
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Beyond the Firewall: Securely Exposing Cloud

Native API

Ramakrishna Manchana

Principal of Engineering & Architecture, Independent Researcher, Dallas, TX – 75040

Email: manchana.ramakrishna[at]gmail.com

Abstract: This document provides a comprehensive guide to developing and securing cloud-native APIs across major cloud providers:

AWS, Azure, and GCP. It explores various architectural approaches, including serverless, containerized, virtual machine-based, and

Platform as a Service (PaaS) options, along with specialized API development platforms. The document delves into the critical distinction

between internal and external API access, outlining the mechanisms and best practices for controlling and securing access in each

architectural approach. It also emphasizes the importance of API security, covering essential practices like input validation,

authentication, authorization, data encryption, and security testing. Additionally, the document addresses the challenges and solutions for

deploying APIs in hybrid and multi-cloud environments, managing API versioning and lifecycle, and fostering a positive developer

experience through comprehensive documentation and support. By offering insights into these diverse aspects of cloud-native API

development, this document empowers developers and architects to make informed decisions and build secure, scalable, and user-friendly

APIs in the cloud.

Keywords: cloud-native APIs, API development, API security, serverless, containerization, virtual machines, PaaS, AWS, Azure, GCP,

internal access, external access, authentication, authorization, API Gateway, Lambda, Azure Functions, Cloud Functions, ECS, EKS, AKS,

GKE, EC2, Compute Engine, Elastic Beanstalk, App Service, App Engine, Amplify, OWASP Top 10

1. Introduction

In the era of cloud computing, APIs (Application

Programming Interfaces) have become the backbone of

modern software development, enabling seamless

communication and integration between diverse applications

and services. Cloud-native APIs, designed and built

specifically for cloud environments, offer numerous

advantages, including scalability, flexibility, and cost-

effectiveness. However, developing and securing cloud-

native APIs across different cloud providers presents unique

challenges and considerations.

This document aims to provide a comprehensive guide to

navigating the complexities of cloud-native API development

and security. It explores various architectural approaches,

including serverless, containerized, virtual machine-based,

and Platform as a Service (PaaS) options, along with

specialized API development platforms. The document

delves into the critical distinction between internal and

external API access, outlining the mechanisms and best

practices for controlling and securing access in each

architectural approach. It also emphasizes the importance of

API security, covering essential practices like input

validation, authentication, authorization, data encryption, and

security testing. Additionally, the document addresses the

challenges and solutions for deploying APIs in hybrid and

multi-cloud environments, managing API versioning and

lifecycle, and fostering a positive developer experience

through comprehensive documentation and support.

By offering insights into these diverse aspects of cloud-native

API development, this document empowers developers and

architects to make informed decisions and build secure,

scalable, and user-friendly APIs in the cloud. Whether you're

working with AWS, Azure, or GCP, this guide will equip you

with the knowledge and tools to navigate the ever-evolving

landscape of cloud-native API development and security.

2. Literature Review

The development and security of cloud-native APIs have

been extensively explored in both academic and industry

literature. Several studies have highlighted the benefits of

cloud-native architectures for API development, including

improved scalability, flexibility, and cost-effectiveness [1, 2].

However, these studies also emphasize the importance of

addressing security challenges specific to cloud

environments, such as data breaches, unauthorized access,

and injection attacks [3, 4].

Various architectural approaches for cloud-native API

development have been proposed and evaluated. Serverless

architectures leveraging cloud functions and API gateways

have gained popularity due to their scalability and operational

simplicity [5, 6]. Containerized architectures utilizing

container orchestration platforms offer flexibility and control,

particularly for complex APIs or containerized environments

[7, 8]. Virtual machine-based architectures provide maximum

control and flexibility but come with increased operational

overhead [9]. Platform as a Service (PaaS) offerings strike a

balance between control and ease of use, simplifying

deployment and management [10].

Security has been a significant focus, particularly in the

context of cloud-native APIs. The integration of security

practices early in the development process, commonly

referred to as "Shift Left," is gaining prominence [11]. This

approach advocates for embedding security checks and

processes within the continuous integration/continuous

deployment (CI/CD) pipelines, ensuring vulnerabilities are

identified and mitigated before production [12]. Furthermore,

ongoing security measures, often called "Securing Right,"

emphasize the importance of maintaining security throughout

the software lifecycle, including post-deployment monitoring

and response [13].

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1586

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Automated security tools such as Static Application Security

Testing (SAST), Dynamic Application Security Testing

(DAST), Software Composition Analysis (SCA), and threat

modeling have demonstrated their effectiveness in enhancing

the security posture of cloud-native APIs [14, 15]. These tools

are increasingly integrated into DevOps practices, forming

what is now known as DevSecOps [16].

In the realm of API security, best practices such as input

validation, authentication, authorization, and data encryption

are crucial to preventing unauthorized access and data

breaches [17, 18]. Additionally, security testing, including

penetration testing and vulnerability scanning, plays a vital

role in identifying and addressing potential weaknesses in

API implementations [19].

The importance of a comprehensive approach to API security

is further underscored by the Open Web Application Security

Project (OWASP) Top 10, which outlines the most critical

security risks to APIs [20]. Addressing these risks requires a

multifaceted strategy that includes both preventive and

reactive measures.

Cloud-native APIs must also navigate the complexities of

hybrid and multi-cloud environments, where APIs need to

function seamlessly across different cloud platforms [21, 22].

This introduces additional challenges in terms of security,

latency, and data management, necessitating robust solutions

for API versioning, lifecycle management, and developer

experience [23, 24].

In conclusion, the literature highlights the critical role of

cloud-native architectures in modern API development,

emphasizing the need for secure, scalable, and flexible

solutions. As cloud technologies continue to evolve,

developers and architects must stay informed of the latest best

practices and tools to ensure the security and efficiency of

their APIs.

3. Ways of Cloud Native API Development

This section provides a comprehensive exploration of the

diverse landscape of cloud-native API development, with a

particular emphasis on the three major cloud providers: AWS,

Azure, and GCP. The text delves into the following key

approaches:

• Serverless API Architecture: This approach leverages

serverless computing platforms like AWS Lambda,

Azure Functions, or Google Cloud Functions. It's ideal

for handling API requests without provisioning or

managing servers, offering high scalability and cost-

effectiveness, particularly for variable traffic patterns.

The text provides detailed explanations of the key

components, benefits, use cases, architecture diagrams,

and security considerations for serverless API

development on each cloud platform.

