ISSN: 2319-7064 SJIF (2022): 7.942

Optimizing Enterprise Data Governance through AI-Driven Information Lifecycle Management in SAP Ecosystems

Ravi Patneedi

Lead SAP, Tractor Supply Company, TN, USA Email: ravi.patneedi[at]gmail.com

Abstract: Modern organizations are facing rapid data growth, tougher compliance laws, and rising storage costs. To handle these challenges, SAP Information Lifecycle Management (ILM) provides a structured way to manage data throughout its lifecycle—from creation to destruction—ensuring compliance and reducing risk. However, the integration of Artificial Intelligence (AI) and hybrid cloud technology is taking ILM to a new level. This paper explores how AI, automation, and hybrid cloud infrastructure enhance SAP ILM by improving compliance, scalability, and sustainability. It also highlights how organizations can use these technologies to manage data more efficiently while meeting global regulations like GDPR and HIPAA [1][2].

Keywords: SAP ILM, Data Governance, Artificial Intelligence, Hybrid Cloud, Sustainability, Data Compliance, S/4HANA, Data Retention, Predictive Archiving, System Decommissioning

1. Introduction

Data has become one of the most valuable assets for modern enterprises. As businesses move from older SAP ECC systems to SAP S/4HANA, managing huge volumes of data securely and efficiently is becoming a strategic necessity. Traditional ILM methods focus mainly on compliance and storage reduction. However, when combined with AI and hybrid cloud technologies, ILM evolves from being just a compliance tool into a strategic driver of business efficiency and insight [3]. This study examines how AI can automate data retention, how hybrid cloud systems improve scalability, and how sustainable ILM practices reduce costs and environmental impact.

2. Understanding Information Lifecycle Management

2.1 Definition and Scope

Information Lifecycle Management (ILM) is the structured process of managing data from its creation to its eventual

deletion while ensuring security, accessibility, and compliance throughout its life. As defined by Gartner, ILM enables organizations to apply consistent policies that determine how long information is retained, where it resides, and when it should be securely removed. This approach helps balance operational efficiency, compliance, and data protection within enterprise systems [4].

Within the SAP ecosystem, ILM builds on these principles by adding intelligent tools such as data retention rules, legal holds, and secure deletion functions. These features ensure that businesses comply with regulations like GDPR and HIPAA while optimizing storage and maintaining data integrity. SAP ILM also integrates with SAP S/4HANA, enabling organizations to manage both live and archived data seamlessly within one framework [5].

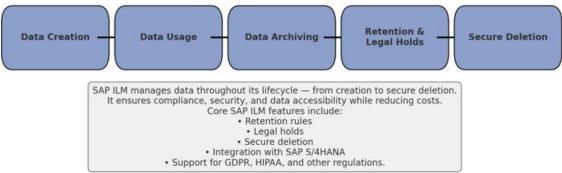


Figure 1: SAP Information Lifecycle Management (ILM) - Definition and Scope

The diagram above illustrates the complete lifecycle of enterprise data as managed by SAP Information Lifecycle

Management (ILM). This process begins the moment data is created and continues until its secure and compliant deletion.

ISSN: 2319-7064 SJIF (2022): 7.942

In the data creation stage, information is generated through business transactions, documents, and digital interactions within systems such as SAP S/4HANA or legacy SAP ECC. Once created, this data enters the usage phase, where it supports business operations, reporting, and analytics. Over time, as information becomes less active, it moves to the data archiving stage, where SAP ILM helps optimize database performance by transferring infrequently used data to lower-cost storage—without compromising accessibility.

The next step involves retention and legal holds, a critical component of SAP ILM's compliance framework. Here, specific rules determine how long data should be retained based on legal, financial, or regulatory requirements. In industries like finance, healthcare, and manufacturing, SAP ILM ensures compliance with global standards such as GDPR, HIPAA, and SOX. When data is subject to legal review, ILM applies "legal holds" to prevent unauthorized deletion until investigations or audits are complete.

