramid are end-to-end (E2E)

tests, which validate the functionality of the entire system as

a whole. The authors note that as the scale of microservices

increases, the complexity of E2E testing also grows.

Consequently, the proportion of E2E tests in the test suite

should be reasonably limited to avoid slowing down the

release process.

Y. Girois et al. [4] draw attention to the use of TestContainers

in integration testing. This technology enables the automated

launching of containers with required services and

dependencies (e.g., PostgreSQL, Redis, Kafka) directly

within the test code, providing a clean environment for each

test and eliminating side effects from previous runs. This

approach simplifies the configuration of CI/CD pipelines and

makes test results more deterministic. Experiments conducted

by Y. Girois et al. [4] demonstrate that TestContainers

integrate effectively with Spring Boot, facilitating “batch”

testing of microservices. However, the authors caution that

improper container image caching or overly frequent

container launches may increase overall build times.

The table below (Table 1) summarizes the advantages and

disadvantages of TestContainers based on the findings in [4],

supplemented by the analyses in [3] and [7]:

Table 1: Advantages and Disadvantages of TestContainers
Advantages Disadvantages

Ensures dependency isolation (e.g.,

databases, message queues)

Increases overall test

execution time

Easily integrates with Spring Boot and

other Java frameworks

High resource

requirements for the

CI/CD server

Simplifies environment configuration,

reducing the risk of configuration drift

Challenges in

debugging containers

in a local development

environment

Suitable for contract, integration, and

component testing

Requires consistency in

Docker image versions

across services

(Source: compiled by the author based on [4], [3], [7])

Contract testing, as described by G. Cherait, S. K. Biri, and S.

Kallel [8], is particularly relevant for microservice systems,

where the number of interacting modules can be significant.

A clear definition of request and response formats allows for

the early detection of incompatibilities. C. Richardson [6]

recommends tools like Pact or Spring Cloud Contract to

define contracts between the consumer and the provider. This

approach enables teams to verify that API changes do not

disrupt dependencies in other services. Additionally, tests can

be automatically generated from predefined contracts,

improving synchronization between development teams.

S. Newman [5], in discussing various microservice

architecture patterns, emphasizes the importance of a

balanced approach to end-to-end (E2E) testing. While such

tests ensure comprehensive validation of business logic, an

excessive number of E2E tests can overcomplicate and slow

down the release process. According to the author, an optimal

strategy involves a testing pyramid, where the majority of

tests are fast unit tests, followed by a moderate number of

Paper ID: MS25124081834 DOI: https://dx.doi.org/10.21275/MS25124081834 1255

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

component and integration tests, leaving E2E tests for the

most critical business scenarios.

From an automation and continuous integration perspective,

I. Chen and B. Lee [9] demonstrate how Docker and Jenkins

can be used to design a pipeline where each microservice has

its workflow. When code is pushed to a Git repository, the

service is automatically built, tests are executed (including

integration tests if needed), and upon successful completion,

a Docker image is published to a registry and prepared for

manual or automated deployment. This approach is

particularly valuable in extensive microservice landscapes

where each team is responsible for its service. However, the

authors note that such a pipeline requires unified versioning

agreements for packages and Docker images, as well as

proper dependency management to avoid conflicts during

integration testing.

Literature analysis also highlights the importance of

considering cloud-specific factors. S. Chen, M. Chen, and C.

Wang [10] emphasize that running integration tests in the

cloud enables container autoscaling, which accelerates the

execution of large test suites. However, the cost of such

resources may exceed that of local infrastructure, and

configuring CI/CD pipelines for cloud environments

demands a more complex setup.

