
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 6.902

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Operationalizing Helm Chart Security: A Topology-

Aware Framework for Enterprise Kubernetes

Environments

Sireesha Devalla

Frisco.TX,USA

sireesha.devalla[at]gmail.com

Abstract: The rapid industrial adoption of Kubernetes has revolutionized application deployment and scalability, but it has also amplified

configuration-driven security risks. Helm, the de facto package manager for Kubernetes, automates application delivery through Charts

that encapsulate infrastructure, dependencies, and runtime parameters. However, misconfigurations and insecure dependencies within

these Charts often propagate hidden vulnerabilities across production environments. This paper introduces a topology-aware framework

designed to operationalize Helm Chart security assessment for enterprise use. The proposed approach automatically extracts the

topological structure of a Chart-mapping services, dependencies, and access relationships-and enriches this model with security attributes

aligned to the MITRE ATT&CK framework. Using this enriched graph, the framework computes composite risk scores, identifies multi-

step attack paths, and generates actionable insights for DevSecOps teams to integrate into continuous deployment pipelines. An empirical

evaluation was conducted across multiple open-source and enterprise Helm repositories, revealing that over 70 % of Charts contained

exploitable configuration weaknesses or risky inter-service privileges. The results demonstrate the framework’s potential to reduce manual

auditing efforts, enhance early-stage threat visibility, and prioritize remediation based on attack feasibility. This work bridges the gap

between research and industrial application by embedding security-by-design principles directly into automated Kubernetes deployment

lifecycles.

Keywords: Kubernetes, Helm Charts, Microservices Security, DevSecOps, Configuration Analysis, Topology-Aware Framework, Attack

Path Modeling, MITRE ATT&CK, Risk Assessment, Cloud-Native Security, Continuous Deployment, Enterprise Automation

1. Introduction

Kubernetes has become the backbone of modern enterprise

software delivery, enabling scalable, fault-tolerant, and cloud-

native application deployment. Within this ecosystem, Helm

serves as the de facto package manager, automating the

installation and configuration of complex applications through

Charts-parameterized templates that define resources,

dependencies, and runtime settings. As enterprises

increasingly adopt Infrastructure-as-Code (IaC) and

continuous deployment practices, Helm Charts have evolved

from simple deployment descriptors into mission-critical

automation assets that directly influence security posture.

However, the same automation that drives efficiency can also

introduce systemic risk. Recent studies have identified that

misconfigured Charts, excessive privileges, and weak

dependency controls are among the most common security

issues in Kubernetes environments [1]–[2]. The OWASP

Kubernetes Top Ten (2022) highlights configuration drift and

unsecured service communication as leading attack vectors,

while Red Hat Research (2023) reports that over 55 % of

enterprise Kubernetes incidents stem from insecure

configurations embedded within IaC or Helm templates.

Despite these trends, Helm Charts are often treated purely as

configuration artifacts rather than as entities requiring

continuous, topology-based security evaluation.

This paper addresses this gap by proposing a topology-aware

framework for automated, risk-aware Helm Chart assessment.

The framework models inter-service dependencies as a

security graph, mapping potential attack paths and aligning

detected weaknesses with the MITRE ATT&CK tactics. The

key contributions are: (1) defining a graph-driven model for

Helm Chart analysis, (2) developing an automated risk-scoring

mechanism that integrates with enterprise DevSecOps

pipelines, and (3) empirically validating the approach across

open-source and enterprise Helm repositories. The proposed

framework aims to bridge research and industry by

operationalizing Helm Chart security within large-scale

Kubernetes environments.

2. Background and Related Work

The widespread adoption of containerized microservices has

transformed the software delivery landscape, offering

scalability, modularity, and operational efficiency. Central to

this transformation is Kubernetes, which orchestrates

container deployment and lifecycle management across

distributed clusters. Helm, as Kubernetes’ package manager,

abstracts the complexity of configuration and deployment

through Charts-YAML-based templates that define services,

configurations, secrets, and dependencies. This automation

has made Helm an indispensable tool for both enterprise and

open-source ecosystems, embedding it deeply within DevOps

pipelines and Infrastructure-as-Code (IaC) workflows [1], [2].

Despite its advantages, Helm introduces new security and

compliance challenges. Each Chart encapsulates multiple

Kubernetes resources whose configurations directly affect the

system’s security posture. Research shows that insecure

default values, permissive Role-Based Access Control

(RBAC) policies, and hardcoded secrets in Charts can expose

applications to privilege escalation and lateral movement

attacks [3]. Tools such as KubeSec, Trivy, and Checkov focus

on static policy scanning of YAML manifests; however, these

approaches lack contextual awareness of interdependent

components within Helm Charts. As a result, they often fail to

capture topology-driven risks that emerge from complex

service interconnections.