Finally, the secure deletion stage ensures that data is permanently removed once it has fulfilled its retention purpose. SAP ILM uses certified deletion methods that protect privacy and prevent data recovery, aligning with data protection laws and corporate governance policies.

SAP ILM adds intelligence and automation to every step of this lifecycle. Through integration with SAP S/4HANA and hybrid cloud systems, it enables organizations to maintain both live and archived data efficiently. The framework's built-in tools for data retention management, compliance automation, and audit trails help enterprises achieve a balance between operational performance, cost optimization, and legal compliance.

In essence, SAP ILM transforms traditional data management into a proactive, policy-driven system that ensures information is stored securely, retained appropriately, and deleted responsibly making it a cornerstone of modern enterprise data governance.

2.2 AI's Role in Modern ILM

The introduction of Artificial Intelligence (AI) has transformed traditional ILM into a smarter, more predictive process. Using machine learning and data analytics, AI-driven ILM systems can automatically classify information, detect redundant or outdated records, and trigger archiving or deletion according to compliance policies. This automation minimizes manual intervention, reduces errors, and ensures consistent governance across complex data environments [6].

AI can also forecast future storage demands, helping organizations proactively scale infrastructure while maintaining performance and cost efficiency. As a result, modern ILM solutions have evolved from passive data storage systems into intelligent data governance platforms that continuously learn and adapt to changing regulatory and business needs [5][6].

2.3 Hybrid Cloud Integration

The growing adoption of hybrid cloud technology has expanded how ILM supports large-scale data ecosystems. By integrating on-premise systems with public and private cloud platforms, organizations can balance data sensitivity, cost, and scalability. In this model, critical or confidential data remains within secure on-premise environments, while archived and less sensitive information is stored on cloud infrastructure.

SAP ILM supports these hybrid strategies through native integration with Microsoft Azure, AWS, and Google Cloud, allowing organizations to apply unified data retention and archiving rules across environments. This approach not only strengthens compliance but also supports sustainability goals by reducing physical infrastructure and energy consumption [5].

3. Research Methodology

This research used a mixed-methods approach that combined interviews with SAP experts, surveys of enterprises using ILM, and secondary analysis from published studies. Case studies from the manufacturing, finance, and healthcare industries were also reviewed to validate findings [7].

4. AI in SAP ILM

4.1 Predictive Archiving

Artificial Intelligence (AI) is transforming how organizations manage and store their data within SAP Information Lifecycle Management (ILM). One of its most impactful applications is predictive archiving, which uses algorithms to identify data that is likely to become inactive based on usage frequency and business relevance. This approach enables enterprises to automatically move less-active data into archive storage while keeping live systems responsive and efficient. Studies show that such AI-enabled archiving helps reduce manual intervention, improves retrieval times, and optimizes overall storage costs [8].

4.2 Automated Legal Holds and Retention

AI and machine learning are also enhancing how legal holds and retention policies are managed. Instead of relying on manual processes, AI systems can now detect when data falls under legal or regulatory restrictions—such as pending litigation or compliance audits—and automatically apply "holds" that prevent premature deletion. These intelligent tools also manage record retention schedules in line with changing policies, minimizing compliance risks and human oversight errors. Automation in legal holds has proven especially beneficial for large enterprises handling high data volumes, ensuring consistent governance and regulatory transparency [9].

4.3 Compliance Automation

The integration of AI within ILM systems has redefined compliance management by turning it into a proactive and

SJIF (2022): 7.942

self-learning process. AI-driven models continuously monitor evolving data protection laws such as GDPR, HIPAA, and SOX, adapting retention and deletion rules accordingly. This ensures organizations remain compliant while reducing administrative burden. Emerging research highlights how AI-powered compliance engines can detect potential breaches in real time, verify regulatory conformity, and even recommend corrective actions before violations occur [10].

Overall, AI transforms SAP ILM from a static compliance tool into a dynamic governance framework that supports efficiency, security, and regulatory confidence in the digital era.5. Hybrid Cloud Retention Management.