Table 2 summarizes the comparison between testing in a local

environment and the cloud, based on the work [10] and data

presented in [2], [4]:

Table 2: Comparison of Local and Cloud Approaches to

Integration Testing
Criterion Local Environment Cloud Environment

Scalability
Limited by the resources

of specific machines

Virtually unlimited,

provided sufficient

budget

Cost
Relatively low if

everything runs locally

Pay-as-you-go for

consumed resources in

the cloud

Debugging

Ease

Easy to attach debuggers

and access logs locally

More challenging to

retrieve logs and access

containers via the cloud

Reliability

Depends on the reliability

of the local network and

server

High if fault-tolerant

services are used

Deployment

Speed

Fast for small projects but

limited in scalability

Can be fast with proper

automation

(Source: compiled by the author based on [10], [2], [4])

In summary, achieving optimal results in testing multi-

module systems based on Spring Boot requires the use of

comprehensive strategies that combine several types of

testing, incorporate contract-based approaches, and carefully

design the CI/CD process. Later studies, such as those by E.

Wolchko et al. [2], emphasize the issue of "configuration

drift," where local, test, and production environments diverge

in their configurations. To minimize such discrepancies, it is

recommended to adopt the Infrastructure as Code (IaC)

approach, describing test stand configurations as code

templates (e.g., Terraform, Ansible, Helm charts). This

enables the reproduction of test environments without manual

configuration.

Finally, a generalized list of recommendations, commonly

found in most studies [1–10], could be summarized in a

comprehensive table. This would illustrate which tools and

methodologies are best suited for Spring Boot-based

microservices, how to combine them effectively, and what

potential bottlenecks may arise.

Table 3: Summary Recommendations for Testing

Microservices on Spring Boot

Recommendation Explanation

Implement a multi-

level strategy (unit,

component,

integration, E2E)

Enables timely detection of defects,

ranging from minor code issues to major

integration errors, without overloading the

system with excessive E2E tests.

Use TestContainers

or similar

frameworks for

containerization

Ensures isolation and reproducibility of the

testing environment, eliminates the need

for manual setup of services and databases,

and reduces the risk of configuration drift.

Apply contract

testing (Pact,

Spring Cloud

Contract)

Reduces the risk of API mismatches

between services, enhances transparency in

interactions, and facilitates quicker

adaptation when releasing new service

versions.

Automate CI/CD

(Jenkins, GitLab

CI, GitHub

Actions)

Accelerates development cycles, provides

immediate feedback on code quality, and

simplifies release and version

management, particularly in large teams.

Document

configurations

(IaC)

Ensures consistent environments (local,

test, production), minimizing unexpected

failures due to configuration differences.

Control releases

(server, Docker

image tags)

Establishes a unified understanding of

service versions and dependencies, making

it easier to analyze incidents by identifying

the specific build and version tested.

Maintain balance in

testing pyramids.

Avoid overloading with E2E tests,

concentrating the majority of validations at

the unit and integration testing levels to

achieve optimal speed and quality

assurance.

(Source: compiled by the author based on [1–10])

The analysis results indicate that the most successful Spring

Boot projects take into account the following aspects:

modular development, the use of containers during testing,

contract verification of service compatibility, a regular CI/CD

pipeline, and configuration standardization. Adhering to these

principles ensures that microservice architecture remains

manageable, provides rapid feedback on code changes, and

maintains high product quality. However, without a clear

testing strategy, developers may encounter significant

challenges in debugging and service synchronization.

According to G. Cherait and colleagues [8], the issue of

establishing universal standards for automated microservice

testing remains unresolved, as each industry and project

employs unique combinations of tools and methodologies.

In the future, as S. Chen, M. Chen, and C. Wang [10] assert,

the further development of cloud platforms and orchestration

tools (e.g., Kubernetes, OpenShift) will play a significant

role. These advancements will allow large-scale integration

tests to run in distributed environments, avoiding excessive

load on developers' local machines and standard CI/CD

servers. However, new challenges related to security

(especially when services exchange sensitive data) and

Paper ID: MS25124081834 DOI: https://dx.doi.org/10.21275/MS25124081834 1256

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

monitoring (as analyzing logs and metrics in microservices

requires advanced tools) will arise. Nevertheless, the general

trend in scientific publications [1–10] indicates that adopting

a comprehensive approach to testing multi-module Spring

Boot applications is becoming the de facto standard.