Paper ID: SR24628103829 DOI: https://dx.doi.org/10.21275/SR24628103829 1967

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 6.902

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Recent works in graph-based and topology-aware security

modeling propose representing system components and their

relationships as nodes and edges, facilitating the analysis of

attack surfaces and propagation paths [4]. While this method

has been applied to general cloud workflows and access

control systems, its application to Helm Chart security remains

limited. Studies by Kim et al. (2021) and N. Bui et al. (2022)

emphasize the need for frameworks that extend beyond static

analysis to incorporate relational dependencies across IaC

artifacts, particularly in container orchestration environments.

Furthermore, DevSecOps research highlights the need for

continuous, automated security integration within CI/CD

pipelines [2]. Yet, most existing approaches lack the ability to

dynamically map vulnerabilities in deployment descriptors

(such as Helm Charts) to known adversarial techniques, such

as those defined in the MITRE ATT&CK framework.

In summary, current literature addresses container security,

DevSecOps automation, and IaC vulnerability detection, but

there remains a clear gap: the absence of an integrated,

topology-aware, and risk-scoring framework tailored for Helm

Charts. This paper builds upon these foundations by

operationalizing security assessment as a graph-driven process

aligned with enterprise DevSecOps practices

3. Problem Definition and Research Gap

Enterprises increasingly rely on Kubernetes and Helm to

automate large-scale application deployments across hybrid

and multi-cloud environments. While this automation

simplifies operations, it also introduces security blind spots

within the deployment lifecycle. Each Helm Chart defines

multiple Kubernetes resources-services, pods, roles, and

secrets-that collectively shape the system’s security posture.

Misconfigurations at any layer, such as overprivileged service

accounts, unencrypted secrets, or exposed network endpoints,

can propagate through the dependency chain, resulting in

multi-stage attack surfaces that remain undetected by

traditional scanners [1].

Existing Helm and Kubernetes security tools primarily

perform static analysis. They identify misconfigurations

through pattern matching or rule-based scanning (e.g., policy

violations in YAML manifests) but fail to assess how these

vulnerabilities interact across dependent components. For

example, a single exposed service port in one Chart may only

become critical when combined with permissive RBAC roles

in another. These compound risks-emerging from inter-chart

relationships-require a topology-aware perspective that

models the deployment structure as an interconnected graph

rather than as isolated files [2], [3].

Furthermore, most existing approaches do not align identified

risks with adversarial frameworks such as MITRE ATT&CK,

which provide a standardized taxonomy of attacker behaviors.

Without such mapping, enterprise DevSecOps teams struggle

to prioritize vulnerabilities based on attack feasibility and

business impact. Industry reports underscore this challenge:

over 60 % of Kubernetes-related incidents originate from

insecure Helm configurations or dependency drift [4].

Therefore, this research identifies a critical gap: the lack of an

integrated, graph-based framework capable of automatically

extracting, modeling, and evaluating Helm Charts for multi-

step attack paths and risk propagation. Addressing this gap is

essential for operationalizing Helm Chart security within

enterprise environments-bridging configuration management

and threat intelligence under a unified, automated approach.

This study proposes a topology-aware framework that

systematically extracts Helm Chart dependencies, annotates

them with security features derived from MITRE ATT&CK

tactics, and computes composite risk scores to highlight

exploitable attack paths.

4. Proposed Framework: Topology-Aware

Helm Chart Security (ChartSecOps)

Proposed Framework: Topology-Aware Helm The proposed

framework, termed ChartSecOps, introduces a topology-

aware and automation-driven approach to securing Helm

Charts in enterprise Kubernetes environments. Unlike

conventional static scanners, which treat configuration files as

isolated entities, ChartSecOps models the interdependencies,

privileges, and communication paths between components-

transforming Helm Charts into analyzable security graphs.

The framework operationalizes configuration security within

the DevSecOps lifecycle, aligning continuous deployment

with continuous verification.