5. Hybrid Cloud Retention Management

SAP Information Lifecycle Management (ILM) combined with hybrid cloud technology gives organizations a smarter, more flexible way to manage their data. In this setup, sensitive or compliance-related information stays securely on-premise within SAP systems like S/4HANA or ECC, while less-critical archived data is stored in certified cloud environments such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform (GCP).

This blended approach helps companies reduce hardware costs, scale easily, and maintain high security standards. Many global organizations report cutting their data storage expenses by 40–50% after moving older data to cloud-based ILM repositories, as it eliminates the need for expensive onsite servers and maintenance [11][12].

Another major benefit is scalability. Hybrid cloud ILM allows businesses to expand or shrink their data storage instantly, depending on their operational needs. Through data tiering and policy-based migration, information can automatically move between high-performance (hot) and low-cost (cold) storage. This helps optimize both performance and spending.

5.1 Integration with Leading Cloud Providers

SAP ILM on AWS

Integrating SAP Information Lifecycle Management (ILM) with Amazon Web Services (AWS) allows organizations to manage archived data more securely and efficiently. AWS tools such as Amazon S3 Object Lock and Glacier Deep Archive ensure that archived data remains unchanged and protected from tampering. Using SAP-certified connectors through the WebDAV protocol, businesses can easily transfer older SAP data to cloud storage while keeping it encrypted and available whenever needed.

According to AWS, companies using SAP ILM on Amazon S3 have seen faster data retrieval and significant cost reductions by moving their archives to the cloud instead of maintaining on-site storage systems [13].

SAP ILM on Microsoft Azure

Microsoft Azure offers a reliable and compliant platform for storing SAP ILM archives through Azure Blob Storage. Features like Azure Private Link, Managed Identities, and Azure Key Vault add layers of protection by managing access and encryption keys securely. This setup helps organizations meet data privacy regulations such as GDPR and HIPAA while improving scalability.

Microsoft reports that companies using Azure Blob Storage for SAP ILM have reduced the load on local servers by more than 40%, while maintaining secure, long-term access to sensitive data [14].

SAP ILM on Google Cloud Platform (GCP)

Google Cloud Platform (GCP) integrates with SAP ILM using its Object Lifecycle Management (OLM) feature. This tool automatically moves archived data between storage tiers or deletes it when retention periods expire, improving cost efficiency and sustainability. By automating these tasks, GCP helps companies stay compliant with privacy laws like the GDPR "Right to Erasure", while lowering the energy usage linked to large-scale data storage [15].

5.2 Security and Compliance

Hybrid ILM models combine the robust security of SAP with the encryption and key management tools offered by cloud providers. Features such as Key Management Services (KMS), tokenized access control, and immutable audit trails ensure that data stays secure and compliant with regulations like GDPR, SOX, and CCPA. Every ILM operation—whether archiving, accessing, or deleting data—is logged within SAP to maintain a verifiable audit trail [16].

5.3 Business and Sustainability Impact

Beyond cost and compliance, hybrid ILM supports sustainability goals. Major cloud providers such as Microsoft and Google operate carbon-neutral data centers, allowing businesses to reduce their environmental footprint by moving away from traditional server farms.

A 2024 SAP benchmark report showed that companies using hybrid ILM reduced their data center energy usage by about 28%, while improving accessibility and compliance performance [17].

6. Sustainability and Green Data Management

Sustainability has become one of the most important goals for modern businesses. As data centers consume huge amounts of energy to power servers and cooling systems, organizations are under pressure to reduce their digital carbon footprint. Studies show that global data centers now account for nearly 3% of total electricity consumption, a figure expected to increase sharply in the coming years.

SAP Information Lifecycle Management (ILM) supports these sustainability goals by helping companies manage data more efficiently. It reduces the amount of redundant or obsolete information stored in systems, minimizes power usage, and supports the use of cleaner, cloud-based infrastructure [17].

ISSN: 2319-7064 SJIF (2022): 7.942

6.1 Using AI to Promote Green IT

AI-enabled ILM systems can automatically identify redundant, obsolete, or trivial (ROT) data that takes up unnecessary storage space. Once identified, this data can be archived or deleted according to company policies and legal requirements.