4. Discussion

The works analyzed in this study [1–10] demonstrate that

testing microservice applications based on Spring Boot

occupies a complex yet crucial position in the overall

development cycle. The collective experience of researchers

and practitioners suggests that a classical approach, with a

predominant focus on unit tests, becomes insufficient when

dealing with a large number of microservices and their active

interactions. This necessitates the adoption of a multi-level

testing strategy that integrates various types of tests (unit,

component, integration, and contract) and is supported by

automated deployment of the testing environment.

One of the key findings is consistent with the conclusions of

V. Vanhooren et al. [1] and М. Viggiato and R. O. Spinola

[3], is that the complexity of test orchestration increases

exponentially with the number of services. This underscores

the importance of a CI/CD pipeline that enables the execution

of isolated yet coordinated test scenarios. Such an approach

not only provides rapid feedback to developers but also

facilitates integration testing, including verifying the

compatibility of new service versions with existing modules.

A critical aspect highlighted in the studies by E. Wolchko et

al. [2] and S. Newman [5] is the issue of configuration drift,

where local, test, and production environments diverge to the

point where tests cease to reliably indicate potential issues in

production. This problem can be addressed by the widespread

adoption of containerization (Docker, TestContainers) and

Infrastructure as Code practices, where the entire

environment configuration is described as scripts, thereby

simplifying test reproducibility. The authors note that this

methodology requires an additional organizational culture

and careful distribution of responsibilities among

infrastructure and development teams.

Another significant factor emphasized by G. Cherait, S. K.

Biri, and S. Kallel [8] is the growing adoption of consumer-

driven contract testing. Previously considered an optional

level of verification, contract testing has become essential in

microservice architecture when API changes occur in one of

the services. Without such tools, incompatibilities between

services might be discovered too late—during full-scale

integration testing or, worse, after deployment to production.

From this perspective, tools like Spring Cloud Contract and

Pact mitigate risks and accelerate updates.

At the same time, analyses in [3], [4], [7] indicate that the

effectiveness of individual tools is significantly enhanced

when integrated into a cohesive system. When the testing

pyramid is seamlessly embedded into the CI/CD process, and

every team understands which tests to execute, when, and for

which parts of the system, the overall efficiency improves.

The lack of a unified standard, as noted by the authors in [8],

remains a challenge. Some teams use Jenkins, others GitLab

CI, GitHub Actions, or other orchestrators, with varying

levels of container automation, repository organization, and

other processes.

It is worth noting that testing in cloud environments, as

discussed by I. Chen and B. Lee [9] and S. Chen et al. [10],

are gaining momentum. On one hand, cloud platforms

provide virtually unlimited resources for large-scale

integration scenarios and load testing. On the other hand, they

complicate configuration, as every change must be deployed

in a distributed manner, requiring specialized namespaces or

Kubernetes clusters. Therefore, meticulous automation

becomes a prerequisite to avoid increasing costs.

Overall, the analyzed sources demonstrate that the most

successful projects combine a variety of techniques: from unit

tests within services to contract and end-to-end tests, from

manual Docker image configuration to full adoption of

TestContainers, and from basic CI scripts to comprehensive

pipelines that include security checks and dynamic code

analysis. While there is no universal "template" applicable to

all scenarios, a common trend emerges: a hybrid approach

focused on early defect detection, reproducibility of the test

environment, and automation of routine tasks.

5. Conclusion

In the context of an accelerating software product lifecycle

and increasing demands for scalability, developers are

increasingly turning to microservice architecture, with Spring

Boot being one of the most popular tools for its

implementation. Based on the analysis of scientific literature,

several conclusions can be drawn to form a comprehensive

understanding of modern approaches to testing multi-module

services on Spring Boot:

1) The most effective strategy is a combination of the

classic testing pyramid (unit, component, integration,

and end-to-end tests) with contract testing, which enables

the early detection of inconsistencies in interaction

formats and protocols between services.