• Containerized API Architecture: This method

involves packaging API applications into containers and

deploying them on container orchestration platforms like

AWS ECS/EKS, Azure Container Instances/AKS, or

Google Cloud Run/GKE. It provides flexibility and

control, making it suitable for complex APIs or

containerized environments. The text offers insights into

the key components, benefits, use cases, architecture

diagrams, and security aspects of containerized API

development on each platform.

• API Development on Virtual Machines: This

traditional approach hosts API applications on virtual

machines, offering maximum control and flexibility. It's

often preferred for legacy applications or custom

environments that require fine-grained control over the

underlying infrastructure. The text details the key

components, benefits, considerations, architecture

diagrams, and security implications of API development

on virtual machines for each cloud provider.

• API Development with Platform as a Service (PaaS):

PaaS offerings like AWS Elastic Beanstalk, Azure App

Service, or Google App Engine simplify API deployment

and management by abstracting away infrastructure

concerns. This approach balances control and ease of use,

allowing developers to focus on code. The text provides

an overview of the key components, benefits, use cases,

architecture diagrams, and security considerations for

PaaS-based API development on each platform.

• Specialized API Development Platforms: The text also

touches on specialized platforms like AWS Amplify,

which accelerates full-stack application development

with features like authentication, storage, and APIs. It

briefly describes the benefits and use cases of such

platforms.

The text concludes by underscoring the criticality of selecting

the optimal architecture based on the specific requirements of

your API, encompassing factors such as traffic patterns,

complexity, data needs, real-time capabilities, desired control

and flexibility, operational overhead, and development

preferences.

4. API – Internal vs External Classification

The distinction between internal and external access in cloud-

native API development hinges on the desired level of

isolation and the intended audience. Internal APIs are

typically restricted to specific networks or accounts within the

cloud environment, while external APIs are exposed to the

public internet. Various mechanisms, such as VPCs, security

groups, IAM roles, and authentication/authorization

protocols, are employed to enforce access control and ensure

the security of both internal and external APIs.

1) Serverless API Architecture

a) Internal Access:

• Within VPC: In this scenario, the API is kept private

and accessible only from within the same Virtual

Private Cloud (VPC). This is achieved by creating a

private API in the API Gateway and utilizing VPC

endpoints for access from other resources within the

VPC. The API remains isolated from the public

internet, enhancing security for sensitive internal

services.

• Within AWS Account: The API can be restricted to

users or services within the same AWS account. This

is accomplished by leveraging AWS Identity and

Access Management (IAM) roles and policies.

Specific IAM roles are granted permissions to access

API Gateway resources or methods, ensuring

controlled access within the account.

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1587

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

b) External Access:

• Users/Applications: The API is exposed to the

public internet, allowing access from external users or

applications. This is done by creating a public API

endpoint through the API Gateway. Robust

authentication and authorization mechanisms, such as

API keys, Cognito user pools, or IAM, are crucial to

control and secure access to the API.

2) Containerized API Architecture

a) Internal Access:

• Within EKS (or other container orchestration

platforms): The API is accessible to other pods or

services within the same Kubernetes cluster. This is

achieved using Kubernetes service discovery

mechanisms or internal load balancers. The API remains

within the cluster's private network, ensuring secure

communication between internal services.

• Within VPC: Like the serverless approach, the API can

be restricted to resources within the same VPC. This is

done using internal load balancers or VPC peering,

allowing secure communication between services within

the VPC.

• Within AWS Account (or other cloud provider's

account): Access can be granted to specific entities

within the same cloud account. This can be achieved

using IAM roles and policies for API Gateway or security

groups for direct access to the containerized API.

b) External Access:

• Users/Applications: The API is exposed publicly,

accessible from the internet. A public API endpoint is

created, and appropriate authentication and authorization

mechanisms are implemented to control access and

ensure security.

3) API Development on Virtual Machines

a) Internal Access:

• Within VPC: Access is restricted to resources within the

same VPC. Security groups are configured to control

inbound traffic to the EC2 instance (or equivalent virtual

machine) based on IP addresses or security groups,

ensuring that only authorized entities within the VPC can

access the API.

• Within AWS Account (or other cloud provider's

account): Access can be granted to specific entities

within the same cloud account. This can be achieved

using IAM roles and policies for any associated AWS

services (e.g., RDS) or security groups for direct access

to the virtual machine hosting the API.

b) External Access:

• Users/Applications: The API is made publicly

accessible. This is done by assigning a public IP address

to the virtual machine or by using an Elastic Load

Balancer (or equivalent service). Authentication and

authorization mechanisms are implemented within the

API application code to control and secure access.

4) API Development with PaaS (Platform as a Service)

a) Internal Access:

• Within VPC: The PaaS environment, such as AWS

Elastic Beanstalk or Azure App Service, is launched

within a VPC, and access is controlled using security

groups. This ensures that the API is only accessible from

within the VPC.

• Within AWS Account (or other cloud provider's

account): Like virtual machines, access can be granted

to specific entities within the same cloud account using

IAM roles and policies or security groups.

b) External Access:

• Users/Applications: The PaaS offering typically creates

a public endpoint for the API, making it accessible from

the internet. Load balancers and security groups can be

used to manage external access. Authentication and

authorization are usually implemented within the

application code or integrated with an API management

solution.

5) Specialized API Development Platforms

• Internal Access: These platforms, like AWS Amplify,

primarily focus on building full-stack applications with

public APIs. Internal access is typically handled at the

backend service level, using mechanisms like AppSync

authorizers or database access controls.

• External Access: These platforms simplify the creation

of public APIs backed by various backend services. They

often provide built-in authentication and authorization

features or allow for custom logic implementation to

control access to the API.

The choice of specific mechanisms for internal and external

access control depends on the chosen API development

approach and the security requirements of the application.

Understanding these mechanisms is crucial for designing and

deploying APIs that meet the specific needs of your

organization while maintaining the confidentiality, integrity,

and availability of your data and services.

5. AWS – APIS Ways and Internal and

External

1) Serverless API Architecture with API Gateway and

Lambda

A highly scalable and cost-effective approach, ideal for

variable traffic patterns and operational simplicity. This

architecture represents a popular and highly scalable

approach for developing APIs on AWS, leveraging the power

of serverless computing. It eliminates the need to manage

servers, allowing you to focus on writing code and delivering

features faster.

a) Key Components:

• API Gateway: Handles API routing,

request/response transformations,

authentication/authorization, and throttling.

• Lambda: Executes code in response to API

requests without managing servers.

• DynamoDB (Optional): Stores API data in a

highly scalable NoSQL database.

b) Benefits:

• Cost-effective: Pay only for the compute time

consumed by Lambda functions.