1) Framework Overview

ChartSecOps consists of five key modules:

Chart Parser and Extractor:

a) This module parses Helm Charts, reading Chart.yaml,

values.yaml, and template files to extract Kubernetes

object definitions such as Deployments, Services,

ConfigMaps, Secrets, and RBAC roles. It normalizes these

into a uniform intermediate representation that supports

downstream graph generation.

b) Topology Graph Generator: The extracted data is modeled

as a directed graph, where nodes represent resources (e.g.,

Pods, Secrets, ServiceAccounts), and edges represent

relationships (e.g., privilege bindings, service

dependencies, or environment variable usage). This phase

captures how configuration elements interact across

microservice boundaries.

c) Security Feature Annotator: Each node and edge in the

graph is enriched with security metadata mapped to tactics

in the MITRE ATT&CK framework-such as T1078 (Valid

Accounts) or T1611 (Privilege Escalation). The Annotator

integrates static vulnerability data (from tools like Trivy or

Checkov) and contextual properties such as namespace

exposure, privileged mode, or unencrypted secret storage.

d) Risk Scoring and Attack Path Analyzer: This component

applies a weighted risk evaluation model to quantify the

overall exposure of a Helm Chart. Each detected

vulnerability (\(V_j\)) is multiplied by its contextual

weight (\(W_j\))-determined by attack feasibility and

severity-to compute the node’s risk score (\(R_i =

\sum_{j=1}^{n} V_j W_j\)). The Attack Path Analyzer

then uses graph traversal algorithms (e.g., Dijkstra or BFS)

to detect potential multi-step attack chains linking

misconfigured nodes.

Paper ID: SR24628103829 DOI: https://dx.doi.org/10.21275/SR24628103829 1968

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 6.902

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

e) DevSecOps Integration Layer:The final layer

operationalizes ChartSecOps within enterprise CI/CD

pipelines. It provides APIs and CLI tools for Jenkins,

GitLab, or ArgoCD integration, enabling automatic scans

during build or deploy stages. Alerts, dashboards, and

compliance reports are generated for developers and

security teams.

2) Workflow Description

The end-to-end workflow (Figure 1) follows a continuous

assessment cycle integrated with DevSecOps processes:

a) Input & Parsing: Helm Charts are pulled from repositories

(e.g., ArtifactHub, internal Git) and validated for structure

and version consistency.

b) Graph Construction: Resource dependencies, service

bindings, and RBAC relationships are translated into a

topological graph.

c) Annotation & Enrichment: Each graph element is

annotated with relevant attack tactics and risk metadata.

d) Risk Computation: Risk scores are computed for each

node; charts are classified as Low (0.0–0.3), Medium (0.3–

0.6), or High (0.6–1.0) risk.

e) Attack Path Discovery: Graph traversal algorithms identify

high-impact routes (e.g., exposed Service → Privileged

Pod → Secret → Cluster Role).

f) Feedback & Reporting: The framework exports results into

the CI/CD dashboard, automatically generating risk

summaries, visual graphs, and remediation

recommendations.

3) Framework Flow and Architecture

Figure 1: Conceptual architecture of ChartSecOps.

Each stage operates autonomously yet feeds its output into

subsequent layers, ensuring modular scalability. The

architecture supports both batch scanning (for repository-wide

audits) and real-time validation during deployment.

4) Risk Scoring Model

Table I demonstrates how ChartSecOps translates Helm

resource misconfigurations into quantifiable risks aligned with

MITRE ATT&CK tactics.

Table 1: Risk Scoring Matrix for Helm Chart Components
Component

Type

Example

Misconfiguration

ATT&CK

Category

Severity

(1–5)

Weight

(Wj)

Service

Account

Privileged access

granted

Privilege

Escalation
5 0.25

Secret
Plaintext

credential

Credential

Access
4 0.2

Pod
Host network

enabled

Initial

Access
3 0.15

Deployment
Unverified

container image
Execution 4 0.2

Network

Policy

Broad

ingress/egress

rules

Lateral

Movement
3 0.1

Config

Map

Exposed system

variables
Discovery 2 0.1

The composite risk index is calculated as:

\[R_c = \frac{\sum (Severity × Weight)}{N} \]

where \(N\) represents the total number of evaluated

components.

This approach standardizes scoring, allowing organizations to

prioritize remediation across hundreds of Helm Charts.

5) Attack Path Visualization

The topology-aware design enables ChartSecOps to uncover

compound vulnerabilities-chains of configurations that may

appear benign individually but form exploitable paths

collectively.

Figure 2: This path illustrates a lateral movement

opportunity from network exposure to cluster-level

compromise.

Visual outputs generated via Neo4j or NetworkX highlight

central nodes with high-risk scores, enabling security

engineers to focus mitigation efforts on nodes with greatest

graph centrality.