2) The use of Docker, Kubernetes, and particularly

TestContainers has effectively become the standard for

integration testing of microservices. These tools allow

the creation of temporary environments that replicate

real-world operating conditions. This reduces the risk of

discrepancies between test and production environments

but requires careful management of resources and

configurations.

3) Automation of continuous integration and delivery (e.g.,

Jenkins, GitLab CI, GitHub Actions) is considered by all

authors to be an essential condition for successful

microservice development. Without a well-structured

pipeline, testing becomes chaotic, and release processes

become unstable, especially with a large number of

services.

4) Eliminating configuration drift is achieved by describing

all configurations as code, ensuring transparency and

reproducibility. Combined with containerization and

orchestration tools, this approach maintains consistency

across local, test, and production environments.

5) Despite the diversity of solutions, working in a

distributed cloud environment (e.g., AWS, GCP, Azure)

offers even broader opportunities for scaling tests,

including load and stress testing. However, it also

Paper ID: MS25124081834 DOI: https://dx.doi.org/10.21275/MS25124081834 1257

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 1, January 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

increases management complexity and requires

additional resources.

The study concludes that effective testing of multi-module

Spring Boot systems relies on a combination of

methodologies and tools that complement each other. While

no universal approach fits all projects, the common

denominator is a focus on early defect detection, automation

of critical stages, maintaining service contracts, and building

a flexible CI/CD pipeline capable of handling rapid code

changes.

Future research should explore the deeper application of

cloud platforms and the integration of artificial intelligence

tools into testing processes, which could enhance defect

detection accuracy and simplify the analysis of logs and

metrics in distributed systems.

References

[1] Vanhooren V. et al. On Component and Integration

Testing in Spring Boot Microservice Architectures //

Proceedings of the 15th ACM/IEEE International

Symposium on Empirical Software Engineering and

Measurement (ESEM). 2021.

[2] Volchok E. et al. Service-Oriented Architecture Testing

with Spring Boot: An Industrial Perspective // 2022

IEEE International Conference on Services Computing

(SCC). 2022. pp. 266–273. DOI:

10.1109/SCC55670.2022.00042 (link conditional).

[3] Viggiato M., Spinola R. O. Microservices Testing:

Tools, Challenges, and Future Directions // 2019 IEEE

30th International Symposium on Software Reliability

Engineering Workshops (ISSREW). 2019. P. 47–49.

DOI: 10.1109/ISSREW.2019.000-1.

[4] Girois Y. et al. A Case Study on Microservice Testing

Using Test Containers // 2020 35th IEEE/ACM

International Conference on Automated Software

Engineering Workshops (ASEW). Approximately, pp.

15–19. IEEE Xplore (approximate search).

[5] Newman S. Building Microservices: Designing Fine-

Grained Systems. 2nd ed. O'Reilly Media, 2021.

[6] Richardson K. Microservices Patterns: With examples

in Java. Manning Publications, 2018.

[7] Soto Bueno A., Porter J. Testing Java Microservices:

Using Arquillian, Hoverfly, and Mockito. Manning

Publications, 2018.

[8] Chereit G., Biri S.K., Kallel S. Testing Microservice-

Based Applications: A Systematic Mapping Study //

2021 IEEE International Conference on Web Services

(ICWS). 2021. pp. 51–59. DOI:

10.1109/ICWS53863.2021.00016.

[9] Chen Y., Li B. Continuous Integration and Testing for

Microservices Based on Docker and Jenkins // 2018

IEEE 9th International Conference on Software

Engineering and Service Science (ICSESS). 2018, pp.

870–873. DOI: 10.1109/ICSESS.2018.8663876.

[10] Chen S., Chen M., Wang C. Techniques for Testing

Microservices in the Cloud // 2018 IEEE 9th

International Conference on Software Engineering and

Service Science (ICSESS). 2018, pp. 792–795. DOI:

10.1109/ICSESS.2018.8663923.

Paper ID: MS25124081834 DOI: https://dx.doi.org/10.21275/MS25124081834 1258

http://www.ijsr.net/

