
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Developing and Building MEVN Stack

Jagadeesh Kancharana

Abstract: This article provides a comprehensive guide to developing and deploying a MEVN stack application, using a task management

project as an example. It details the setup of essential tools and technologies like Node. js, Express, MongoDB, and Vue. js, and explores

various methods to automate the build and deployment processes, including the use of Webpack, Gulp, and Docker. The article aims to

streamline the development process and ensure the successful deployment of scalable web applications. This paper provides a

comprehensive guide to building a MEVN stack application and deploying it in a production environment. The guide covers the essential

steps involved in development, packaging, and deployment, highlighting various methods to streamline and automate the processes. The

development section begins with setting up the required prerequisites, including Node. js, Express, Mongoose, MongoDB, and various

tools such as Vue CLI and Postman. An example project, specifically a simple task management application, is used to demonstrate the

practical implementation of the stack. This project involves creating, retrieving, editing, and deleting tasks through API calls to a Node.

js server, storing data in MongoDB. Several approaches for building and packaging the application are explored. The manual

implementation section walks through the process of manually building the Vue. js application, placing the static assets in a production

- ready directory, and running the Node. js server. However, this method is time - consuming and prone to errors, leading to the exploration

of more efficient techniques. The paper then introduces Webpack, a module bundler that simplifies the build process by combining the

server code and signific assets into a single file. This approach reduces the need for manual installation of dependencies, but still requires

some manual steps. To achieve full automation, the guide demonstrates how to use Gulp, a toolkit that automates repetitive tasks. By

setting up a Gulpfile, developers can automate the entire build process, including cleaning directories, building the Vue. js code, bundling

the server code, and zipping the final package. This method significantly improves productivity by eliminating manual steps and reducing

the potential for errors. Finally, the paper discusses the use of Docker for packaging and deploying the MEVN stack application. Docker

allows developers to containerize the application, creating an isolated environment that includes all dependencies and configurations.

This container can then be deployed on various container platforms, ensuring consistency across different environments. The purpose of

this article is to guide developers through the process of building, automating, and deploying a MEVN stack application for efficient web

development.

Keywords: MongoDB, Express. js, Vue. js, Node. js, Server - side, Type - Script, Bootstrap, MEVN stack, web development, Node. js,

Vue. js, Docker

here are so many ways we can build VueJS apps and ship

them for production. One way is to build the VueJS app with

NodeJS and MongoDB as a database. The MEVN stack is

popular because it allows developers to use JavaScript across

all components. The four things are MongoDB, VueJS,

Express, and NodeJS. This stack can be used for a lot of uses

cases in web development.

Developing the application is one part and you need to

package it based on your deployment needs once the

development part is completed. There are so many ways we

can package and ship

MEVN Stack to production: manual, with webpack, with

Gulp, etc. This article explores these approaches in detail.

• Prerequisites

• Example Project

• MEVN Stack Development

• Manual Implementation

• With Webpack

• Packaging With Gulp

• With Docker

• Summary

• Conclusion

1. Prerequisites

There are some prerequisites for this post. You need to have

a NodeJS installed on your machine and some other tools that

are required to complete this project.

• NodeJS

• Express Framework

• Mongoose

• MongoDB

• VSCode

• Postman

• nodemon

• dotenv

• Vue CLI

• Typescript

• BootstrapVue

• gulp. js

• Docker

NodeJS: As an asynchronous event - driven JavaScript

runtime, Node. js is designed to build scalable network

applications.

Express Framework: Express is a minimal and flexible

Node. js web application framework that provides a robust set

of features for web and mobile applications.

Mongoose: elegant MongoDB object modeling for node. js

MongoDB: MongoDB is a general - purpose, document -

based, distributed database built for modern application

developers and for the cloud era.

VSCode: The editor we are using for the project. It’s open -

source and you can download it here.

Postman: Manual testing your APIs

nodemon: To speed up the development

If you are a complete beginner and don’t know how to build

from scratch, I would recommend going through the below

articles. We used these projects from this article as a basis for

this post.

