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Abstract: This paper introduces formal syntax to construct multi-objective performance expression. The syntax is general, flexible and 

intuitive for decision makers to reflect variety of performance assessment for high-level decision support in the multi-objective 

optimization. The expression enables decision makers to elaborate their preferences using logical relations such as “AND”, “OR” and 

“NOT”, and even priority order among the objectives. Each objective allows any possible combination of specifications augmented to the 

objective function such as superiority threshold, satisfactory level and goal for more informative search requirements as and when is 

available and required. Besides, the MO performance expression can be used in various population-based optimization. In addition to 

numerical illustrations, the usefulness of proposed expression is demonstrated in practical application of multi-objective student internship 

planning to search for optimum matching of intern jobs and students in a batch where preferences can be expressed in various ways 

preferable by decision makers based on their needs and interests. 
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1. Introduction 
 

Many real-world optimizations involve searching for a vector 

of optimal design variables to minimize certain decision or 

design cost based upon a scalar function to support decision 

making. For instance, in resource planning, planners often 

involve in the task of finding the most suitable loading of jobs 

to resources such as human operators, machines, 

transportations to achieve the best process performance in 

terms of completion times, running costs and so forth. In some 

cases, however, quality of the process performance may not 

be quantified as a simple objective function since the decision 

quality may reflect different aspects of specifications that may 

be competing or non-commensurable to each other. To sustain 

the decision quality, each objective function needs to be 

considered explicitly when searching for the set of optimal 

decision variables. This type of problem is known as multi-

objective (MO) optimization problem in literature. Instead of 

combining the various objective functions, each objective 

function is treated separately in the optimization process, and 

the solution set is often a family of points known as the Pareto-

optimal set. Each objective component of any point in the 

Pareto-front can only be improved by degrading at least one 

of the other objective components [1-5]. 

 

Evolutionary algorithms (EAs) based intelligent search 

techniques [6,7] that mimic the mechanics of natural selection 

and evolution have been found to be very effective 

population-based optimization for searching a set of globally 

optimized trade-off solutions simultaneously. The approach 

has several variants and can be traced back to their early 

developments such as the multi-objective genetic algorithm 

(MOGA) [8], nondominated sorting genetic algorithm 

(NSGA) [9], niched Pareto genetic algorithm (NPGA) [10], 

nongenerational EA [11], strength Pareto EA (SPEA) [12], 

MOEA [13] and others. Unlike traditional gradient-guided 

search techniques, EAs require no derivative information of 

the search points, and thus require no stringent conditions on 

the objective function, such as to be well-behaved or 

differentiable. Owing to the above reasons, EA-based search 

methods have been applied to solve optimization problems in 

various disciplines, such as resource management [14]; 

environmental sustainability [15,16], cancer treatment in 

medical fields [17]; controller design automation in 

engineering [1,18-20]; physiological processes in biology 

[21]; economics and finance [22] and etc. 

 

In practical multi-objective optimization problems, it is 

desired to consider decision-maker (DM) preferences in order 

to propose the best compromise solutions. In addition to 

specifying a list of objective functions, it is often required by 

DM to include other information to better elaborate their 

expectations more precisely and informatively so that the 

optimized solutions are closer to their preferences. Having the 

above objectives, Fonseca and Fleming [8] modified MO 

ranking scheme to include goal information. Khor et al., [23] 

formulate the domination scheme to include goal information 

as well as extending the ranking algorithm to incorporate 

priority information among the objective functions. Deb and 

Kumar [24] use reference direction method from the multi-

criterion decision-making literature and combine it with an 

evolutionary procedure to develop an algorithm for finding a 

single preferred solution in a multi-objective optimization 

scenario. Jamwal et al. [25] use Fuzzy sorting approach for 

multi-objective performance assessment which require prior 

knowledge of the range of objective function to define fuzzy 

sets. Lai et al. [26] study a class of mixed Pareto-

Lexicographic multi-objective optimization problems where 

the preference among the objectives is available in different 

priority levels (PLs). More research works on incorporating 

different preference models in multi-objective evolutionary 

algorithms can be found in [27-29]. 