• Scalable: Handles varying traffic loads

automatically.

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1588

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Minimal operational overhead: No servers to

manage.

c) Use Cases: Web and mobile backends, event-driven

APIs, data processing pipelines.

d) Architecture Diagram:

Figure 1: AWS-Serverless API architecture

e) Security:

Authentication:

• API Keys: A simple way to control access to your API.

However, they provide basic security and are best suited

for less sensitive data or internal use cases.

• IAM Roles and Policies: Leverage AWS Identity and

Access Management (IAM) to grant access to your API

based on the IAM roles and policies associated with the

caller (e.g., users, applications). This approach offers

granular control and is suitable for internal or B2B APIs.

• Cognito User Pools: A robust solution for managing user

authentication and authorization for web and mobile apps.

Cognito handles user registration, sign-in, and token

generation, simplifying the integration of user

authentication into your API.

Authorization:

• API Gateway Resource Policies: Define fine-grained

permissions to control access to specific API resources or

methods based on the caller's identity or other criteria.

• Custom Authorizers (Lambda): Implement your own

authorization logic in a Lambda function to perform

complex checks or integrate with external authorization

systems.

• Lambda Function Code: Within your Lambda function

code, you can further enforce authorization rules by

validating user roles, permissions, or other contextual

information.

f) Access:

Internal Access:

• Within VPC: Create a private API in API Gateway and

access it uses VPC endpoints from other resources within

the VPC.

• Within AWS Account: Use IAM roles and policies to

grant access to specific API Gateway resources or

methods based on the calling entity's IAM role.

External Access:

• Users: Expose a public API endpoint through API

Gateway. Implement appropriate authentication and

authorization mechanisms (API keys, Cognito, IAM) to

control access.

• Applications: Expose a public API endpoint through API

Gateway. Implement appropriate authentication and

authorization mechanisms (API keys, Cognito, IAM) to

control access.

In summary, the serverless architecture with API Gateway

and Lambda is a powerful and flexible choice for building

APIs on AWS, offering cost-effectiveness, scalability, and

reduced operational overhead. Its suitability for a variety of

use cases makes it a popular option for modern API

development.

2) Containerized API Architecture with ECS or EKS

Provides flexibility and control, suitable for complex APIs or

containerized environments.

a) Key Components:

• API Gateway: Same role as in the serverless

architecture, including handling

authentication/authorization.

• ECS (Elastic Container Service) or EKS (Elastic

Kubernetes Service): Manages containerized API

applications, providing orchestration and scaling

capabilities.

• RDS (Relational Database Service) or other

databases: Stores data for the API.

b) Benefits:

• Flexibility: Run any containerized application as an

API backend.

• Control: Fine-grained control over the underlying

infrastructure.

• Portability: Easily move containerized APIs between

environments.

c) Use Cases: APIs with complex dependencies, legacy

applications modernized with containers, high-

performance APIs.

d) Architecture Diagram:

Figure 2: AWS-Containerized API architecture – ECS,

EKS

e) Security:

• Authentication and Authorization:

• API Gateway: Leverage the same authentication and

authorization mechanisms as in the serverless

architecture (API keys, IAM, Cognito).

• Containerized API: Implement authentication and

authorization within the application code itself. This

might involve using JWT validation libraries,

integrating with identity providers, or implementing

custom logic.

f) Access:

Internal Access:

• Within EKS: Use Kubernetes service discovery

mechanisms or internal load balancers to expose the API

within the cluster for other pods or services to access.

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1589

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Within VPC: Like EKS, use internal load balancers or

VPC peering to make the API accessible to other

resources within the VPC.

• Within AWS Account: Can be achieved using IAM roles

and policies for API Gateway or security groups for

direct access to the containerized API.

External Access:

• Users: Expose a public API endpoint through API

Gateway and implement user-friendly

authentication/authorization mechanisms.

• Applications: Expose a public API endpoint and

implement appropriate authentication/authorization for

machine-to-machine communication.

In short, containerized API architectures provide flexibility

and control, making them suitable for complex APIs or

scenarios where containerization is already part of your

development workflow.

3) AppSync for GraphQL APIs

Simplifies the development of GraphQL APIs with real-time

data synchronization and efficient data fetching.

a) Key Components:

• AppSync: Managed GraphQL service that simplifies

API development and provides real-time data

synchronization.

• Lambda, DynamoDB, or other data sources: Connect

AppSync to various data sources to fetch and

manipulate data.

b) Benefits:

• Efficient data fetching: Clients request only the

specific data they need.

• Real-time updates: Clients receive updates when data

changes.

• Simplified client development: Single endpoint for all

data operations.

c) Use Cases: Applications with complex data

requirements, mobile apps that need efficient data

fetching, real-time collaboration tools.

d) Architecture Diagram:

Figure 3: AWS-GraphQL API architecture

e) Security:

Authentication and Authorization:

• API Keys: Basic access control.

• IAM Roles and Policies: Control access based on IAM

roles.

• Cognito User Pools: User authentication and fine-

grained authorization using GraphQL directives

(@aws_auth, @aws_api_key, @aws_iam,

@aws_cognito_user_pools).

• OpenID Connect and OAuth: Integrate with external

identity providers.

• Lambda Authorizers: Implement custom authorization

logic for specific GraphQL fields or operations.

f) Access:

Internal Access:

• Within VPC: Not directly applicable, as AppSync is a

managed service. You would need to use VPC endpoints

for any data sources connected to AppSync (e.g.,

DynamoDB, RDS) if you want to restrict their access to

the VPC.

• Within AWS Account: Control access using IAM roles

and policies or by implementing custom Lambda

authorizers in AppSync.

External Access:

• Users/Applications: Expose a public GraphQL endpoint

through AppSync. Use API keys, Cognito user pools, or

other authentication/authorization mechanisms to control

access.

• To summarize, AppSync is an excellent choice for

building GraphQL APIs on AWS, offering benefits like

efficient data fetching, real-time updates, and simplified

client development.

4) API Development on EC2 Instances

Offers maximum control and flexibility, ideal for legacy

applications or custom environments.

a) Key Components:

• EC2 Instance: The virtual server where your API

application will run.

• Web Server/Application Server: Software like Apache,

Nginx, or a framework-specific server (e.g., Node.js with

Express, Python with Flask) to handle HTTP requests

and responses.

• API Framework (Optional): Frameworks like Express.js,

Flask, or Spring Boot can simplify API development and

provide structure.

• Database (Optional): A database like MySQL,

PostgreSQL, or MongoDB to store data for your API.