T

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 188

https://www.ijsr.net/
https://nodejs.org/en/
https://expressjs.com/
https://mongoosejs.com/docs/
https://www.mongodb.com/
https://code.visualstudio.com/
https://www.postman.com/
https://nodemon.io/
https://www.npmjs.com/package/dotenv
https://cli.vuejs.org/
https://www.typescriptlang.org/
https://bootstrap-vue.org/
https://gulpjs.com/
https://www.docker.com/
https://www.mongodb.com/
https://nodejs.org/en/
https://code.visualstudio.com/
https://code.visualstudio.com/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

How To Develop and Build Vue. js App with NodeJS

How to Build NodeJS REST API with Express and MongoDB

How to write production - ready Node. js Rest API —

Javascript version

2. Example Project

Here is an example of a simple tasks application that creates,

retrieves, edits, and deletes tasks. We actually run the API on

the NodeJS server and you can use MongoDB to save all these

tasks.

As you add users we are making an API call to the nodejs

server to store them and get the same data from the server

when we retrieve them. You can see network calls in the

following video.

Network Calls

Here is a Github link to this project. You can clone it and run

it on your machine.

// clone the project

git clone https: //github. com/bbachi/mevn - stack - example.

git

// Vue Code

cd ui

npm install

npm run serve

// API code

cd api

npm install

npm run dev

3. Project Structure

Let’s understand the project structure for this project. We will

have two packages. json: one for the VueJS and another for

nodejs API. It’s always best practice to have completely

different node_modules for each one. In this way, you won’t

get merging issues or any other problems regarding web and

server node modules collision. It’s easier to convert your

MEVN Stack into any other stack later such as replacing the

API code with microservices and serving your UI through the

NGINX web server.

4. Project Structure

If you look at the above project structure, all the Vue app

resides under the ui folder and nodejs API resides under the

api folder.

1) Set up a MongoDB Atlas

The core of MongoDB Cloud is MongoDB Atlas, a fully

managed cloud database for modern applications. Atlas is the

best way to run MongoDB, the leading modern database.

Let’s create your MongoDB Account here. You can either log

in with any of your Gmail accounts or you can provide any

other email address to create the account.

2) MongoDB Atlas login

Once you log in with your account you will see the dashboard

below where you can create clusters.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 189

https://www.ijsr.net/
https://medium.com/bb-tutorials-and-thoughts/how-to-develop-and-build-vue-js-app-with-nodejs-bd86feec1a20
https://medium.com/bb-tutorials-and-thoughts/how-to-build-nodejs-rest-api-with-express-and-mongodb-fa6e1610ee1b
https://medium.com/bb-tutorials-and-thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-db64d3941106
https://medium.com/bb-tutorials-and-thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-db64d3941106
https://github.com/bbachi/mevn-stack-example.git
https://github.com/bbachi/mevn-stack-example.git
https://www.mongodb.com/cloud/atlas
https://account.mongodb.com/account/login

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

MongoDB Dashboard

Let’s create a cluster called todo - cluster by clicking on the

build a cluster and selecting all the details below.

Creating a Cluster

Here is the cluster we created below.

todo - cluster

You can click on the connect button to see the details about

connecting to the cluster. You need to create a user and Allow

Access from anywhere for now.

Connecting to cluster

Connecting to cluster

You can see three ways of connecting to the cluster on the

next screen.

Ways of connecting

We will see all these three ways to connect to the cluster in

the next sections.

Create a Database

We have created a cluster and it’s time to create a database.

Click on the collections to create a new database as below.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 190

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Collections

Click on the Add My Own Data Button to create a new

database.

Add My Own Data

I have given a database name as tasks and the collection name

is todos.

Creating a Database

You will see the below dashboard once the database is

created. We have a database with empty collections.

Empty Collection

Let’s insert the first document into the collection by clicking

the button insert document

Inserting the Document

Document Inserted

1) Connect With Mongo Compass

We have seen three ways we can connect to this cluster and

read the collections. Let’s connect to the database with Mongo

Compass. The first thing we need to do is to download and

install Mongo Compass from this link.

Let’s get a connection string from the Atlas dashboard as

below.