 

This paper is devoted to look into developing syntactic 

construct and formulation of MO performance evaluation to 

incorporate DM preferences in more general and intuitive 

format with optional prior knowledge, if available, to express 

their preferences. The general MO performance expression 

allows DM to elaborate their preferences in terms of logical 
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relations such as “AND”, “OR” and “NOT”, as well as priority 

order among the objectives in formal syntactic construct. Each 

objective comprises a cost function and any possible 

combination of augmented specifications to  better model the 

search requirements. They include superiority threshold 

(smallest difference to consider better than), satisfactory level 

(a level that is considered good enough) and goal (desired 

target to attain) information. The augmented specifications are 

optional for DM as and when is needed. Repeating 

objective(s) in the expression is allowed for DM depends on 

their preferences. Once constructed, DM is not required to 

make further decision at all apart from letting the optimizer to 

search for optimal solutions based on their constructed MO 

performance expression. The paper is organized as follow. 

Section 2 provides an overview of conventional MO 

optimization model while section 3 presents a generalized 

model for DM to have wider choices to express their 

optimization preference. Section 4 formulates the evaluation 

components and operations as building blocks for the 

proposed General MO Expression while section 5 presents the 

syntax of the expression with illustrative examples and 

explanations. Section 6 describes the evolutionary 

optimization process for use with the proposed performance 

expression in latter sections. Its implementation and 

usefulness in practical application is demonstrated in section 

7, which includes the problem modeling, experimental results 

and discussion on different scenario of DM preferences in MO 

performance expressions. Last but not least, conclusions are 

drawn in final section. 

 

2. Conventional MO Optimization Problem 
 

Standard multi-objective minimization problem tends to 

minimize multiple cost functions as follows: 

 

Minimize: 

(𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝐶(𝑋)) 

Subject to: 
𝑔𝑗(𝑋) ≤ 0 𝑗 = 1,2, … , 𝐽

𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

𝑖 = 1,2, … , 𝐷
 

(1) 

 

where C, J and D are the number of cost functions, constraints 

and decision variables, respectively. The cost functions and 

constraints may be competing and non-commensurable to 

each other. The expected results of the minimization problem 

are a set of solutions that are not dominated by any other 

solutions in the population, which are said to be non-

dominated or Pareto front. 

 

3. Generalized MO Optimization Problem 
 

This section takes a step further to generalize MO 

optimization to cover gibber scope of DM specifications and 

preferences. Here instead of minimizing individual cost 

functions subjected to constraints in the above conventional 

problem definition, our first step is to augment DM’s practical 

and intuitive specifications, as listed below, into cost function:  

 

i. Superiority threshold () to indicate a minimum 

difference in f that a function fa is considered superior 

than fb iff fa < fb - . This is for DM to control the 

sensitivity in comparison between two values in the same 

cost function.    

 

ii. Satisfactory level () to define the satisfactory level of 

achievement. Once the satisfactory level is met, further 

improvement in the cost function is not a requirement to 

DM. Using this parameter enable more room for 

improvement on other objectives with satisfactory level 

either undefined or is not met.  

 

iii. Goal () to provide directional guide in improving 

towards desired trade-off region in multi-objective 

domains. It is different from the satisfactory level where 

there is no directional guide provided in objective spaces. 

In some optimization problems, especially when there are 

many optimization functions, the global trade-off may be 

too broad to cover, as though there is no clear direction in 

the optimization. As directional guide, the goal setting 

can be feasible or infeasible goal, which omit the 

requirement for DM to have prior knowledge on the 

feasible trade-off region. If the goal is feasible, the 

optimal solutions found will be located within the goal 

region confined by the goal. On the other hand for 

unfeasible goal, the optimal solutions will be outside but 

in the shortest distance possible from the unfeasible goal 

in objective space. Unlike satisfactory level, the 

optimization still continues even the goal settings are met.    