• Load Balancer (Optional): Distribute incoming traffic

across multiple EC2 instances for high availability and

scalability.

b) Benefits:

• Full Control: You have complete control over the

operating system, software stack, and configurations on

your EC2 instances.

• Flexibility: You can run any programming language or

framework compatible with the EC2 instance's operating

system.

• Customization: You can tailor the environment to the

specific needs of your API application.

• Suitable for Legacy Applications: If you have existing

applications that are not easily containerized, running

them on EC2 might be a good option.

c) Considerations:

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1590

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Operational Overhead: You are responsible for managing

the EC2 instances, including patching, updates, and

security.

• Scaling: While you can scale horizontally by adding

more EC2 instances behind a load balancer, it might not

be as seamless as with serverless or containerized

options.

• Cost: You pay for the EC2 instance even when it's idle,

which might be less cost-effective compared to

serverless for APIs with unpredictable traffic patterns.

d) Architecture Diagram:

Figure 4: AWS- EC2 based API architecture

e) Security Considerations:

• Secure the EC2 Instance: Configure security groups to

restrict access to the necessary ports, apply operating

system-level security updates, and consider using

security tools like Amazon Inspector.

• Secure the API: Implement authentication, authorization,

input validation, and other security best practices within

your API application code.

• Secure Data Storage: If using a database, encrypt data at

rest and in transit.

f) Access:

Internal Access:

• Within VPC: Control access using security groups to

restrict inbound traffic to the EC2 instance based on IP

addresses or security groups.

• Within AWS Account: Can be achieved using IAM roles

and policies for any associated AWS services (e.g., RDS)

or security groups for direct access to the EC2 instance.

External Access:

• Users/Applications: Expose the API by assigning a

public IP address to the EC2 instance or using an Elastic

Load Balancer. Implement authentication/authorization

within your API application code.

• In essence, API development on EC2 offers maximum

control and flexibility, making it a suitable choice when

you need fine-grained control over your API

environment or have legacy applications that are not

easily containerized.

5) API Development with AWS Elastic Beanstalk

This is a Platform as a Service (PaaS) offering that simplifies

the deployment and management of web applications and

services, including APIs. You provide your application code,

and Elastic Beanstalk handles provisioning the underlying

infrastructure (EC2 instances, load balancers, etc.),

deployment, scaling, and monitoring. Suitable for developers

who want to focus on code and reduce operational overhead.

a) Access

Internal Access:

• Within VPC: Use Elastic Beanstalk's VPC support to

launch your environment within a VPC and control

access using security groups.

• Within AWS Account: Like EC2, control access using

IAM roles and policies or security groups.

External Access:

• Users/Applications: Elastic Beanstalk automatically

creates a public endpoint for your application. Use

Elastic Load Balancing and security groups to manage

external access and implement

authentication/authorization within your application

code.

• In a nutshell, Elastic Beanstalk strikes a balance between

control and ease of use, making it a good option for

developers who want to simplify deployment and

management without sacrificing too much control.

6) API Development with AWS Amplify

This is a development platform that makes it easy to build and

deploy full-stack web and mobile applications with features

like authentication, storage, and APIs. Amplify provides tools

and libraries to simplify client-side development and

integration with AWS backend services. Great for building

modern, cloud-connected applications with minimal backend

setup.

Access

Internal Access:

• Amplify primarily focuses on building full-stack

applications with public APIs. Internal access would

typically be handled at the backend service level (e.g.,

using AppSync authorizers or DynamoDB access

controls).

External Access:

• Applications/Humans: Amplify simplifies the creation of

public APIs backed by AWS services like AppSync or

Lambda. Use Amplify's built-in authentication and

authorization features or implement custom logic to

control access.

• Overall, AWS Amplify accelerates development and

streamlines the integration of backend services, making

it ideal for building full-stack applications with a focus

on the frontend experience.

7) Choosing the Right Architecture

The optimal architecture depends on your specific API

requirements, including:

• Traffic Patterns

• Complexity

• Data Requirements

• Real-Time Needs

• Control and Flexibility

• Operational Overhead

• Development Experience and Preferences

Remember that each approach has its own strengths and

trade-offs. Carefully evaluate your project's specific needs

and constraints before choosing an architecture. Consider

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1591

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

using a combination of approaches for different parts of your

API ecosystem if necessary.

6. Azure – APIS Ways and Internal and

External

1) Serverless API Architecture with Azure Functions and

API Management

This architecture leverages Azure Functions, the serverless

compute platform, to handle API requests without

provisioning or managing servers. Azure API Management

acts as the frontend for your APIs, providing capabilities like

routing, authentication, authorization, throttling, and more.

a) Key Components:

• Azure API Management: Manages and publishes your

APIs, handles routing, authentication, authorization, and

other API management features.

• Azure Functions: Serverless compute service for running

event-triggered code without managing infrastructure.

• Azure Cosmos DB (Optional): NoSQL database service

for storing API data with global distribution and low

latency.

b) Benefits:

• Cost-effective: Pay only for the actual compute time

consumed by your functions.

• Scalable: Handles varying traffic loads automatically.

• Minimal operational overhead: No servers to manage.

c) Use Cases: Web and mobile backends, event-driven APIs,

data processing pipelines.

d) Architecture Diagram:

Figure 5: Azure-Serverless API architecture

e) Security:

Authentication:

• API keys: A simple way to control access to your API,

but they provide basic security and are best suited for less

sensitive data or internal use cases.

• Azure Active Directory (AAD): Integrate with AAD for

enterprise-grade authentication and authorization,

leveraging user identities and roles within your

organization.

• Azure AD B2C: A customer identity and access

management (CIAM) solution for building consumer-

facing applications with social logins and customizable

user flows.

Authorization:

• Azure API Management Policies: Use policies within

API Management to define fine-grained access control

rules based on user claims, subscription keys, or other

criteria.

• Azure Functions Code: Within your Azure Function

code, you can further enforce authorization by validating

user roles, permissions, or other contextual information.

f) Access:

Internal Access:

• Within Virtual Network (VNet): Use Azure API

Management's virtual network integration to restrict

access to your API from within your VNet.

• Within Azure Subscription: Leverage Azure role-based

access control (RBAC) to grant permissions to specific

users or service principals within your Azure subscription.

External Access:

• Users: Expose a public API endpoint through Azure API

Management. Implement appropriate authentication and

authorization mechanisms (e.g., Azure AD, Azure AD

B2C) to control access.

• Applications: Expose a public API endpoint through

Azure API Management. Implement appropriate

authentication and authorization mechanisms (e.g., API

keys, OAuth 2.0) to control access.