Connect with MongoDB Compass

Replace the password with the password that you created

above.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 191

https://www.ijsr.net/
https://www.mongodb.com/try/download/compass
https://www.mongodb.com/try/download/compass

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Connection String

Let’s connect to the database with the connection string

Connect with Connection String

You can actually see the same collection in the MongoDB

Compass as well.

MongoDB Compass

2) Building API

We have configured MongoDB in the previous section, it’s

time to build the API. I would recommend you go through two

articles posted in the prerequisites section. Let me put those

here as well.

How to Build NodeJS REST API with Express and MongoDB

How to write production - ready Node. js Rest API —

Javascript version

The starting point of the API is the server. js file in which we

define all the routes and import the express. Here is the file

where the nodejs server runs on port 3080 and starts listening

for the incoming requests.

We have defined 4 routes for CRUD operations. Notice that

we are using four different HTTP methods for creating,

updating, reading, and deleting operations. The request comes

to these routes and each route calls the respective method in

the controller class. You can read the body of the incoming

requests in the req object defined in each route. The result of

these methods is promise based so you need to use then

method to read and send back to the client with the method

res. json ().

Here is the controller class in which we are calling the service

class with async/await. The async/await is the cleaner way of

reading promises. You don’t need async/await here since we

are directly returning the result of the service class.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 192

https://www.ijsr.net/
https://medium.com/bb-tutorials-and-thoughts/how-to-build-nodejs-rest-api-with-express-and-mongodb-fa6e1610ee1b
https://medium.com/bb-tutorials-and-thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-db64d3941106
https://medium.com/bb-tutorials-and-thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-db64d3941106

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Let’s look at the service class in which we call the repository

to interact with the MongoDB data.

You need to know how to configure Mongo Connection in the

NodeJS before looking at the repository so that you can read

the data from MongoDB. Let’s find that out in the following

section.

3) Configure MongoDB In API

Let’s configure the Mongo Client from our application. The

first thing we need to do is to get the connection string.

Connect your application

Make sure you select the right language and the right

MongoDB driver version.

Connection String

Let’s place the connection string and database name in the

application properties file as below. You have to URL encode

the password if you have any special characters in the

password.

Here is the configuration file in which you connect to

MongoDB with the help of the connection string. We are

using Mongoose to connect with MongoDB for all the

queries. Mongoose makes it easy for you to interact with

MongoDB.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 193

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The next thing we should define is the schema for the database

model as below.

Finally, we have a repository class as below using the above

model for the CRUD operations.

4) Externalize the Environment Variables

We have seen how to configure your MongoDB connection

in the API. We need to store this kind of configuration outside

of your app so that you can build once and deploy it in

multiple environments with ease.

We need to use the dotenv library for environment - specific

things. Dotenv is a zero - dependency module that loads

environment variables from a. env file into process. env.

Storing configuration in the environment separate from code

is based on The Twelve - Factor App methodology.

The first step is to install this library npm install dotenv and

put the. env file at the root location of the project.

We just need to put this line require ('dotenv'). config () as

early as possible in the application code as in the server. js

file.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 194

https://www.ijsr.net/
https://nodejs.org/docs/latest/api/process.html#process_process_env
http://12factor.net/config

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Let’s define the configuration class where it creates a

connection with the connection string we just copied from the

Atlas Dashboard. We are fetching the Mongo connection

string with the dotenv library and connecting it to MongoDB

with Mongoose. We are exposing two functions from this file

connect and disconnect.

5) Building UI

Once you create the separate folder for the UI code you need

to start with the following command to scaffold the Vue

structure with the help of the Vue CLI Service. We will not

build the entire app here instead we will go through important

points here. You can clone the entire GitHub Repo and check

the whole app.

Here are the main. js, App. vue, and Home. vue files for the

app as the bootstrap components which means this is the first

component that loads in the browser. You can import all the

CSS - related files in the Home. vue file.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 195

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The App. vue component is the first component that loads

since it is defined in the main. js file. We have a router defined

in the App component that loads the Home component. This

is a simple application where you add, update, delete tasks.