 

For general optimization, let an objective, , be an ordered 4-

tuple as (f, , , ) where f is the cost function to minimize,  

the superiority threshold,  the satisfactory level and   the 

goal for the objective. An objective in this paper comprises a 

cost function together with augmented specifications for the 

cost function.  Two objectives, a and b, are equal iff  fa=fb, 

a=b, a=b and a=b. It can be noted that two objectives are 

considered different if and only if any of the augmented 

specifications is different, even though their cost function is 

identical. Cost function is compulsory attribute for an 

objective. While for other attributes, such as ,  and , are 

optional attributes. Assigning “null” value to an optional 

attribute by DM indicates that the attribute is undefined, or not 

specified. For example, a partially defined objective  = (f, 

null, , ) indicates  is null (undefined) while other attributes 

are defined. The same applied to  and  when they are not 

defined in an objective. Thus, the least defined objective can 

be reduced to (f, null, null, null) when it is purely to minimize 

the cost function f without other augmented specifications of 

,  and . 
 

Having defined the objective and kept the problem in a general 

form, a multi-objective optimization problem can be 

generalized as a problem to minimize an expression  of 

objectives as follow: 

      

Minimize: ( , ) (2) 

 

Here,  denotes a syntactic construct in the general MO 

expression.   denotes the ranks with respect to set of 

objectives  in the optimization problem.  is a set of defined 

logical operations in the general expression which will be 

explain in following sections. It serves as formal descriptive 
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expression by DM on how MO performance among different 

objectives are to be evaluated according to DM’s preferences.  

 

Before we proceed, lets define some common symbols and 

notations used in the paper. Given a general optimization 

problem where M denotes number of objectives and C the 

number of cost functions.  = {i:  i = 1, 2, … M} is a set of 

objectives. F = {fj:  j = 1, 2, … C} is a set of cost function. 

j,k is the superiority threshold k for cost function fj. j,r is the 

satisfactory level r for cost function fj. j,s is the goal s for cost 

function fj. S is the number of individuals in a population. R = 

{ri:  i = 1, 2, … S} is a rank vector ri is a rank value of 
individual i. 
 

4. Performance Evaluation for General MO 

Expression 
 

When evaluating individual performance described by DM in 

the general expression , the evaluation process begins with 

ranking operation as describe below: 

 

4.1 Ranking Operation 

 

The operands in  is rank vectors R as defined in previous 

section while the ranking operation is applied to convert a 

given subset of objectives, i, to rank vector Ri as below: 

 

i = Ri (3) 

 

As the inputs to the generalized ranking operation are 

objectives, as defined above, rather than simply cost 

functions, the ranking operations must be able to incorporate 

augmented specifications, i.e. ,  and   for each objective. 

Since they are optional, the ranking method require flexibility 

in only consider what is defined and accept what is not defined 

from DM. The rank value rj of individual j in an objective set 

i is given by: 

 

𝑟𝑗 = 1 + 𝑑𝑜𝑚𝑗

(𝜽𝑖)
 

ri  ℤ+, 1  rj  S 
(4) 

 

where 𝑑𝑜𝑚𝑗

(𝜽𝑖)
 denotes the number of individuals nominating 

j-individual. rj takes any positive integer ranging from 1 to the 

number, S, of individuals in the group. Ranking operation can 

be nested. For example, besides objective, we can also apply 

the same ranking operation in (3) & (4), i.e. Rin,  on a rank 

vector Rin by treating it as an objective with its cost function 

equal Rin and the augmented specifications, i.e. ,  and , 
undefined. The idea is to convert any rank vector into the rank 

ranking format in (4).  

 

R1, R2,… = Rout or Rin = in  (5) 

  

 

4.2 Domination Scheme for Flexible Handling of 

Superiority Threshold, Satisfactory level and Goal 

 

In the above ranking, domination scheme is required to 

compare any two individuals with respective to the objectives 

and determine if an individual dominate the other. For 

conventional MO optimization without further requirement 

specified on each objective function, domination comparison 

scheme that directly utilizes the concept of Pareto-dominance 

[10] is sufficient. However, this may not be true when DM has 

more information to add into the MO optimization to instruct 

the search according to their desires. Thus, in general MO 

optimization in this paper, the coverage must be enough to 

handle any defined augmented specifications such as 

superiority threshold, satisfactory levels and goals from DM 

apart from cost function alone. To address the above 

requirement, the domination comparison scheme needs to 

reformulated to allow DM to provide, although not 

compulsory, more information for better control on the 

optimization process. Readers will be guided on the 

formulation of domination comparison scheme to 

accommodate defined augmented specifications in the 

following sections. We start with the modified domination 

comparison scheme with defined superiority threshold, then 

progressively extend the scheme to include other defined 

satisfactory level and goal.  