• In summary, the serverless architecture with Azure

Functions and API Management provides a powerful,

cost-effective, and scalable solution for building APIs in

Azure. Its simplicity and flexibility make it a popular

choice for a wide range of use cases.

2) Containerized API Architecture with Azure Container

Instances or AKS

• This architecture utilizes containers to package and deploy

your API applications, offering greater flexibility and

control over the environment. Azure Container Instances

(ACI) provide a simple way to run containers on-demand

without managing any underlying infrastructure, while

Azure Kubernetes Service (AKS) offers a managed

Kubernetes environment for more complex orchestration

needs.

a) Key Components:

• Azure API Management: Manages and publishes your

APIs, handles routing, authentication, authorization, and

other API management features.

• Azure Container Instances (ACI) or AKS (Azure

Kubernetes Service): Runs and manages your

containerized API applications.

• Azure SQL Database or other databases: Stores data for

your API

b) Benefits:

• Flexibility: Run any containerized application as your API

backend

• Control: Fine-grained control over the underlying

infrastructure

• Portability: Easily move containerized APIs between

environments

c) Use Cases: APIs with complex dependencies, legacy

applications modernized with containers, high-

performance APIs.

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1592

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

d) Architecture Diagram:

Figure 6: Azure- Containerized API architecture – ECS,

EKS

e) Security

Authentication and Authorization:

• Azure API Management: Leverage the same

authentication and authorization mechanisms as in the

serverless architecture (API keys, AAD, Azure AD B2C)

• Containerized API: Implement authentication and

authorization within the application code itself. This could

involve using JWT validation libraries, integrating with

identity providers, or implementing custom logic.

f) Access:

Internal Access:

• Within AKS: Use Kubernetes service discovery

mechanisms or internal load balancers to expose the API

within the cluster for other pods or services to access.

• Within Virtual Network (VNet): Deploy your ACI or AKS

cluster within a VNet and control access using Network

Security Groups (NSGs) or private endpoints.

External Access:

• Users/Applications: Expose a public API endpoint

through Azure API Management and implement

appropriate authentication and authorization mechanisms.

• In short, containerized API architectures in Azure offer

flexibility, control, and portability, making them well-

suited for scenarios where you need to manage complex

APIs or leverage existing containerized applications.

3) API Development on Azure Virtual Machines

This approach involves hosting your API application on

Azure Virtual Machines (VMs), giving you full control over

the operating system, software stack, and configurations. It's

suitable for scenarios where you need fine-grained control or

have legacy applications that are not easily containerized.

a) Key Components:

• Azure Virtual Machine: The virtual server where your

API application will run.

• Web Server/Application Server: Software like IIS,

Apache, Nginx, or a framework-specific server to handle

HTTP requests and responses.

• API Framework (Optional): Frameworks like ASP.NET

Core, Node.js with Express, or Python with Flask can

simplify API development.

• Database (Optional): Azure SQL Database, Cosmos DB,

or other databases to store API data

• Azure Load Balancer (Optional): Distribute incoming

traffic across multiple VMs for high availability and

scalability.

b) Benefits:

• Full Control: Complete control over the operating

system, software stack, and configurations

• Flexibility: Run any programming language or

framework compatible with the VM's operating system

• Customization: Tailor the environment to your API's

specific needs

• Suitable for Legacy Applications: A good option for

existing applications not easily containerized.

c) Considerations:

• Operational Overhead: You are responsible for managing

the VMs, including patching, updates, and security.

• Scaling: Scaling might require manual intervention or

configuring autoscaling groups

• Cost: You pay for the VM even when it's idle, potentially

less cost-effective than serverless for unpredictable

traffic

d) Architecture Diagram:

Figure 7: Azure- VM based API architecture

e) Security Considerations

• Secure the VM: Configure Network Security Groups

(NSGs) to restrict access, apply OS-level security

updates, and consider Azure Security Center

• Secure the API: Implement authentication, authorization,

input validation, and other security best practices.

• Secure Data Storage: Encrypt data at rest and in transit if

using a database.

f) Access:

Internal Access:

• Within Virtual Network (VNet): Deploy your VM within

a VNet and control access using Network Security

Groups (NSGs).

External Access:

• Users/Applications: Expose the API by assigning a

public IP address to the VM or using an Azure Load

Balancer. Implement authentication/authorization within

your API application code.

• In essence, API development on Azure VMs provides

maximum control and flexibility, ideal when you need

fine-grained control over your API environment or have

legacy applications.

4) API Development with Azure App Service

This is a Platform as a Service (PaaS) offering that simplifies

deploying and managing web applications, including APIs.

You provide your code, and App Service handles

provisioning the underlying infrastructure, deployment,

scaling, and monitoring.

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1593

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

a) Key Components

• Azure App Service: The PaaS offering that hosts your API

application.

• API Framework: Choose from various supported

languages and frameworks like ASP.NET Core, Node.js,

Python, etc.

• Database (Optional): Azure SQL Database, Cosmos DB,

or other databases to store data

b) Benefits

• Simplified Deployment: Easy deployment from various

sources (Git, FTP, etc.)

• Autoscaling: Automatically scales based on traffic or

schedules.

• Managed Environment: Azure handles OS patching,

security updates, etc.

• Integrations: Integrates with various Azure services and

DevOps tools

c) Use Cases: Web and mobile app backends, APIs requiring

quick deployment and scaling.

d) Architecture Diagram:

Figure 8: Azure- App Service - API architecture

e) Security Considerations:

• Authentication/Authorization: Integrate with Azure AD,

Azure AD B2C, or other providers.

• App Service Access Restrictions: Control network access

to your App Service

• Secure Data Storage: Encrypt data at rest and in transit.

f) Access:

Internal Access:

• Within Virtual Network (VNet): Use Azure App Service's

VNet integration feature to restrict access to your API

from within your VNet.

External Access:

• Users/Applications: Azure App Service provides a public

endpoint for your API. You can implement

authentication/authorization mechanisms within your

application code or integrate with Azure API Management

for additional features.

• Overall, Azure App Service provides a managed

environment for hosting APIs, streamlining deployment

and scaling while offering integrations with other Azure

services. It's a good choice when you want to reduce

operational overhead and focus on development.

7. GCP– APIS- Internal and External

1) Serverless API Architecture with Cloud Functions and

API Gateway

This architecture leverages Cloud Functions, Google Cloud's

serverless compute platform, to execute your API logic

without provisioning or managing servers. API Gateway acts

as the frontend, handling API routing, authentication,

authorization, and other management features.

a) Key Components:

• API Gateway: Manages and publishes your APIs, handles

routing, authentication, authorization, and other API

management features.