You can go through the GitHub repo to check the rest of the

files.

We have another two important components here one is for

the createTask Form component and another is for the Tasks

table.

Run the Vue code in local with the following command which

runs on port 8080 on localhost. Make sure you are in the root

folder of Vue code which is todo - app here.

Vue Code running on port 8080

6) Make API Calls From UI

Here is the service file which calls the API, in this case. We

have four API operations to get, add, edit, and delete tasks

with root path /api.

From the Vue components, you can call this service to get the

data as below. Here is an example.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 196

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

You can look at the below article for a detailed post.

How To Make API calls in Vue. JS Applications

7) Development Environment Setup

Usually, the way you develop and the way you build and run

in production are completely different.

In the development phase, we run the nodejs server and the

Vue app on completely different ports. It’s easier and faster

to develop that way. If you look at the following diagram the

Vue app is running on port 8080 with the help of a webpack

dev server and the nodejs server is running on port 3080.

Development Environment

There should be some interaction between these two. We can

proxy all the API calls to nodejs API. Vue - cli - service

provides some inbuilt functionality and tells the development

server to proxy any unknown requests to your API server in

development, you need to add a vue. proxy. js file at the root

of the location where package. json resides. We need to add

the following file.

Now you can run both Vue UI and NodeJS API on different

ports and the Vue Code interacts with the API.

Network Calls

8) Running on Docker Compose

Docker Compose is really useful when we don’t have the

development environment setup on our local machine to run

all parts of the application to test or we want to run all parts

of the application with one command. For example, if you

want to run NodeJS REST API and MongoDB database on

different ports and need a single command to set up and run

the whole thing. You can accomplish that with Docker

Compose.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 197

https://www.ijsr.net/
https://medium.com/bb-tutorials-and-thoughts/how-to-make-api-calls-in-vue-js-applications-43e017d4dc86

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

In the below post, we will see what is Docker Compose and

how we can do the local development of MEVN Stack with

Docker Compose, and its advantages as well.

Coming Soon!!

You can check out other stacks here

How To Run MERN Stack on Docker Compose

How To Run MEAN Stack on Docker Compose

9) Dockerize MEVN Stack

Docker is an enterprise - ready container platform that enables

organizations to seamlessly build, share, and run any

application, anywhere. Almost every company is

containerizing its applications for faster production workloads

so that they can deploy anytime and sometimes several times

a day. There are so many ways we can build a MEVN Stack.

One way is to dockerize it and create a docker image so that

we can deploy that image any time or sometimes several times

a day.

In the below post, we look at the example project and see the

step - by - step guide on how we can dockerize the MEVN

Stack.

Coming Soon !!

You can check out other stacks here

How To Dockerize MEAN Stack

How To Dockerize MERN Stack

a) Linting

We need to lint our project in that way it’s easier to follow

some standards in your project. We will see this in a separate

article.

Coming Soon!!

b) Unit Testing API

There are so many tools out there to unit test your application

such as Mocha, Chai, etc. We need a separate article for that

to cover different libraries.

Coming Soon!!

c) Unit Testing UI

We will see how to unit test with UI with jest library.

Coming Soon!

d) Integration Tests

We will use cypress for the integration tests.

Coming Soon!

e) Build for production

We have to build the project for production in a different way.

We can’t use the proxy object. Here is the detailed article on

how to package your app for production.

Packaging Your Vue. js App With NodeJS Backend For

Production

How to Build MEVN Stack for Production

f) Demo

Here is an example of a simple tasks application that creates,

retrieves, edits, and deletes tasks. We actually run the API on

the NodeJS server and you can use MongoDB to save all these

tasks.

Example Project

As you add users we are making an API call to the nodejs

server to store them and get the same data from the server

when we retrieve them. You can see network calls in the

following video.

Network Calls

5. Summary

• There are so many ways we can build Vue apps and ship

them for production.

• One way is to build the Vue app with NodeJS and

MongoDB as a database. There are four things that make

this stack popular and you can write everything in

Javascript.