 

4.2.1 Extended Domination Comparison Scheme for 

Superiority Threshold 

Extending from Horn et al. [10] definition of Pareto 

domination scheme on cost functions and without loss of 

generality, an objective vector Fa in a minimisation problem 

is said to dominate another objective vector Fb in m-

dimensional objective space with respect to superiority 

threshold, , if the below sufficiency condition is satisfied.  

 

Fa ≺
𝛼

 Fb, iff 

𝑓𝑎,𝑖 ≤ 𝑓𝑏,𝑖 ∀ 𝑖 ∈ {1,2, . . . ,  𝑚}  and 

 i:  𝑓𝑎,𝑖 < {
𝑓𝑏,𝑖 − 𝛼𝑖 , 𝛼𝑖 ≠ 𝑛𝑢𝑙𝑙

𝑓𝑏,𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6) 

 

The formulation considers that, for a cost function with 

defined superiority threshold, the cost function must satisfy 

the threshold in order to dominate another cost function. The 

idea is to allow DM to have control on the sensitivity in 

performance comparison and only differentiate the two 

solutions when their difference in c.ost functions is practically 

significant enough.  

 

4.2.2 Extended Domination Comparison Scheme for 

Satisfactory Level 

Continuing from the domination comparison for superiority 

threshold, an objective vector Fa in a minimisation problem is 

said to dominate another objective vector Fb in m-dimensional 

objective space with respect to satisfactory level, , if it 

satisfies the below sufficiency condition. 

 

Fa ≺
𝛽

 Fb iff 𝐹𝑎
(𝛽)

≺
𝛼

𝐹𝑏
(𝛽)

 (7) 

 

where, 

𝐹(𝛽) = {𝑓𝑖
(𝛽𝑖)

: ∀ 𝑖 ∈ {1,2, . . . ,  𝑚} and 

𝑓𝑖
(𝛽𝑖)

= {
𝛽𝑖 , 𝛽𝑖 ≠ 𝑛𝑢𝑙𝑙 𝑎𝑛𝑑 𝑓𝑖 < 𝛽𝑖

𝑓𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(8) 

 

The idea in the above formulation is to stop further 

differentiating the performances of two individuals where the 

defined satisfactory levels has been met. Once the defined 

satisfactory level is met, they are considered satisfied and 
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further improvement along the cost function is meaningless. 

This give more room for improvement in other cost functions 

where the satisfactory level is undefined or met. 

 

4.2.3 Extended Domination Comparison Scheme for 

Goal 

Two-stage Pareto domination comparison scheme is adopted 

here in considering the defined goal in cost function. Adopting 

comparison scheme in (6) and a rank value begins from one, 

the first stage ranks all individuals that satisfy the goal if 

available, starting from the value of rank one, with reference 

to the infimum in the objective domain. The second stage is to 

rank the remaining individuals that do not meet the goal based 

upon the following extended domination scheme. It should be 

noted that the ranking method remains as range-independent 

ranking, which is the most appropriate type of ranking method 

to be used for general-purpose MO optimization problems. 

Let 𝐹𝑎
�̑� and 𝐹𝑏

�̑� denotes the vectors 𝐹𝑎 and 𝐹𝑏 that do not meet 

the goal 𝛾.  Then for both 𝐹𝑎 and 𝐹𝑏 that do not totally satisfy 

the goal, the vector 𝐹𝑎 is said to dominate vector 𝐹𝑏 denoted 

by 

 

𝐹𝑎
�̑� ≺

𝛾
𝐹𝑏

�̑� iff  |𝐹𝑎- 𝛾| ≺
𝛽

|𝐹𝑏- 𝛾| (9) 

 

where |F- 𝛾| = {|fi - 𝛾i|: 𝛾i  null  i = 1, 2, … m}. For the 

individuals outside the goal, the rank value begins from one 

increment of the maximum rank of individuals inside the goal. 

The domination comparison scheme in (9) directs the 

individuals outside the goal towards the goal, which is 

modified from Khor et al. [23] and different from Fonseca and 

Fleming [8] domination scheme. 