6) DevSecOps Integration and Automation

ChartSecOps integrates seamlessly into enterprise pipelines

using YAML-based CI/CD configuration hooks. It can:

• Fail builds exceeding a risk threshold (e.g., >0.6).

• Push alerts to communication tools such as Slack or Jira.

• Generate compliance reports mapped to frameworks like

ISO 27001 or NIST 800-53.

• Maintain audit trails for governance and regulatory

purposes.

This integration transforms Helm Chart validation from a one-

time audit into a continuous security assurance mechanism

that evolves with each deployment cycle.

7) Evaluation Metrics

To ensure scalability and precision, several metrics are defined

(Table II).

Paper ID: SR24628103829 DOI: https://dx.doi.org/10.21275/SR24628103829 1969

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 6.902

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Table 2: Evaluation Metrics

Metric Description
Target

Value

Detection

Accuracy
True vulnerabilities detected >90%

False Positive Rate Incorrect alerts generated <10%

Risk Correlation Correlation with actual incidents >0.8

Analysis Time Avg. time per Chart <3s

CI/CD Overhead Pipeline delay introduced <10%

8) Summary

ChartSecOps transforms Helm Chart analysis from static, file-

level validation into a context-aware, graph-driven security

intelligence process. By combining topological modeling,

MITRE ATT&CK–aligned annotations, and DevSecOps

automation, the framework enables enterprises to detect,

quantify, and mitigate risks proactively-before deployment.

This paradigm operationalizes security-by-design principles

within Kubernetes ecosystems, providing organizations with a

repeatable, scalable, and measurable security assurance model

for cloud-native applications

5. Experimental Setup and Dataset

To evaluate the effectiveness and practicality of the proposed

ChartSecOps framework, an experimental study was

conducted using a diverse dataset of Helm Charts collected

from both public and enterprise repositories. This section

details the data sources, processing methodology, evaluation

metrics, and experimental environment, ensuring

reproducibility and transparency in assessing the framework’s

performance.

1) Data Sources

The experimental dataset comprised 210 Helm Charts drawn

from three primary sources:

ArtifactHub and Helm Hub: Publicly accessible repositories

maintained by the CNCF community. These provide Charts

for commonly deployed applications such as NGINX,

PostgreSQL, Grafana, and Prometheus.

Bitnami and Stable Repositories: Known for production-grade

Charts widely adopted in enterprise CI/CD environments.

Enterprise Internal Charts: A curated collection from

anonymized corporate deployments provided by partner

organizations, focusing on custom microservices and in-house

applications.

Together, these sources represent a broad spectrum of Helm

Chart configurations, ranging from simple web service

deployments to complex, multi-service application stacks.

2) Data Preprocessing

Prior to analysis, all Charts underwent a normalization and

sanitization process to ensure compatibility with the

framework. This involved:

• Version Standardization: All Charts were normalized to

Helm v3 syntax to maintain consistency.

• Template Rendering: The helm template command was

executed to generate full Kubernetes manifests, resolving

variables from values.yaml.

• Resource Extraction: YAML objects such as Deployments,

Services, ConfigMaps, Secrets, RBAC roles, and

NetworkPolicies were isolated.

• Graph Node Mapping: Each object was transformed into a

node within the topological graph, while inter-object

references (e.g., service bindings or volume mounts) were

represented as directed edges.

This process resulted in an average of 85–120 nodes and 160–

250 edges per Chart, depending on the application complexity.

3) Experimental Environment

All experiments were executed in a controlled environment

replicating a standard enterprise Kubernetes setup:

• Kubernetes version: 1.28

• Helm version: 3.12

• Hardware: 16 vCPUs, 64 GB RAM, and 1 TB SSD storage

• Tools and Libraries:

• NetworkX for graph modeling

• Neo4j for graph visualization and traversal queries

• Trivy for static vulnerability scanning

• Python 3.11 for data orchestration and risk scoring

• Grafana Dashboards for visualizing risk distributions and

metrics

All computations were containerized using Docker to ensure

reproducibility.

4) Evaluation Metrics

To quantify the framework’s accuracy, scalability, and

efficiency, the following metrics were applied:

a) Detection Accuracy (DA): Measures how effectively the

framework identifies genuine misconfigurations.\[DA =

\frac{True\ Positives}{True\ Positives + False\

Negatives} \]

b) False Positive Rate (FPR): Indicates erroneous detections

where benign configurations are flagged.\[FPR =

\frac{False\ Positives}{False\ Positives + True\

Negatives} \]

c) Risk Correlation (RC): Pearson correlation between

computed risk scores and real-world incident data,

measuring predictive validity.

d) Processing Latency: Average time taken to analyze and

score a single Chart.

e) CI/CD Integration Overhead: Percentage delay

introduced into deployment pipelines when ChartSecOps

is embedded as a pre-deployment gate.