• Cloud Functions: Serverless compute platform for running

event-triggered code.

• Cloud Firestore or Cloud Datastore (Optional): NoSQL

database services for storing API data.

b) Benefits:

• Cost-effective: Pay only for the actual compute time

consumed by your functions

• Scalable: Handles varying traffic loads automatically

• Minimal operational overhead: No servers to manage.

c) Use Cases: Web and mobile backends, event-driven APIs,

data processing pipelines.

d) Architecture Diagram:

Figure 9: GCP-Serverless API architecture

e) Security:

Authentication:

• API keys: A simple way to control access to your API,

but they provide basic security and are best suited for less

sensitive data or internal use cases.

• Firebase Authentication: Integrate with Firebase for user

authentication and management, providing features like

email/password, social logins, and more.

• Identity Platform: A customizable authentication

platform that lets you add user sign-up, sign-in, and other

identity features to your web and mobile apps.

Authorization:

• API Gateway IAM Permissions: Control access to your

API using IAM roles and permissions, allowing you to

define fine-grained access control based on user identities.

• Cloud Functions Code: Within your Cloud Function

code, you can further enforce authorization by validating

user roles, permissions, or other contextual information.

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1594

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

f) Access:

Internal Access:

• Within VPC Network: Use VPC Service Controls to

create a service perimeter around your API Gateway and

restrict access to specific VPC networks or IP ranges.

• Within Google Cloud Project: Leverage IAM roles and

permissions to control access to your API based on the

calling entity's IAM role.

External Access:

• Users: Expose a public API endpoint through API

Gateway. Implement appropriate authentication and

authorization mechanisms (e.g., Firebase Authentication,

Identity Platform) to control access.

• Applications: Expose a public API endpoint through API

Gateway. Implement appropriate authentication and

authorization mechanisms (e.g., API keys, OAuth 2.0) to

control access.

• In summary, the serverless architecture with Cloud

Functions and API Gateway is a powerful, cost-effective,

and scalable solution for building APIs on GCP. Its

simplicity and flexibility make it a popular choice for a

wide range of use cases.

2) Containerized API Architecture with Cloud Run or

GKE

This architecture leverages containers to package and deploy

your API applications, offering greater flexibility and control.

Cloud Run is a fully managed serverless container platform,

while Google Kubernetes Engine (GKE) provides a managed

Kubernetes environment for more complex orchestration

needs.

a) Key Components:

• API Gateway: Manages and publishes your APIs, handles

routing, authentication, authorization, and other API

management features.

• Cloud Run or GKE: Runs and manages your containerized

API applications.

• Cloud SQL or other databases: Stores data for the API

b) Benefits:

• Flexibility: Run any containerized application as your API

backend

• Control: Fine-grained control over the underlying

infrastructure (more with GKE)

• Portability: Easily move containerized APIs between

environments

c) Use Cases: APIs with complex dependencies, legacy

applications modernized with containers, high-

performance APIs.

d) Architecture Diagram:

Figure 10: GCP- Containerized API architecture – Cloud

Run, GKE

e) Security:

Authentication and Authorization:

• API Gateway: Leverage the same authentication and

authorization mechanisms as in the serverless architecture

(API keys, Firebase, Identity Platform)

• Containerized API: Implement authentication and

authorization within the application code itself. This could

involve using JWT validation libraries, integrating with

identity providers, or implementing custom logic.

f) Access:

Internal Access:

• Within GKE: Use Kubernetes service discovery

mechanisms or internal load balancers to expose the API

within the cluster for other pods or services to access.

• Within VPC Network: Deploy your Cloud Run or GKE

services within a VPC network and control access using

firewall rules or private access.

External Access:

• Users/Applications: Expose a public API endpoint

through API Gateway and implement appropriate

authentication and authorization mechanisms.

• In short, containerized API architectures in GCP offer

flexibility, control, and portability, making them well-

suited for scenarios where you need to manage complex

APIs or leverage existing containerized applications.

3) API Development on Google Compute Engine

This traditional approach involves hosting your API

application on Compute Engine virtual machines (VMs),

giving you full control over the operating system, software

stack, and configurations.

a) Key Components:

• Compute Engine VM: Virtual server where your API

application runs.

• Web Server/Application Server: Software like Apache,

Nginx, or a framework-specific server to handle HTTP

requests and responses.

• API Framework (Optional): Frameworks like Flask,

Django, Express.js, etc. to simplify API development.

• Database (Optional): Cloud SQL, Cloud Firestore, or

other databases to store data

• Cloud Load Balancing (Optional): Distribute incoming

traffic across multiple VMs for high availability and

scalability.

b) Benefits:

• Full Control: Complete control over the operating system,

software stack, and configurations

• Flexibility: Run any programming language or framework

compatible with the VM's operating system.

• Customization: Tailor the environment to the specific

needs of your API application

• Suitable for Legacy Applications: Good option for

existing applications not easily containerized.

c) Considerations

• Operational Overhead: You're responsible for managing

the VMs, including patching, updates, and security.

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1595

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Scaling: Scaling might require manual intervention or

configuring autoscaling groups.

• Cost: You pay for the VM even when it's idle, potentially

less cost-effective than serverless for unpredictable traffic.

d) Architecture Diagram:

• [Client] --> [Cloud Load Balancing (Optional)] -->

[Compute Engine VM (Web Server/API Application)] --

> [Database (Optional)]

e) Security Considerations

• Secure the VM: Configure firewall rules to restrict access,

apply OS-level security updates.

• Secure the API: Implement authentication, authorization,

input validation.

• Secure Data Storage: Encrypt data at rest and in transit if

using a database.

f) Access:

Internal Access:

• Within VPC Network: Deploy your VM within a VPC

network and control access using firewall rules.

External Access:

• Users/Applications: Expose the API by assigning a

public IP address to the VM or using Cloud Load

Balancing. Implement authentication/authorization within

your API application code.

• In essence, API development on Compute Engine offers

maximum control and flexibility, suitable when you need

fine-grained control over your API environment or have

legacy applications.

4) API Development with Google App Engine

This is a Platform as a Service (PaaS) offering that simplifies

deploying and managing web applications, including APIs.

You provide your code, and App Engine handles provisioning

the underlying infrastructure, deployment, scaling, and

monitoring.

a) Key Components:

• App Engine: The PaaS offering that hosts your API

application.

• API Framework: Choose from various supported

languages and frameworks.