 

4.3 Logical Operations in General MO Expression 

 

After constructing the ranking   of individuals with respect 

to objectives, , this section introduces the logical operations 

in the MO expression to describe the relations among multiple 

sets of specification. Without loss of generality, the MO 

expression can be composed of ranks    or 𝑹 , as operands 

and logical operations,  = {∧ , ∨, ¬, }, as operations. 

Please be noted that the input and output of a logical operation 

are rank vector, R, of a set of specification. 

 

4.3.1 Conjunction Operation: ∧ (AND) 

Given two rank vectors Ra and Rb of length S with ra,i and rb,i 

representing i-th rank value in the respective vector, a 

conjunction operation (AND) in MO expression is defined as:   

 

Ra ∧ Rb  = Ra∧b (10) 

  

where, 

Ra∧b = {ri := max(ra,i, rb,i) i = 1, 2, … S} (11) 

 

Basically, for each individual, it take the worst rank of the 

individual. Then the resulted values in the group are ranked 

again. The operation is commutative, meaning that Ra ∧ Rb = 

Rb ∧ Ra and variadic, i.e. expandable to any number of rank 

vectors (Rb ∧ Ra ∧ Rc …). The use of this conjunction 

operation is for DM to combine multiple rank vectors by find 

solutions at least not extremely inferior in any rank vector. In 

set theory, it can be interpreted as an attempt to find the 

intersection of different performances. If the intersection is 

not feasible, meaning that there is no individual superior in all 

the specified performances, it will at least solutions to 

accommodate all performances moderately, i.e. at least not too 

bad in any one. 

 

4.3.2 Disjunction Operation: ∨ (OR) 

In MO expression, a disjunction operation (Or) for two rank 

vectors, Ra and Rb of length S with ra,i and rb,i representing i-

th rank value in the respective vector is defined as:   

 

Ra ∨ Rb  = Ra∨b (12) 

  

where,  

Ra∨b = {ri := min(ra,i, rb,i) i = 1, 2, … S} (13) 

 

In contrast with conjunction operation, it takes the best rank 

of the individual. The idea is to unify multiple sets of 

performances so that individuals can maintain their 

superiority in their own niches. Similar to conjunction 

operation, it is commutative and variadic. 

 

4.3.3 Negation Operation: ¬ (NOT) 

For a given rank vector, Ra, a negation operation in MO 

expression is defined as: 

 

¬Ra = R¬a (14) 

 

where, 

R¬a = { ri := s + 1 – ra,i  i = 1, 2, … S} (15) 

 

It is a logical operator that is used to invert the ranking in the 

input rank vector and still fulfilling the rank format in (4). The 

operation is reversible, i.e. ¬(¬R) = R. It provides an option 

for DM to include in MO expression to search for certain 

characteristic or criterion for their desired outputs. 

 

4.3.4 Lexicographic Order Operation:  (Higher 

Priority Than) 

A lexicographic order operation in MO expression for two 

rank vectors, Ra and Rb, of length S, where Ra has higher 

priority than Rb, is defined as:  

 

Ra  Rb  := 𝑟𝑖
(𝑎𝑏)

 𝑖 =  1, 2, …  𝑆  (16) 

  

where, 

𝑟𝑖
(𝑎𝑏)

= ∑ 𝜇
𝑟

𝑟𝑎,𝑖−1

𝑟=0

+ 𝑟𝑎𝑛𝑘(𝑟𝑏,𝑖|𝑟𝑎,𝑖) (17) 

 

𝑟𝑎𝑛𝑘(𝑟𝑏,𝑖|𝑟𝑎,𝑖) represents the rank value of rb,i within the sub-

group that ra = ra,i. 𝜇𝑟is number of candidates having the rank 

r. The idea is to take the higher priority rank, i.e. Ra, as the 

base rank. The individuals that have equal rank in Ra, is further 

ranked within the sub-group according to lower priority rank 

Rb. 𝑟𝑎𝑛𝑘(𝑟𝑏,𝑖|𝑟𝑎,𝑖) always begin the rank value 1 for each 

subgroup of ra,i. It should be noted that the operator is not 

commutative, which means RaRb  RbRa. It allows DM to 

express the order of importance among multiple MO 

specifications. The arrow direction indicates the specifications 

are arranged in the order of reducing priority. Table 1 presents 

a numerical example of lexicographic order operation on a 

group of 10 individuals (S=10) with Ra and Rb as the input rank 
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vectors. The output rank vector of the operation is shown in 

the last column as explained above. It can be noted that the 

operation results in the output rank is maintaining the rank 

format defined in (4) as far as the input rank vectors are in the 

similar rank format.   