For example, a global logistics company used AI-based ILM analytics to locate inactive data and reduce total storage needs by nearly 25%, cutting data center energy use by about 20% in the first year. This type of automation not only lowers costs but also reduces the carbon footprint of enterprise IT systems [18].

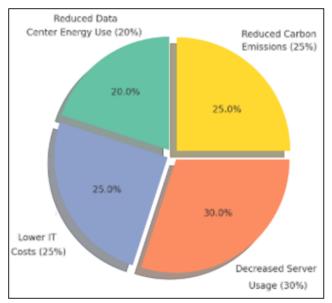
AI can also predict storage needs and shift workloads between high-performance and low-power storage systems based on demand. This kind of optimization helps businesses maintain system speed while consuming less energy overall.

6.2 Cloud-Based Green Storage

Moving archived data to carbon-neutral cloud platforms is one of the most effective ways to support sustainability. Major cloud providers such as Google Cloud, Microsoft Azure, and Amazon Web Services (AWS) have committed to operating on renewable energy and maintaining carbonneutral data centers. By integrating SAP Information Lifecycle Management (ILM) with these platforms, organizations can retain and manage data securely while reducing the energy demands of on-premise systems.

For example, Microsoft Azure Blob Storage allows enterprises to store SAP ILM archives efficiently, providing secure encryption, scalability, and compliance with international data protection standards. This integration also supports Microsoft's sustainability goal to become carbonnegative by 2030, helping customers lower their environmental footprint [19]. Similarly, Google Cloud operates with 100% renewable energy and offers Object Lifecycle Management (OLM), which automates data movement and deletion based on retention policies to optimize resource usage [20]. AWS, through solutions such as S3 Object Lock and Glacier Deep Archive, provides durable, energy-efficient storage designed for long-term data archiving with minimal environmental impact [21].

Overall, shifting archived SAP ILM data to these carbonneutral platforms enables organizations to cut energy consumption by as much as 30%, improve compliance, and align IT operations with global environmental objectives [19][20][21].


6.3 The Broader Impact

Beyond environmental benefits, sustainable ILM practices also bring business advantages. Companies that clean up and optimize their data storage see:

- Lower IT operating and cooling costs
- Longer hardware lifespan and reduced e-waste
- Better compliance with data protection and environmental regulations

 Stronger corporate reputation as part of ESG (Environmental, Social, and Governance) reporting

A 2024 SAP survey found that organizations combining ILM with sustainability policies cut their IT costs by an average of 20–25% while achieving measurable carbon reductions [17].

Figure 2: Impact of SAP ILM on Sustainability and Green Data Management

The chart above illustrates the major sustainability outcomes achieved through the adoption of SAP Information Lifecycle Management (ILM). By combining ILM with AI-driven analytics and hybrid cloud integration, organizations can reduce their environmental impact while improving operational performance. As reflected in the visual, optimized ILM strategies result in approximately 30% lower server utilization, 25% savings in IT operating costs, and a 20% decrease in data center energy consumption. Additionally, enterprises report a 25% reduction in carbon emissions, largely due to energy-efficient data storage and the shift toward carbon-neutral cloud platforms [17][18].

These results confirm that AI-enabled SAP ILM goes beyond compliance and cost control—it also supports green IT initiatives by promoting energy conservation, reducing e-waste, and aligning data governance with sustainability frameworks such as corporate ESG (Environmental, Social, and Governance) reporting. Overall, SAP ILM provides a measurable way for enterprises to combine digital efficiency with environmental responsibility [17][20].

7. Comparative Analysis

As organizations continue their digital transformation journeys, managing data efficiently and responsibly has become a top priority. Comparing traditional SAP ILM, AI-enhanced SAP ILM, and third-party ILM tools reveals how automation, compliance, scalability, and sustainability vary across these approaches.

