
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 6, June 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Exploring N-Gram Models for Adaptive Predictive Texts 
 

Aarav Rathi 
 

Aarav Rathi, Fremont High School 

Email: imaarav360[at]gmail.com 

 
 

Abstract: This program is aimed towards enabling people with speaking disabilities to participate more within their conversations. People 

with speaking disabilities are often forced to rely upon sign language or some form of text to speech to communicate in their day-to-day 

life. This often creates trouble as some people may not know sign language, and typing out every single thing you may want to say takes a 

lot of time and effort. This program will help these issues by creating a text-to-speech text generator. By using pattern recognition, the 

program will learn the person’s talking styles, and be able to more fluently autofill the sentence; thereby requiring less effort and time on 

the user. The program uses a probabilistic n-gram model in order to predict what the user might want to say in real time. By using the 

user’s input as training data in the future, the n-gram models can adapt to the style and tone of the user reasonably quickly. 

 

Keywords: speaking disabilities, communication aid, text-to-speech, pattern recognition, n-gram model 

 

1. Introduction 
 

People with speaking disabilities oftentimes cannot 

participate in a conversation the same way as someone who is 

abled can, due to long times of texting/translating. Jokes that 

needed to be inserted at specific points, or asking a clarifying 

question during a natural lull of the conversation are just some 

of the few things that are overlooked by many, but have a 

drastic effect on the conversation when they go unfulfilled.  

 

How accurately can ML algorithms predict and generate texts 

in multiple languages after being tailored with new user 

input? Purely machine learning based models are usually 

quite tricky to train for the intricacies of human speech, both 

with content and grammar. Even large projects like ChatGPT 

utilize a human based learning system in order to efficiently 

develop a robust chatbot. That is why instead of using a 

typical ML setup, we will be reusing the user’s input as 

training data. This saves much time building a text-generator 

as now a lot of the data is certified to come from real 

conversations. We hope to bring out the inference for the 

future that other chatbot/text generation models can be easily 

made by slotting in user entry as training data, in order to skip 

making an incredibly robust and grammatically correct model 

that can adapt to many styles all at once. The con of this 

methodology is that in the beginning the model has very little 

user data to base itself off. But by implementing a “preset” of 

sorts, the user can start off with an already implemented set 

of text based on several differing personas, giving the model 

a little breathing room until enough user input has been 

registered to swap over. 

 

2. Literature Review 
 

A source we took inspiration from was the “Multilingual 

Healthcare Chatbot Using Machine Learning” by Sagar 

Badlani, Tanvi Aditya, et al [1]. This research paper, while 

not terribly similar to what we are doing, have a very well 

fleshed out pre-preprocessing step for NLP preprocessing. It 

enunciated several key processes such as tokenization, stop 

word removal, stemming, etc. Data-preprocessing is a subtle 

thing in NLP, as there are hundreds of factors to consider and 

not all of them have a linear relationship with the outcome. 

Many only strive to improve their models, but forget that 

without proper data, even the best models would fail. But 

speaking of models, the “Neural Network Approach to Word 

Category Prediction for English Texts” paper by Masami 

Nakamura, Katsuteru Maruyama, et al [2] discusses the 

benefits of a n-gram model approach. A struggle with NLP is 

the complexities that are intrinsic with human language. It is 

very difficult to create a standard model that can find the 

patterns between all of our multifaceted communication. The 

paper introduces an n-gram model, a model that works 

heavily with the data provided to create realistic human 

sentences by grafting parts of data together, all at a very low 

computational cost. We employed this model heavily 

throughout our program, going so far as to use multiple 

variants to better account for different situations. 

 

3. Methodology 
The first step in recreating the core parts of this program is to 

set up an n-gram model, all the way from bi to quad grams. 

This can easily be done by utilizing the ngrams module from 

the natural language toolkit library.  This library makes it very 

simple and easy to set up an n-gram model. From there you 

have to select data to run the model on. It is recommended 

that you have a sufficient amount of sentences in each style 

of writing if you choose to create multiple presets as well as 

ensuring the styles of speech are distinct enough. Cleaning the 

data is a big part, due to how these models work. The data 

preprocessing we did was adding all the data together while 

getting rid of all formatting: leaving us with just sentences. 

Getting rid of formatting, strange characters, and extra spaces 

can all be simply done by a looping mechanism. The UI does 

not really have an effect on the actual code that does the 

designated task, so whatever format is the easiest or best 

looking can be used. Once a sentence has been outputted and 

selected, in order to achieve an adaptive feature, you must add 

the sentence to the data pool. Due to a varying amount of 

factors, we decided that it is best to add a dynamic weight to 

the sentences that are added to the datapool (inversely related 

to the amount of sentences that are added) in order to see the 

adaptive effects much earlier.  

 

4. Results 
 

After running the program on several sets of data, we have 

come to the conclusion that while the AI can be strongly 

accurate in predicting and generating text, it often needs a vast 

amount of data in order to create organic responses a majority 

Paper ID: SR24403172622 DOI: https://dx.doi.org/10.21275/SR24403172622 31 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 6, June 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

of the time. Smaller datasets that were used for testing 

oftentimes had sentences that were 1-to-1 copies of what the 

n-gram model spat out, showing a clear lack in variability. 