Table 1: Numerical Example of Lexicographic Order 

Operation 

Individual Ra Rb ∑ 𝜇𝑟

𝑟𝑎−1

𝑟=0

 𝑟𝑎𝑛𝑘(𝑟𝑏|𝑟𝑎) RaRb 

1 1 8 0 1 1 

2 1 10 0 3 3 

3 1 8 0 1 1 

4 4 5 3 2 5 

5 4 3 3 1 4 

6 6 6 5 2 7 

7 6 6 5 2 7 

8 6 2 5 1 6 

9 9 1 8 1 9 

10 10 3 9 1 10 
 

5. General Expression for MO Decision 

Support 
 

After introducing the operands and operations, this section 

presents the syntactic construct of a complete MO Expression 

for MO optimization. MO expression is DM’s mathematical 

formulation of a general description of MO optimization 

preferences. For demonstration purpose, below are some 

examples on how DM can elaborate their preferences 

systematically and formally in the general MO expression. 

   

Example 1:  

This is an example of MO Expression with different 

combinations of superiority threshold, satisfactory level and 

goal is shown below: 

 

Definition of objectives: 

𝜃1 = (𝑓1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙), 𝜃2 = (𝑓2, 𝑛𝑢𝑙𝑙, 𝛽2,1, 𝑛𝑢𝑙𝑙), 

𝜃3 = (𝑓3, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝛾3,1), 𝜃4 = (𝑓4, 𝛼4,1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙), 

𝜃5 = (𝑓5, 𝛼5,1, 𝛽5,1, 𝑛𝑢𝑙𝑙), 𝜃6 = (𝑓6, 𝛼6,1, 𝑛𝑢𝑙𝑙, 𝛾6,1). 

 

Below is a MO expression to minimize each objective 

separately with optionally defined attributes. It is noted that 

DM can flexibility define any attributes in each objective in 

the MO optimization.  

 
〈𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6〉 

 

Any objective must be enclosed by ranking “ ” operator. For 

example, “1, 2,3” is not proper in MO expression as 3 is 

not enclosed by “ ”. Although the above example involves 

different function for each objective, the same function can be 

repeated in different objectives according to DM’s 

requirements. 

 

Example 2: 

Below is an example reconstructing the conventional MO 

optimization problem in (1) in the MO expression. The 

objectives in the problem can be expressed as below: 

 

𝜃𝑖
(𝑓)

= (𝑓𝑖 , 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙) ∀𝑖 = 1,2, … , 𝐶 

𝜃𝑗
(𝑔)

= (𝑔𝑗 , 𝑛𝑢𝑙𝑙, 0,0) ∀𝑗 = 1,2, … , 𝐽 

 

The difference between 𝜃𝑖
(𝑓)

 and 𝜃𝑗
(𝑔)

 is that the former has 

undefined satisfactory level and goal while the latter’s ones 

are defined. It is noted that both satisfactory level and goal are 

defined for a given constraint in conventional optimization. 

Goal direct the search while satisfactory level indicate further 

improvement in a function is meaningless upon satisfied. 

Comparing to (1), MO expression provide more flexibilities 

for DM to express their preference more precisely. Below are 

some options for DM. 

 

i. MO expression to treat cost functions and satisfactory 

levels separately: 

〈𝜃1
(𝑔)

, 𝜃2
(𝑔)

, … , 𝜃𝐽
(𝑔)

, 𝜃1
(𝑓)

, 𝜃2
(𝑓)

, … , 𝜃𝐶
(𝑓)〉 

 

ii. MO expression to meet constraints gj as higher priority, 

followed by the cost functions fi: 

〈𝜃1
(𝑔)

, 𝜃2
(𝑔)

, … , 𝜃𝐽
(𝑔)〉 〈𝜃1

(𝑓)
, 𝜃2

(𝑓)
, … , 𝜃𝐶

(𝑓)〉 

 

iii. MO expression to find the intersection between 

constraints gj and cost functions fi: 

〈𝜃1
(𝑔)

, 𝜃2
(𝑔)

, … , 𝜃𝐽
(𝑔)〉 ∧ 〈𝜃1

(𝑓)
, 𝜃2

(𝑓)
, … , 𝜃𝐶

(𝑓)〉 

 

Different ways of MO expression will shape the search 

behavior differently and is based on DM preferences. 