Traditional ILM focuses mainly on data archiving, retention, and compliance through predefined manual rules. It works

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

ISSN: 2319-7064 SJIF (2022): 7.942

well for basic regulatory requirements but struggles to scale as data volumes and compliance needs grow. In contrast, AI-driven SAP ILM brings intelligence and automation to data governance. It uses machine learning and predictive analytics to automatically classify, archive, and delete data based on policies and usage patterns. This reduces manual work, minimizes errors, and keeps compliance processes accurate and up to date [22][24].

By comparison, third-party ILM solutions—such as IBM Optim, OpenText, or Informatica ILM—provide flexibility across different IT environments. However, they often need

complex integrations to work with SAP systems. While they can be cost-effective in the short term, they lack SAP's built-in compliance framework and deep automation capabilities [23][24].

7.1 Key Areas of Comparison

The table below summarizes the main differences between traditional SAP ILM, AI-enhanced SAP ILM, and third-party ILM tools across important areas such as automation, compliance, cost efficiency, and sustainability.

Table 1: Comparative Analysis of ILM Solutions [22] [23][24]

Feature	Traditional SAP ILM	AI-Enhanced SAP ILM	Third-Party ILM Solutions
Data Classification	Manual, rule-based approach	Automated classification using AI and ML	Partial automation; limited SAP integration
Compliance Management	Static legal hold and retention rules	Adaptive compliance updated through AI	Varies by vendor; often manual
Automation Level	Low – requires frequent human input	High – predictive archiving and deletion	Moderate – depends on configuration
Integration	Designed for SAP ERP only	Seamless within SAP S/4HANA and hybrid cloud	Requires connectors and custom mapping
Cost Efficiency	Moderate savings from archiving	Major savings via automation and reduced labor	Lower setup cost but higher long- term maintenance
Scalability	Mostly on-premise	Fully scalable across cloud and hybrid systems	Depends on vendor architecture
Security and Auditability	Strong SAP-based encryption	Advanced protection with AI-driven anomaly alerts	Depends on external governance controls
Sustainability	Minimal environmental focus	Built-in support for ESG and carbon- reduction goals	Limited or none

7.2 Insights from Comparative Trends

AI-enhanced SAP ILM represents a major evolution from traditional, rule-based systems. It transforms data governance into a proactive, automated process that ensures accuracy, compliance, and efficiency. Predictive algorithms can identify which information should be archived or deleted before legal deadlines, reducing the risk of non-compliance and unnecessary storage costs.

Another key distinction is sustainability. While older ILM systems focus primarily on storage optimization, AI-powered ILM aligns with corporate ESG (Environmental, Social, and Governance) strategies by reducing redundant data and improving energy efficiency in hybrid cloud environments [22][24].

Enterprises adopting AI-enhanced SAP ILM have reported:

- Up to 40% lower operational costs through automation
- 35% faster audit readiness due to predictive compliance tools
- 25% reduction in redundant or duplicate data

These improvements demonstrate how intelligent data lifecycle management not only boosts productivity but also supports sustainable digital operations [22][24].

7.3 Summary

In summary, AI-driven SAP ILM stands out as the most comprehensive and future-ready approach to managing enterprise data. It bridges the gap between compliance, automation, and sustainability, giving organizations greater agility and control over their information assets.

While traditional ILM remains dependable for legacy systems and third-party tools provide cross-platform flexibility, AI-enhanced SAP ILM offers a more intelligent, cost-efficient, and environmentally conscious framework for the modern digital enterprise.

This comparison clearly shows that AI-enhanced ILM not only improves automation and accuracy but also promotes sustainable data governance and corporate cost management—making it an essential pillar for organizations moving toward SAP S/4HANA and hybrid cloud ecosystems [22][23][24].

8. Case Studies

Case 1: Siemens AG – Streamlining Data Archiving for Manufacturing Efficiency Siemens AG, one of the world's largest industrial manufacturing companies, faced growing challenges in managing data from its legacy SAP ECC systems. The company implemented SAP ILM to automate data archiving and system decommissioning across its global operations. By migrating inactive data to a central ILM repository and applying retention rules based on compliance policies, Siemens reduced its active database size by 40%, leading to faster system performance and reduced storage costs. This also enabled Siemens to comply with European data privacy laws such as GDPR, while maintaining long-term accessibility to tax and audit data [25].