While this is to be expected when a rare word is selected from 

the rest of the options, having sentences being copied due to 

a ‘relatively common’ (up to personal interpretation) word 

clearly shows a lack of data.  While at its core the n-gram 

model is nothing more than a sophisticated copying machine, 

when the copying is entire sentences at a time, you have to 

add more data to the pool.  

 

Table I: Breakdown of the data between types of datasets & 

amount of information each one contains 

Dataset Name 
Number of 

Reviews 

Number of 

Sentences 

Sentences 

per review 

Starbucks 850 4,884 5.75 

Disney Land 42,656 3,09,814 7.3 

Restaurant 3,640 26,537 7.3 

Fridge 10,000 40,101 4 

 

Table I: One of the most important segments during the 

beginning phases of usage, due to the outputs being derived 

off the data 

 

• Higher sentences per review cater to different speech 

styles than lower ratios do 

 

 
Diagram I: A visual method of how a bi-gram (2) works; 

what section of the sentence it considers during each 

iteration [3] 

 

Diagram 1: An n-gram model takes into account the current 

word, and the last n-1 words when deciding what to iterate 

through 

• Bi-gram models repeat one word each time, tri-gram 

models repeat two words each time, and so on 

• The model uses the selected words to look for phrases in 

the data with the exact same selection of words, adding the 

words that follow the phrases in the data to a hat to 

randomly pick from 

 

Graph I: A perplexity comparison of different n-gram 

models based on several factors [4] 

 

Graph I: Perplexity is the inability to deal with or understand 

something, and this graph shows how lower “n” n-grams 

struggle more with certain linguistic concepts that the higher 

n-grams do 

 

5. Discussion 

 
N-gram models take a look at the last n words in the sentence 

when deciding what to add as the next word. Already we have 

noticed some differences in n-gram models (where n has 

changed) when attempting to mimic different styles of 

speech. Whereas some styles might be short and informal, 

others might be long, showing a need for different n-gram 

models. You can see some of the differences between how n-

gram models work on the chart above, showing the 

relationship between n (in ngram) and perplexity 

comparisons. While larger n-gram models do tend to tend to 

perform better, they do need more data to function 

organically.  

 

We suggest that outputs shown are not just from 1 n-gram 

model type, but from many differing types. These types can 

be chosen by going through a “hat” that has every previously 

selected option’s model type. For example, if a user has 

selected 3 sentences from a bi-gram, 8 sentences from a tri-

gram, and 15 sentences from a four gram, the models chosen 

to generate sentences will be chosen from those 26 options. 

While in the beginning you may need to add some artificial 

options, as time goes on and the program learns to adapt itself 

to the user, it should run more smoothly. Everyone’s style of 

speech is different, and in order to create a text generator that 

matches the individual user, the program should attempt to 

tune most of its major parts in order to fit the user. 

 

6. Conclusion 
 

To answer the question of ‘How accurately can ML 

algorithms predict and generate texts after being tailored with 

new user input’, the answer is pretty accurate. A key is to 

realize the different core parts that create a person’s unique 

speech characteristics, and to link them to different parts of 

the code (or create parts that represent them if none are 

available). By first making sure a user’s style is inextricably 

linked with the code, we can make any auxiliary features 

based around it (i.e. a segment that adds language translation). 

Paper ID: SR24403172622 DOI: https://dx.doi.org/10.21275/SR24403172622 32 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 6, June 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

The program can then become self-sufficient by learning off 

future inputs to ensure it always remains up-to-date, a feature 

whose adaptive qualities lead to better, more tailored results. 

Due to this, it recommended that any who attempt to create a 

similar design take the time to experiment to see what settings 

would fit what they are looking for. Things such as data, 

model type, and even accounting for how data cleaning 

changes are all factors that can affect the outcome, and 

therefore are to be taken into account when matching a set of 

weights to a user. 

 

Acknowledgement 

Thank you for the guidance of Emily Sheetz, mentor from 

University of Michigan in the development of this research 

paper. 

 

References 
 

[1] Badlani, Sagar, et al. “Multilingual healthcare chatbot 

using machine learning.” 2021 2nd International 

Conference for Emerging Technology (INCET), 2021, 

https://doi.org/10.1109/incet51464.2021.9456304.  

[2] Nakamura, Masami, et al. “Neural network approach to 

word category prediction for English texts.” Proceedings 

of the 13th Conference on Computational Linguistics-, 

1990,   

[3] Ajitesh Kumar. “N-Gram Language Models Explained 

with Examples.” Analytics Yogi, 2 Feb. 2018, 

vitalflux.com/n-gram-language-models-explained-

examples/ 

[4] Arvind Pdmn. “N-Gram Model.” Devopedia, Devopedia 

Foundation, 1 Mar. 2023, devopedia.org/n-gram-model.  

 

 

 

 

 

Paper ID: SR24403172622 DOI: https://dx.doi.org/10.21275/SR24403172622 33 

https://www.ijsr.net/