 

Example 3: 

Since exact attainable cost regions in many real-world 

optimization problems may be unknown, one often requires to 

“guess” for an appropriate initial goal value and manually 

observe the evolutionary optimization process [30,31]. If any 

of the goals is too stringent or too generous, the goal setting 

will have to be adjusted accordingly until a satisfactory 

solution can be obtained. This approach obviously requires 

extensive human observation and decision making which can 

be tedious and inefficient in practice. To reduce human 

interaction and to support for higher-level decision-making, 

logical relations among multiple goals can be applied. To 

illustrate with example, lets define two sets of goal in 2-

dimensional objective domain as below. 

 

Objectives for goal 1: 

𝜃1
(𝑓1)

= (𝑓1,×,×, 𝛾1
(𝑓1)

), 𝜃1
(𝑓2)

= (𝑓2,×,×, 𝛾1
(𝑓2)

) 

 

Objectives for goal 2: 

𝜃2
(𝑓1)

= (𝑓1,×,×, 𝛾2
(𝑓1)

), 𝜃2
(𝑓2)

= (𝑓2,×,×, 𝛾2
(𝑓2)

) 

 

Below are examples of the MO expression to attain the two 

goals using conjunction and disjunction operations. 

 

i. MO expression to satisfy goals 1 and 2, which tends to 

find the intersection of the two goals: 

 

〈𝜃1
(𝑓1)

, 𝜃1
(𝑓2)

〉 ∧ 〈𝜃2
(𝑓1)

, 𝜃2
(𝑓2)

〉 
 

ii. MO expression to satisfy goals 1 or 2 which tends to 

satisfy the two goals separately. 
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〈𝜃1
(𝑓1)

, 𝜃1
(𝑓2)

〉 ∨ 〈𝜃2
(𝑓1)

, 𝜃2
(𝑓2)

〉 
 

With the operations, multiple set of specifications are allowed 

to specify different portion of trade-offs in a single run of 

optimization process. Besides, multiple goals can be in a way 

that one is more stringent than others to direct the search 

through stages of stringency defined by DM until the best 

trade-off, where the most stringent stage may not necessary be 

feasible.  

 

Example 4: 

We can adopt lexicographic order operation to prioritize 

objectives differently. Here we characterize a lexicographic 

order is “weak” when the objectives at the lower priority is a 

subset of objectives at higher priority. That is for any 

lexicographic order between two objectives 𝜽𝑝 and 𝜽𝑞 given 

as 〈𝜽𝑝〉〈𝜽𝑞〉, the lexicographic order is weak iff 𝜽𝑞𝜖𝜽𝑝. 

Weak lexicographic order considers bigger set of objectives 

first as big picture before zooming in the focus to subset of 

objectives within the range. Here are the examples to illustrate 

the difference where the former is weak lexicographic order 

while the latter is the normal one:    

 

i. In, weak lexicographic order, higher priority given on the 

bigger picture first, e.g.  〈𝜃1, 𝜃2, 𝜃3, 𝜃4〉, followed by the 

subset of the former one, i.e. 〈𝜃1, 𝜃2〉. 
 

〈𝜃1, 𝜃2, 𝜃3, 𝜃4〉〈𝜃1, 𝜃2〉 
 

ii. MO expression for normal lexicographic order where 
〈𝜃1, 𝜃2〉 is given higher than 〈𝜃3, 𝜃4〉. It can be observed 

that {𝜃3, 𝜃4}{𝜃3, 𝜃4}.  

 
〈𝜃1, 𝜃2〉〈𝜃3, 𝜃4〉 

 

When there are many objectives in optimization and it is hard 

to meet all objectives at once. Lexicographic order operator 

would be a useful tool to guide the search through order of 

priority rather than all objectives are equally focused. 