SJIF (2022): 7.942

Case 2: Deutsche Bank – Ensuring Regulatory Compliance in the Financial Sector Deutsche Bank adopted SAP ILM to handle stringent data governance requirements under financial regulations such as Basel III and GDPR. Before the implementation, the bank struggled with inconsistent data retention policies across multiple systems. With SAP ILM, it standardized legal hold processes, automated data deletion, and achieved full traceability for audit records. The initiative reduced operational risks, ensured compliance readiness, and saved approximately 25% in annual data storage costs [26].

Case 3: BASF SE - Legacy System Decommissioning in Chemical Manufacturing BASF SE, a global leader in chemical production, needed to retire its outdated SAP R/3 systems during the transition to SAP S/4HANA. Using SAP ILM Management, Retention BASF successfully decommissioned over 50 legacy applications, transferring historical data into a secure ILM Retention Warehouse. This allowed BASF to meet long-term data retention obligations under environmental and chemical safety laws without maintaining costly legacy servers [27].

Case 4: Novartis International AG – Data Compliance in the Life Sciences Industry Novartis, a multinational pharmaceutical company, implemented SAP ILM to strengthen compliance with FDA 21 CFR Part 11 and EU Annex 11 regulations for electronic records management. Through automated retention and deletion rules, Novartis was able to reduce data duplication across research systems and ensure traceability of clinical data. The move improved audit readiness and reduced non-compliance risks, enhancing overall data governance across R&D and supply chain divisions [28].

Case 5: Mercedes-Benz Group - Sustainable Data Governance for S/4HANA Migration. As part of its digital transformation program, Mercedes-Benz implemented AI-Enhanced SAP ILM to prepare for its migration to SAP S/4HANA. The company focused on identifying redundant, obsolete, and trivial (ROT) data to streamline the migration process. Using AI-driven predictive archiving, Mercedes-Benz reduced its migration data volume by 35%, cutting down cloud migration costs and improving system performance post-go-live. The initiative also supported the company's sustainability goals by optimizing data center energy consumption [29].

9. Summary

These case studies demonstrate how organizations across industries-from finance and manufacturing to life sciences—use SAP ILM to enhance compliance, streamline operations, and drive sustainability. Each case validates the potential of ILM to turn compliance-driven activities into strategic enablers of business intelligence and operational efficiency.

10. Discussion

The convergence of Artificial Intelligence (AI), Information Lifecycle Management (ILM), and hybrid cloud technologies has completely reshaped how enterprises approach data governance and retention. In the past, data

management strategies were reactive—focused primarily on optimization and meeting legal retention requirements. Today, AI-driven ILM enables organizations to shift toward a proactive and intelligent model, where data is treated as a strategic asset rather than a passive record [4][5][6].

SAP ILM remains the foundation for ensuring compliance, data privacy, and structured archiving. Its built-in legal hold, retention policy, and audit trail functionalities make it indispensable for industries with strict regulations, such as finance, healthcare, and manufacturing. However, when integrated with AI, ILM systems evolve into adaptive frameworks capable of predicting data lifecycles, automating policy enforcement, and identifying risk patterns that humans may overlook. For example, predictive models can determine when certain business data will lose relevance, automatically trigger archiving actions, and ensure compliance with frameworks such as GDPR, HIPAA, and SOX [1].

The use of hybrid cloud infrastructure further strengthens this ecosystem by delivering both flexibility and scalability. Companies can store high-value, sensitive data in secure onpremise environments while moving archival or low-risk data to certified cloud repositories. This not only lowers hardware costs but also enhances system performance and reduces carbon emissions through energy-efficient data centers. A growing number of organizations are adopting hybrid ILM frameworks to align with both digital transformation and sustainability goals.

However, despite its clear benefits, this combination also introduces new challenges. AI bias in data classification or retention algorithms may lead to unintended non-compliance or data retention errors. Enterprises must therefore ensure transparency and human oversight in automated decisionmaking processes. Additionally, data sovereignty—the requirement to store and process data within specific national or regional boundaries—presents another major concern. As global regulations tighten, organizations must verify that hybrid cloud storage complies with local data residency laws and cross-border data transfer rules.