• The four things are MongoDB, VueJS, Express, and

NodeJS. This stack can be used for a lot of uses cases in

web development.

• We will have two package. json: one for the VueJS and

another for nodejs API. It’s always best practice to have

completely different node_modules for each one.

• The core of MongoDB Cloud is MongoDB Atlas, a fully

managed cloud database for modern applications. Atlas is

the best way to run MongoDB, the leading modern

database.

• We need to use the dotenv library for environment -

specific things. Dotenv is a zero - dependency module that

loads environment variables from a. env file into process.

env. Storing configuration in the environment separate

from code is based on The Twelve - Factor App

methodology.

• In the development phase, we run the nodejs server and the

Vue app on completely different ports. It’s easier and

faster to develop that way.

• We need to lint our project in that way it’s easier to follow

some standards in your project.

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 198

https://www.ijsr.net/
https://medium.com/bb-tutorials-and-thoughts/how-to-run-mern-stack-on-docker-compose-fad2050b9e
https://medium.com/bb-tutorials-and-thoughts/how-to-run-mean-stack-on-docker-compose-3038ae121d98
https://medium.com/bb-tutorials-and-thoughts/how-to-dockerize-mean-stack-522796563573
https://medium.com/bb-tutorials-and-thoughts/how-to-dockerize-mern-stack-5c70dcc36837
https://medium.com/bb-tutorials-and-thoughts/packaging-your-vue-js-app-with-nodejs-backend-for-production-83abe213532c
https://medium.com/bb-tutorials-and-thoughts/packaging-your-vue-js-app-with-nodejs-backend-for-production-83abe213532c
https://medium.com/bb-tutorials-and-thoughts/how-to-build-mevn-stack-for-production-91a53534758f
https://www.mongodb.com/cloud/atlas
https://nodejs.org/docs/latest/api/process.html#process_process_env
https://nodejs.org/docs/latest/api/process.html#process_process_env
http://12factor.net/config

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• There are so many tools out there to unit test the API such

as Mocha, Chai, etc.

• We can unit test with UI with jest library.

• We will use cypress for the integration tests.

• We have to build the project for production in a different

way. We can’t use the proxy object.

6. Conclusion

The MEVN stack provides a powerful framework for building

modern web applications, offering flexibility and efficiency

through JavaScript. This article has demonstrated the setup,

development, and deployment of a MEVN stack application,

highlighting various automation techniques. Future studies

should explore further optimizations and deployment

strategies across different cloud platforms to enhance

scalability and performance.

7. References

[1] JavaScript Documentation https://developer.mozilla.org/en-

US/docs/Learn/Getting_started_with_the_web/JavaScript_

basics

[2] VueJS

Documentation https://vuejs.org/guide/introduction.html

[3] Bachina, Bachina. (2024). *Ultimate Full Stack Web

Development with MEVN*. OrangeAVA. Available

at https://orangeava.com/collections/all-

ebooks/products/ultimate-full-stack-web-development-

with-mevn?variant=45552578560218

[4] Bhargav Bachina. (2021). Optimizing Deployment: React

with NodeJS Backend on Azure App Services. Journal of

Scientific and Engineering Research, 8(4), 218–

227. https://doi.org/10.5281/zenodo.10902911

Paper ID: ES24822092445 DOI: https://dx.doi.org/10.21275/ES24822092445 199

https://www.ijsr.net/
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/JavaScript_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/JavaScript_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/JavaScript_basics
https://vuejs.org/guide/introduction.html
https://orangeava.com/collections/all-ebooks/products/ultimate-full-stack-web-development-with-mevn?variant=45552578560218
https://orangeava.com/collections/all-ebooks/products/ultimate-full-stack-web-development-with-mevn?variant=45552578560218
https://orangeava.com/collections/all-ebooks/products/ultimate-full-stack-web-development-with-mevn?variant=45552578560218
https://doi.org/10.5281/zenodo.10902911
https://medium.com/tag/javascript?source=post_page-----10b6e8ff7f7c---------------javascript-----------------
https://medium.com/tag/javascript?source=post_page-----10b6e8ff7f7c---------------javascript-----------------