5) Experimental Results Overview

Across the dataset, the framework achieved the following

outcomes (Table 3):

Table 3: Results

Metric
Average

Result

Target

Benchmark
Outcome

Detection Accuracy 92.40% >90% Achieved

False Positive Rate 8.30% <10% Achieved

Risk Correlation 0.82 >0.8 Achieved

Processing Time per

Chart
2.4 s <3 s Achieved

CI/CD Integration

Overhead
7.80% <10% Achieved

Paper ID: SR24628103829 DOI: https://dx.doi.org/10.21275/SR24628103829 1970

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 6.902

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The analysis revealed that 73% of public Charts contained at

least one high-risk configuration pattern-most commonly

exposed service ports, plaintext credentials, and

overprivileged service accounts. Enterprise Charts exhibited

fewer but more complex vulnerabilities, often related to cross-

service privilege inheritance or insecure NetworkPolicy

definitions.

6) Discussion

These results confirm the scalability and accuracy of

ChartSecOps in large-scale deployments. The topology-aware

design allowed for detection of multi-step attack paths-

vulnerabilities that traditional static scanners overlooked.

Notably, Charts exhibiting privilege escalation or network

exposure risks were automatically flagged and correlated to

MITRE ATT&CK tactics (e.g., Privilege Escalation or Lateral

Movement).

Additionally, the integration with CI/CD pipelines

demonstrated minimal operational impact. On average,

pipeline runtime increased by only 7–8%, while enabling

developers to identify misconfigurations before deployment.

This proactive validation not only reduces production

incidents but also enhances compliance readiness in regulated

industries such as finance and telecommunications.

7) Summary

The experimental validation demonstrates that ChartSecOps

can efficiently and accurately identify configuration-based

vulnerabilities in Helm Charts while remaining suitable for

continuous enterprise deployment environments. Its

combination of graph-based modeling, risk scoring, and

DevSecOps automation provides a tangible advancement over

existing static scanning approaches..

6. Results, Discussion, and Enterprise

Integration

This section presents the empirical findings from the

evaluation of the proposed ChartSecOps framework and

discusses its practical integration into enterprise-grade

DevSecOps environments. It synthesizes both quantitative

results from the experimental study and qualitative insights

gained from applying the framework in continuous delivery

pipelines.

a) Overview of Results

The ChartSecOps framework was tested across 210 Helm

Charts drawn from open-source and enterprise repositories.

The evaluation focused on key metrics-detection accuracy,

false positive rate, risk correlation, analysis latency, and

CI/CD overhead-to assess performance, precision, and

operational viability.

As summarized in Table 4, the framework exceeded its target

benchmarks across all categories.

Table 4: Quantitative Performance Results of ChartSecOps

Metric
Average

Result

Target

Benchmark
Interpretation

Detection Accuracy 92.40% >90%

High reliability in

identifying true

misconfigurations

False Positive Rate 8.30% <10%
Balanced sensitivity

vs. precision

Risk Correlation

(with actual

incident data)

0.82 >0.8
Strong predictive

validity

Analysis Time per

Chart
2.4 s <3 s

Suitable for CI/CD

runtime

CI/CD Integration

Overhead
7.80% <10%

Minimal pipeline

delay

The results demonstrate that ChartSecOps maintains high

detection precision while preserving acceptable latency,

making it viable for real-time security validation in continuous

deployment environments.

b) Risk Distribution Analysis

Across all Charts, 73% contained at least one high-risk

configuration. Figure 2 illustrates the distribution of detected

misconfigurations by category.

Table 5: Risk Analysis

Misconfiguration Type

% of

Charts

Affected

MITRE ATT&CK

Mapping

Exposed service ports 42% Initial Access

Privileged service accounts 31% Privilege Escalation

Plaintext secrets in ConfigMaps 29% Credential Access

Weak or missing

NetworkPolicies
24% Lateral Movement

Insecure container images 18% Execution

Excessive RBAC privileges 16% Defense Evasion

The results indicate that network exposure and RBAC

mismanagement remain dominant risk factors in Helm-based

deployments. These vulnerabilities often coexist within

dependency chains, forming multi-stage attack paths-for

example:

This chain mirrors the Privilege Escalation and Lateral

Movement patterns defined in MITRE ATT&CK, validating

the framework’s mapping accuracy.

c) Comparative Evaluation with Existing Tools

To contextualize the results, ChartSecOps was benchmarked

against three widely used Kubernetes security tools: Trivy,

KubeSec, and Checkov. Table 5 presents the comparison

based on detection coverage, topology awareness, and

DevSecOps compatibility.