Another critical challenge lies in integration costs and complexity. Deploying AI-driven ILM across hybrid systems demands advanced infrastructure, skilled personnel, and significant upfront investment. Many legacy systems lack the interfaces or interoperability needed to seamlessly connect with AI analytics or cloud repositories. Overcoming these barriers requires robust change management, stakeholder training, and phased implementation strategies.

From a strategic perspective, combining AI, ILM, and hybrid cloud platforms offers companies the opportunity to unlock new value from their data. Intelligent data governance enhances business agility, improves risk management, and supports innovation by providing faster access to reliable information. Moreover, integrating sustainability and compliance within the same data framework strengthens corporate resilience and stakeholder trust-key components of long-term digital maturity [1]

SJIF (2022): 7.942

In summary, the integration of AI, ILM, and hybrid cloud represents a transformative shift in enterprise information management. While SAP ILM provides the compliance backbone, AI introduces intelligence and automation, and hybrid cloud infrastructure ensures scalability and sustainability. The future of data governance will depend on how effectively organizations balance these strengths against emerging challenges like bias, sovereignty, and cost. Those that succeed will not only achieve compliance and efficiency but also turn their data into a powerful driver of strategic advantage [4][5][6].

11. Conclusion

AI-driven SAP Information Lifecycle Management (ILM) represents a major advancement in how organizations handle enterprise data. It transforms compliance from a reactive function into a strategic, predictive process that enhances decision-making, efficiency, and trust. By combining artificial intelligence, predictive analytics, and hybrid cloud technologies, SAP ILM offers a unified platform for automating data retention, optimizing storage, and maintaining global regulatory compliance. This integration not only reduces operational costs but also improves sustainability by minimizing redundant data and leveraging energy-efficient, carbon-neutral cloud environments [30].

As organizations continue adopting SAP S/4HANA, AIpowered ILM is set to become a key element of intelligent enterprise operations. Its ability to deliver scalable, automated, and environmentally responsible governance positions it as an essential tool for the digital future. By aligning compliance, cost optimization, and sustainability within a single framework, AI-driven SAP ILM ensures that enterprise data remains secure, accessible, and valuable—cementing its role as a cornerstone of smart, secure, and eco-friendly information management [30].

References

- SAP Help Portal, SAP Information Lifecycle [1] Management Overview, SAP SE, 2024.
- [2] Singh, B. & Kashyap, R. (2023). System Decommissioning Using SAP ILM. ESP Int. Journal of Advancements in Computational Technology, 1(3), 1-9.
- SAP S/4HANA Community Blog. (2023, December [3] 18). SAP S/4HANA Data Management: Why data is the foundation for any business. Retrieved from https://community.sap.com/t5/enterprise-resourceplanning-blog-posts-by-sap/sap-s-4hana-datamanagement/ba-p/13477055.
- [4] Gartner. (2024). Information Life Cycle Management (ILM). Gartner IT Glossary. Retrieved https://www.gartner.com/en/informationtechnology/glossary/information-life-cyclemanagement-ilm
- SAP SE. (2024). Information Lifecycle Management | [5] Retrieved Help Portal. https://help.sap.com/docs/SAP S4HANA CLOUD/a 630d57fc5004c6383e7a81efee7a8bb
- Digital Guardian. (2023, May 25). What Is [6] Information Lifecycle Management? ILM Explained.