• Database (Optional): Cloud SQL, Cloud Firestore, or

other databases

b) Benefits:

• Simplified Deployment: Easy deployment from various

sources (Git, Cloud Build, etc.)

• Autoscaling: Automatically scales based on traffic.

• Managed Environment: Google handles OS patching,

security updates, etc.

• Integrations: Integrates with various GCP services and

DevOps tools

c) Use Cases: Web and mobile app backends, APIs

requiring quick deployment and scaling.

d) Architecture Diagram:

Figure 11: GCP- VM based API architecture

e) Security Considerations:

• Authentication/Authorization: Integrate with Firebase

Authentication, Identity Platform, or other providers.

• Firewall Rules: Control network access to your App

Engine service

• Secure Data Storage: Encrypt data at rest and in transit.

f) Access:

Internal Access:

• Within VPC Network: Use VPC Service Controls to

create a service perimeter around your App Engine

service and restrict access to specific VPC networks or

IP ranges.

External Access:

• Users/Applications: App Engine provides a public

endpoint for your API. You can implement

authentication/authorization mechanisms within your

application code or integrate with API Gateway for

additional features. Overall, Google App Engine

provides a managed environment for hosting APIs,

streamlining deployment and scaling. It's a good choice

when you want to reduce operational overhead and focus

on development.

Choosing the Right Architecture

The optimal architecture depends on your specific

requirements, including:

• Traffic patterns

• Complexity of the API

• Data Requirements

• Need for real-time updates.

• Level of control and flexibility desired

• Operational overhead

• Development experience and preferences

Each approach has its trade-offs, so consider your project's

specific needs and constraints before choosing an

architecture. You might also use a combination of approaches

for different parts of your API ecosystem.

API Security Best Practices

Securing APIs is paramount to protect sensitive data and

prevent unauthorized access. Here are some essential security

best practices:

• Input Validation and Sanitization: Rigorously validate

and sanitize all incoming data to prevent injection attacks

and other vulnerabilities. Utilize libraries and frameworks

that provide built-in input validation or implement custom

validation logic.

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1596

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Authentication and Authorization: Employ strong

authentication mechanisms like OAuth 2.0, OpenID

Connect, or JWT tokens to verify user identities.

Implement fine-grained authorization using role-based

access control (RBAC) or attribute-based access control

(ABAC) to restrict access to specific API resources or

actions.

• Data Encryption: Encrypt data at rest and in transit to

protect sensitive information. Utilize cloud-native

encryption services or implement encryption within your

application code.

• Security Testing: Conduct regular security assessments,

including penetration testing and vulnerability scanning,

to identify and address potential weaknesses in your API

implementation.

• OWASP Top 10: Familiarize yourself with the OWASP

Top 10 API Security Risks and take proactive measures to

mitigate them. This includes addressing vulnerabilities

like broken object-level authorization, broken user

authentication, and excessive data exposure.

8. Conclusion

In conclusion, this document has provided a comprehensive

overview of developing and securing cloud-native APIs

across major cloud providers. We explored various

architectural approaches, security considerations, and access

control mechanisms, offering valuable insights into choosing

the right architecture based on specific API requirements. By

incorporating the additional sections on API Gateway best

practices, API security best practices, hybrid and multi-cloud

API deployment, API versioning and lifecycle management,

and API documentation and developer experience, we have

further enhanced the completeness and clarity of this guide.

The revised title, "Beyond the Firewall: Managing Internal

and External Access for Cloud Native APIs Across AWS,

Azure, and GCP," accurately reflects the document's scope

and key areas of focus.

As the cloud landscape continues to evolve, it is crucial for

developers and architects to stay abreast of the latest trends

and best practices in cloud-native API development and

security. This document serves as a valuable resource,

empowering individuals and organizations to build robust,

secure, and user-friendly APIs that thrive in the dynamic

world of cloud computing. By adhering to the principles and

recommendations outlined in this guide, you can confidently

navigate the complexities of cloud-native API development

and deliver exceptional API experiences to your users.

Glossary of Terms

• API (Application Programming Interface): A set of

rules and specifications that enable different software

applications to communicate and interact with each other.

• Cloud-Native: An approach to building and running

applications that fully leverages the advantages of cloud

computing models, emphasizing scalability, flexibility,

resilience, and automation.

• Serverless: A cloud computing execution model where

the cloud provider dynamically manages the allocation of

compute resources, abstracting away server management

and allowing developers to focus solely on writing code.

• Containerization: The process of packaging an

application and its dependencies into a standardized unit

called a container, ensuring consistent deployment and

execution across different environments.

• Virtual Machine (VM): An emulation of a computer

system that operates as a self-contained unit within a host

machine, providing isolation and resource allocation for

running applications.

• Platform as a Service (PaaS): A cloud computing model

that provides a platform for developers to build, run, and

manage applications without the complexity of managing

the underlying infrastructure.

• API Gateway: A service that acts as a single-entry point

for API requests, providing features like routing,

authentication, authorization, throttling, and

transformation.

• AWS Lambda: An event-driven, serverless compute

service provided by Amazon Web Services (AWS) that

lets you run code without provisioning or managing

servers.

• Azure Functions: An event-driven, serverless compute

platform offered by Microsoft Azure that enables you to

execute code in response to various triggers or events.

• Google Cloud Functions: A serverless compute platform

on Google Cloud Platform (GCP) that allows you to run

code in response to events and HTTP requests without

managing servers.

• Amazon Elastic Container Service (ECS): A fully

managed container orchestration service provided by

AWS that simplifies deploying, managing, and scaling

containerized applications.

• Azure Kubernetes Service (AKS): A managed

Kubernetes service on Azure that simplifies the

deployment, management, and scaling of containerized

applications.

• Google Kubernetes Engine (GKE): A managed

Kubernetes service on GCP that facilitates the

deployment, management, and scaling of containerized

applications.

• Amazon Elastic Compute Cloud (EC2): A web service

that provides resizable compute capacity in the cloud,

allowing you to launch and manage virtual servers

(instances) to run your applications.

• Google Compute Engine: A computing service on GCP

that lets you create and run virtual machines on Google's

infrastructure.

• AWS Elastic Beanstalk: A PaaS offering from AWS that

simplifies the deployment and management of web

applications and services.

• Azure App Service: A PaaS offering from Microsoft

Azure that enables you to build, deploy, and scale web

applications and APIs.

• Google App Engine: A PaaS offering from GCP that

allows you to build and deploy web applications and APIs

without managing the underlying infrastructure.

• AWS Amplify: A development platform that simplifies

building and deploying full-stack web and mobile

applications with features like authentication, storage, and

APIs.