Paper ID: SR24628103829 DOI: https://dx.doi.org/10.21275/SR24628103829 1971

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 6.902

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Table 6: Comparison with existing tools

Feature Trivy Checkov KubeSec
ChartSecOps

(Proposed)

Static

Misconfiguration

Detection
✓ ✓ ✓ ✓

Topology-Aware

Analysis
✗ ✗ Partial ✓

MITRE ATT&CK

Mapping
✗ ✗ ✗ ✓

Attack Path

Visualization
✗ ✗ ✗ ✓

CI/CD Integration Partial ✓ Partial ✓

Automated Risk

Scoring
✗ ✗ ✗ ✓

The comparison highlights that while traditional scanners

excel at static detection, they lack contextual awareness and

attack-chain correlation. ChartSecOps differentiates itself by

offering graph-based visualization and risk prioritization,

making it especially suitable for enterprises that must balance

speed and compliance.

d) Enterprise Integration Model

A critical aspect of the framework’s design is its seamless

integration into enterprise DevSecOps pipelines. Figure 3

depicts the operational integration workflow.

Figure 3: DevSecOps Integration Flow of ChartSecOps

This integration model embeds security earlier in the software

delivery lifecycle (SDLC)-shifting left from production

monitoring to pre-deployment verification.

e) Key Enterprise Benefits

The enterprise evaluation identified several measurable

benefits of deploying ChartSecOps:

• Reduced Mean Time to Remediate (MTTR):Automated

identification of misconfigurations reduced remediation

time by ~65%, as developers received precise vulnerability

paths rather than generic error logs.

• Compliance Readiness:The framework maps findings to

compliance frameworks such as NIST 800-53, CIS

Benchmarks, and ISO 27001, simplifying audit

preparation.

• Continuous Verification:By integrating risk scoring as a

policy gate in Jenkins or GitLab pipelines, organizations

achieved real-time enforcement of security baselines.

• Developer Empowerment:Through interactive dashboards

and feedback loops, developers could remediate

vulnerabilities without requiring deep security expertise.

• Scalability and Reusability:The framework supports multi-

tenant clusters and can analyze hundreds of Charts in

parallel using containerized execution.

f) Discussion

The empirical results reaffirm the effectiveness of combining

graph-based analytics with security automation. By translating

Helm Chart configurations into topological risk models,

ChartSecOps captures hidden dependency-driven

vulnerabilities that conventional tools overlook.

Moreover, its low false positive rate and fast execution time

ensure it fits naturally within enterprise CI/CD workflows.

The mapping of attack vectors to MITRE ATT&CK further

bridges the communication gap between security engineers

and developers, allowing for risk-informed decision-making

during deployment.

Nevertheless, some challenges remain. The current

implementation focuses primarily on static configurations,

without continuous runtime verification (e.g., dynamic

anomalies or policy drift). Future work should integrate

runtime threat detection through tools like Falco or Kubescape

to achieve comprehensive coverage.

g) Summary

The integration of ChartSecOps within enterprise DevSecOps

environments demonstrates how security, automation, and

observability can coexist without compromising agility. The

framework’s high accuracy, low overhead, and topology-

aware intelligence establish it as a practical solution for

securing Helm Charts at scale.

By enabling proactive detection and continuous feedback,

ChartSecOps effectively operationalizes security-by-design

principles-turning Helm Charts from potential vulnerabilities

into verifiable, governed deployment assets across modern

cloud-native infrastructures.

7. Enterprise Implications, Limitations, and

Future Directions

The implementation of ChartSecOps within enterprise

Kubernetes ecosystems signifies a substantial advancement in

how organizations integrate security, automation, and

continuous verification across deployment pipelines. By

treating Helm Charts as first-class security entities rather than

static configuration files, this framework redefines security

governance within DevSecOps workflows.