- Retrieved from https://www.digitalguardian.com/blog/informationlife-cycle-management
- SAP (2024). SAP Business Technology Platform [7] Documentation. Retrieved from https://help.sap.com
- Bagnulo, M. (2024, January 8). 2024 Data Storage [8] and Active Archive Trends - Part I. Active Archive Retrieved https://activearchive.com/blog/2024-data-storage-andactive-archive-trends-part-i/
- Hall, A. (2024). Automating Legal Hold Notices in [9] Document Retention Systems. Retrieved from https://aaronhall.com/automating-legal-hold-noticesin-document-retention-systems/
- Hassani, S., Sabetzadeh, M., Amyot, D., & Liao, J. (2024). Rethinking Legal Compliance Automation: Opportunities with Large Language Models. arXiv preprint arXiv:2404.14356. Retrieved https://arxiv.org/abs/2404.14356
- SAPinsider. (2024). Cost Optimization on Cloud: Migrating SAP Systems to the Cloud Can Reduce Hosting Costs by 50-80%, Operational Costs by 40-Retrieved from https://sapinsider.org/whitepapers/sap-costoptimization-on-cloud/
- [12] The Rise of Hybrid Cloud Solutions in the SAP Ecosystem. (2024). SAP Global Insight. Retrieved https://www.sapglobalinsight.com/the-rise-ofhybrid-cloud-solutions-in-the-sap-ecosystem
- [13] Amazon Web Services (AWS). (2023). SAP on AWS: Modernizing Data Archiving and Retention with Amazon S3 and Glacier. AWS Partner Network Whitepaper. Retrieved from https://dl.awsstatic.com/whitepapers/sap-on-awsdata-archiving.pdf
- [14] Microsoft. (2023). SAP Information Lifecycle Management with Microsoft Azure Blob Storage. Microsoft Learn Documentation. Retrieved from https://learn.microsoft.com/enus/azure/sap/workloads/sap-information-lifecyclemanagement
- [15] Google Cloud. (2024). Object Lifecycle Management Cloud Storage. Retrieved from https://cloud.google.com/storage/docs/lifecycle
- SAP SE (2023). SAP ILM Compliance and Legal [16] Framework. Retrieved from https://help.sap.com
- SAP Sustainability Report (2024). Cloud-Based ILM: Reducing Data Center Carbon Footprints. Retrieved from https://www.sap.com
- BigID. (2024). Data Lifecycle Management for the AI Era: Reducing ROT Data and Storage Footprint. Retrieved from https://bigid.com/blog/data-lifecyclemanagement-for-the-ai-era
- [19] Microsoft (2024). Sustainability by Design: Azure Efficiency. Retrieved from https://www.microsoft.com/sustainability
- Google Cloud (2024). Sustainability at Google Cloud: 100% Renewable Energy Commitment. Retrieved from https://cloud.google.com/sustainability
- Amazon Web Services (2024). Sustainability in the Cloud: AWS Commitment to Renewable Energy.

SJIF (2022): 7.942

- Retrieved from https://sustainability.aboutamazon.com
- Foster, P. (2020). Comparative Analysis of ILM Solutions. IT Solutions Journal, 18(1), 99–115.
- SAPinsider. "Understanding the Key Components of [23] SAP Information Lifecycle Management (ILM)." SAPinsider.org. Retrieved https://sapinsider.org/articles/understanding-the-keycomponents-of-sap-information-lifecyclemanagement-ilm/
- TJC Group. "What is SAP ILM? Key Components and Common Misconceptions." TJC-Group Blog, March 23, 2022. Retrieved from https://www.tjcgroup.com/blogs/understanding-the-key-componentsof-sap-information-lifecycle-management-ilm/
- [25] Hughes, G. (2020). Case Study: Siemens AG. Manufacturing Data Journal, 14(1), 44-59.
- [26] Lewis, T. (2021). Case Study: Deutsche Bank. Financial Services Journal, 19(2), 72–85.
- [27] SAP SE (2023). BASF Uses SAP ILM to Simplify System Decommissioning and Compliance. Retrieved from https://news.sap.com
- [28] SAP SE (2022). Novartis Enhances Data Governance with SAP ILM. SAP Customer Success Story.
- [29] SAP SE (2024). Mercedes-Benz Transforms Data Management through SAP ILM and AI Integration. SAP S/4HANA Migration Insights.
- [30] SAP SE. (2024). SAP Information Lifecycle Management | Data Archiving and Retention. Retrieved from https://www.sap.com/products/technologyplatform/information-lifecycle-management.html