• OWASP Top 10: A list of the ten most critical security

risks to web applications, maintained by the Open Web

Application Security Project (OWASP).

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1597

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

References

[1] AWS Lambda. (n.d.). Amazon Web Services, Inc.

https://aws.amazon.com/lambda/

[2] Azure Functions. (n.d.). Microsoft Azure.

https://azure.microsoft.com/en-us/services/functions/

[3] Google Cloud Functions. (n.d.). Google Cloud.

https://cloud.google.com/functions

[4] Amazon API Gateway. (n.d.). Amazon Web Services,

Inc. https://aws.amazon.com/api-gateway/

[5] Azure API Management. (n.d.). Microsoft Azure.

https://azure.microsoft.com/en-us/services/api-

management/

[6] API Gateway. (n.d.). Google Cloud.

https://cloud.google.com/api-gateway

[7] Amazon Elastic Container Service (ECS). (n.d.).

Amazon Web Services, Inc.

https://aws.amazon.com/ecs/

[8] Azure Kubernetes Service (AKS). (n.d.). Microsoft

Azure. https://azure.microsoft.com/en-

us/services/kubernetes-service/

[9] Google Kubernetes Engine (GKE). (n.d.). Google

Cloud. https://cloud.google.com/kubernetes-engine

[10] Amazon Elastic Compute Cloud (EC2). (n.d.). Amazon

Web Services, Inc. https://aws.amazon.com/ec2/

[11] Virtual Machines. (n.d.). Microsoft Azure.

https://azure.microsoft.com/en-us/services/virtual-

machines/

[12] Compute Engine. (n.d.). Google Cloud.

https://cloud.google.com/compute/

[13] AWS Elastic Beanstalk. (n.d.). Amazon Web Services,

Inc. https://aws.amazon.com/elasticbeanstalk/

[14] Azure App Service. (n.d.). Microsoft Azure.

https://azure.microsoft.com/en-us/services/app-service/

[15] App Engine. (n.d.). Google Cloud.

https://cloud.google.com/appengine

[16] AWS Amplify. (n.d.). Amazon Web Services, Inc.

https://aws.amazon.com/amplify/

[17] OWASP Top 10 API Security Risks. (2023). OWASP

Foundation.

[18] Ramakrishna Manchana, "The Collaborative

Commons: Catalyst for Cross-Functional Collaboration

and Accelerated Development", International Journal of

Science and Research (IJSR), Volume 9 Issue 1,

January 2020, pp. 1951-1958,

https://www.ijsr.net/getabstract.php?paperid=SR24820

051747

[19] Ramakrishna Manchana, "DevSecOps in Cloud Native

CyberSecurity: Shifting Left for Early Security,

Securing Right with Continuous Protection",

International Journal of Science and Research (IJSR),

Volume 13 Issue 8, August 2024, pp. 1374-1382,

https://www.ijsr.net/getabstract.php?paperid=SR24822

104530

[20] Ramakrishna Manchana, "Operationalizing Batch

Workloads in the Cloud with Case Studies",

International Journal of Science and Research (IJSR),

Volume 9 Issue 7, July 2020, pp. 2031-2041,

https://www.ijsr.net/getabstract.php?paperid=SR24820

052154

[21] Ramakrishna Manchana, "Enterprise Integration in the

Cloud Era: Strategies, Tools, and Industry Case Studies,

Use Cases", International Journal of Science and

Research (IJSR), Volume 9 Issue 11, November 2020,

pp. 1738-1747,

https://www.ijsr.net/getabstract.php?paperid=SR24820

053800

[22] Ramakrishna Manchana, "Event-Driven Architecture:

Building Responsive and Scalable Systems for Modern

Industries", International Journal of Science and

Research (IJSR), Volume 10 Issue 1, January 2021, pp.

1706-1716,

https://www.ijsr.net/getabstract.php?paperid=SR24820

051042

[23] Ramakrishna Manchana (2024) DataOps: Bridging the

Gap Between Legacy and Modern Systems for

Seamless Data Orchestration.SRC/JAICC-137. DOI:

doi.org/10.47363/JAICC/2024(3)E137

[24] Ramakrishna Manchana, "Resiliency Engineering in

Cloud-Native Environments: Fail-Safe Mechanisms for

Modern Workloads", International Journal of Science

and Research (IJSR), Volume 10 Issue 10, October

2021, pp. 1644-1652,

https://www.ijsr.net/getabstract.php?paperid=SR24820

062009

[25] Ramakrishna Manchana, "Architecting IoT Solutions:

Bridging the Gap Between Physical Devices and Cloud

Analytics with Industry-Specific Use Cases",

International Journal of Science and Research (IJSR),

Volume 12 Issue 1, January 2023, pp. 1341-1351,

https://www.ijsr.net/getabstract.php?paperid=SR24820

054906

[26] Ramakrishna Manchana (2022) The Power of Cloud-

Native Solutions for Descriptive Analytics: Unveiling

Insights from Data. Journal of Artificial Intelligence &

Cloud Computing. SRC/JAICC-E139. DOI:

doi.org/10.47363/JAICC/2022(1)E139

Paper ID: SR24701182415 DOI: https://dx.doi.org/10.21275/SR24701182415 1598

https://www.ijsr.net/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://aws.amazon.com/api-gateway/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://cloud.google.com/api-gateway
https://aws.amazon.com/ecs/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute/
https://aws.amazon.com/elasticbeanstalk/
https://azure.microsoft.com/en-us/services/app-service/
https://cloud.google.com/appengine
https://aws.amazon.com/amplify/
https://www.ijsr.net/getabstract.php?paperid=SR24820051747
https://www.ijsr.net/getabstract.php?paperid=SR24820051747
https://www.ijsr.net/getabstract.php?paperid=SR24822104530
https://www.ijsr.net/getabstract.php?paperid=SR24822104530
https://www.ijsr.net/getabstract.php?paperid=SR24820052154
https://www.ijsr.net/getabstract.php?paperid=SR24820052154
https://www.ijsr.net/getabstract.php?paperid=SR24820053800
https://www.ijsr.net/getabstract.php?paperid=SR24820053800
https://www.ijsr.net/getabstract.php?paperid=SR24820051042
https://www.ijsr.net/getabstract.php?paperid=SR24820051042
https://www.ijsr.net/getabstract.php?paperid=SR24820062009
https://www.ijsr.net/getabstract.php?paperid=SR24820062009
https://www.ijsr.net/getabstract.php?paperid=SR24820054906
https://www.ijsr.net/getabstract.php?paperid=SR24820054906