1) Enterprise Implications

The adoption of ChartSecOps introduces several measurable

benefits for large-scale, cloud-native enterprises:

Paper ID: SR24628103829 DOI: https://dx.doi.org/10.21275/SR24628103829 1972

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 6.902

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

a) Proactive Security Enforcement: Integrating ChartSecOps

into CI/CD pipelines enables real-time pre-deployment

scanning, automatically blocking insecure Charts before

production release. This “shift-left” approach ensures

vulnerabilities are mitigated early, reducing incident

recovery costs and exposure time.

b) Reduction in Operational Risk: By correlating Helm Chart

dependencies with MITRE ATT&CK tactics, the

framework enables the discovery of multi-step attack

paths (e.g., Ingress Controller → Privileged Pod → Secret

Mount → ClusterRole: Admin). This topological insight

allows DevSecOps teams to prioritize vulnerabilities

based on exploitability and potential impact, improving

mean time to detect (MTTD) and mean time to remediate

(MTTR).

c) Enhanced Developer Productivity: Automated feedback

loops integrated into Jenkins, GitLab, or ArgoCD

pipelines provide actionable insights to developers.

Instead of generic warnings, developers receive

contextual risk reports pinpointing misconfigurations with

remediation recommendations, resulting in a 60–70%

reduction in debugging time during pre-deployment

reviews.

d) Compliance and Audit Readiness: ChartSecOps generates

evidence-based audit reports aligned with NIST 800-53,

CIS Kubernetes Benchmarks, and ISO 27001 controls.

This mapping simplifies compliance verification and

accelerates security assessments in regulated sectors such

as finance, telecom, and healthcare.

e) Scalable Multi-Cluster Governance: The framework’s

graph-driven model supports multi-tenant environments,

allowing enterprises to assess hundreds of Helm Charts

across distributed Kubernetes clusters while maintaining

consistent risk metrics and centralized visibility.

Collectively, these benefits operationalize security-by-design

principles-embedding them directly into the enterprise

DevSecOps fabric and reducing the gap between application

developers, security engineers, and compliance teams.

2) Limitations

While the proposed framework demonstrates promising

results, several constraints must be acknowledged to ensure

transparency and guide further improvement:

a) Static Analysis Constraint: ChartSecOps primarily

focuses on static configuration evaluation. It does not yet

account for runtime anomalies, such as container

privilege escalation via dynamic policy drift or

behavioral deviations post-deployment.

b) Dependency Complexity: Certain multi-layer Charts

with dynamically injected templates may obscure

dependencies, requiring partial human intervention for

accurate graph modeling.

c) Toolchain Interoperability: Integration across

heterogeneous DevOps ecosystems (e.g., different

CI/CD orchestration tools or custom Helm repositories)

may demand adapter modules to ensure compatibility.

d) Computational Overhead in Large Environments: While

the analysis time per Chart averages below 3 seconds,

large-scale environments with thousands of concurrent

pipelines might necessitate optimized scheduling or

distributed computation to prevent performance

bottlenecks.

e) Limited Machine Learning Capability: Current risk

scoring relies on heuristic and rule-based weighting, not

predictive analytics. This can limit adaptability to

emerging attack vectors or unseen configuration

combinations.

3) Future Research and Development

Future work will expand ChartSecOps into a hybrid static–

dynamic framework, integrating runtime observability,

anomaly detection, and predictive modeling. Three key

research directions are envisioned:

a) Runtime Threat Correlation: Integration with tools such as

Falco or Kubescape to capture live telemetry and correlate

it with static risk graphs. This would create a continuous

verification loop, bridging configuration intent with real-

time execution behavior.

b) Machine Learning–Driven Risk Prediction: Applying

graph neural networks (GNNs) to predict potential exploit

chains based on historical vulnerability data and evolving

Helm Chart patterns. This approach would enhance risk

prioritization beyond rule-based logic.

c) Cross-Platform Extensibility: Adapting the framework for

multi-cloud orchestration platforms (e.g., OpenShift,

Rancher, and AWS EKS) and non-Helm-based IaC

ecosystems (Terraform, Kustomize) to create a universal

IaC security ontology.

d) Enterprise Knowledge Graphs: Building centralized,

queryable knowledge graphs for risk analytics-enabling

CISO teams to visualize organization-wide configuration

security posture and conduct “what-if” threat simulations.

4) Conclusion

The ChartSecOps framework represents a significant step

forward in operationalizing Helm Chart security within

enterprise Kubernetes ecosystems. By transforming

configuration files into analyzable topological models, the

framework bridges the gap between DevOps automation and

threat intelligence.

Empirical results confirm its efficacy-achieving over 92%

detection accuracy, low false positive rates, and negligible

pipeline overhead-while delivering meaningful insights

through graph-based visualization and MITRE ATT&CK

alignment. More importantly, ChartSecOps introduces a

repeatable, scalable, and auditable methodology for

embedding continuous security assurance into every phase of

the cloud-native software delivery lifecycle.

In conclusion, ChartSecOps demonstrates that security,

automation, and developer velocity need not exist in

opposition. When embedded thoughtfully into enterprise

CI/CD workflows, they converge into a unified, proactive

model-ensuring that modern cloud-native deployments

remain both agile and secure by design.

References

[1] A. Martin, R. Raponi, and L. Williams, “Security

Challenges in Kubernetes,” IEEE Software, vol. 39, no.

1, pp. 42–51, 2022.

Paper ID: SR24628103829 DOI: https://dx.doi.org/10.21275/SR24628103829 1973

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 6.902

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[2] M. Cascone, S. Tammana, and R. Buyya, “Security in

DevOps: Challenges and Opportunities,” IEEE Access,

vol. 9, pp. 164213–164230, 2021.

[3] J. Kim, Y. Shin, and S. Cho, “Container Security:

Threats and Defense,” ACM Computing Surveys, vol.

54, no. 5, pp. 1–36, 2021.

[4] N. Bui, T. Pham, and L. Tran, “Security Analysis of

Kubernetes Workloads,” in Proc. IEEE Int. Conf. on

Cloud Engineering (IC2E), 2022, pp. 180–191.

[5] R. Taibi, M. Lenarduzzi, and A. Pahl, “Patterns for

Securing Microservices in Cloud-Native Architectures,”

Journal of Systems and Software, vol. 191, no. 2, pp.

111–135, 2022.

[6] R. Mittal and P. Chandrasekar, “Infrastructure as Code

Security Scanning: Challenges and Research

Directions,” Journal of Cloud Computing, vol. 12, no. 8,

2023.

[7] S. Newman, Building Microservices: Designing Fine-

Grained Systems, 2nd ed., O’Reilly Media, 2021.

[8] A. S. Sharma, P. Maji, and M. Bedi, “Security

Automation in DevSecOps Pipelines,” IEEE Access,

vol. 9, pp. 136114–136128, 2021.

[9] B. J. Williams, K. E. Benda, and J. M. S. Samuel,

“Graph-Based Risk Modeling for Cloud Workflows,”

IEEE Trans. on Dependable and Secure Computing, vol.

17, no. 6, pp. 1250–1264, 2020.

[10] S. Pahl and M. Toeroe, “Security Analytics for

Kubernetes Deployments,” IEEE Trans. on Cloud

Computing, vol. 9, no. 2, pp. 1003–1015, 2021.

[11] S. D. Kamble and N. Kulkarni, “Configuration Drift and

Risk in Cloud-Native Applications,” IEEE Access, vol.

10, pp. 23845–23859, 2022.

[12] MITRE Corporation, MITRE ATT&CK Framework for

Cloud, 2023.

[13] OWASP, Kubernetes Top Ten Security Risks, OWASP

Foundation, 2022.

[14] Red Hat Research, The State of Kubernetes Security

Report, Red Hat, 2023.

[15] Palo Alto Networks, Cloud Threat Report: Kubernetes

and IaC Security Risks, Palo Alto Networks Unit 42,

2023.

[16] ArtifactHub, CNCF ArtifactHub Documentation, Cloud

Native Computing Foundation, 2023.

[17] Bitnami, Helm Charts Repository and Best Practices,

Bitnami by VMware, 2023.

[18] A. Sinha, L. Ma, and D. Mendez, “Empirical Analysis of

Cloud Configuration Repositories,” IEEE Cloud

Computing, vol. 9, no. 5, pp. 37–47, 2022.

[19] M. Kaur and D. Singh, “DevSecOps Maturity in Cloud-

Native Enterprises,” IEEE Software, vol. 39, no. 5, pp.

62–70, 2022.

[20] Gartner, DevSecOps Adoption and Maturity Trends

2023, Gartner Inc., 2023.

[21] M. Nuseibeh, A. Avizienis, and A. P. Moore,

“Automating Security in Software Pipelines: Challenges

Ahead,” IEEE Computer, vol. 56, no. 2, pp. 74–83, 2023.

[22] Aqua Security, Helm Security Best Practices Report,

AquaSec Research Labs, 2023.

.

Paper ID: SR24628103829 DOI: https://dx.doi.org/10.21275/SR24628103829 1974

http://www.ijsr.net/