 

Example 5: 

We can also apply negation operation in MO expression to 

characterize the type of solutions we desire to search for. In 

this example, DM desires to unify solutions for two niches in 

a complementary way in objective domain. More specifically, 

the solutions are superior in the first set of objectives but not 

in the second set or vice versa. Let the first set of objectives 

represents 1, 2 while the second 3, 4. Then MO 

expression for the above specification would be: 

 

(〈𝜃1, 𝜃2〉 ∧ (¬〈𝜃3, 𝜃4〉)) ∨ ((¬〈𝜃1, 𝜃2〉) ∧ 〈𝜃3, 𝜃4〉) 

 

The above examples show that the General MO Expression 

exhibits wide range of flexibility for DM to formally and 

intuitively elaborate their preferences as close as possible to 

their needs. In real life, it may be difficult to fulfill all 

objectives at once and/or results in too wide range of solutions 

if formulated in conventional MO optimization problem and 

there is a need to have more elaborative and intuitive 

description from DM to better guide the search towards their 

preferred solutions. 

6. Evolutionary Optimization with General 

MO Expression 
 

Evolutionary-based search methods have been applied 

successfully to solve multi-objective optimization problems to 

optimize for a set of global Pareto-optimal solutions owing to 

their nature of population-based to evolve a group of solutions 

concurrently without the need of derivative information in the 

search space. Another reason why evolutionary MO 

optimization is chosen is its capabilities in incorporating 

cognitive specification like priority information that indicates 

the relative importance of the multiple tasks to provide useful 

guidance for the optimization. In general, the proposed MO 

performance expression can be applied with various 

population-based, including evolutionary-based, search and 

optimization. For experimentation and demonstration in this 

paper, we adopt the  MO evolutionary framework in [18,32] 

for the search and optimization.  

 

In the framework, a list of individual chromosomes is 

initialized at the initial stage of the evolution via 

randomization. The individuals are then decoded to parameter 

vectors. Then the individuals undergo performance evaluation 

according to the General MO Expression elaborated from DM 

to compute the final rank values. Subsequently, all the ranked 

individuals are fed to fitness sharing to avoid over degradation 

for individuals closely crowd together and to suite tournament 

selection or other evolutionary selection that are based on 

direct fitness comparison. If the stopping criterion is not met, 

the evaluated individuals are then undergone a series of 

evolutionary operations, consisting of deterministic 

tournament selection, ordered crossover as well as mutation, 

to reproduce the offspring for next generation. A number of 

elite individuals based on shared costs are preserved in next 

generation to encourage stability and diversity of the evolution 

at the Pareto-optimal frontier. This evolution cycle is repeated 

until the stopping criteria is met. The details of the MO 

evolutionary algorithms can be found in [18]. 

 

7. Application in Student Internship Planning 

 
This section presents an application case study of the proposed 

General MO Expression model where MO optimization of 

student internship plans in higher education is investigated. 

Given a set of students and companies respectively, the 

problem is to find optimum matching of a batch of students to 

their intern jobs on MO specifications. Section 7.1 lists down 

the possible cost functions to be considered. Section 7.2 

describe the implementation details search and optimization 

while the optimization results are presented and discussed in 

Section7.3 for different variety of preferences from DM.  

 

7.1 Cost Function Formulation 

 

The practical criteria to consider with their respective cost 

functions of the student internship planning are given below: 

 

7.1.1 Job Qualification 

It is important to consider how good the intern entry 

qualifications are able to meet company expectation. The 

qualification is a list of score components, which can be in 

terms of modules taken or areas of competency, concerned by 
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companies. For a score component k, let 𝑖,𝑘
(𝑠𝑡)

 represents score 

obtained by student i and 𝑗,𝑘
(𝑐𝑜)

 represents the expected score 

by of company j. The cost function f1 for a batch of students 

meeting the job qualification is 

 

𝑓1 =

∑ √∑ (𝑚𝑎𝑥 (𝑐𝑜(𝑖),𝑘
(𝑐𝑜)

− 𝑖,𝑘
(𝑠𝑡)

, 0))
2

𝑄
𝑘=1

𝑈
𝑖=1

𝑈
 

 

(18) 

  

where U is the number of students in the batch, Q the number 

of score component and co(i) the company where student i is 

attached to. The cost function takes the average gap of 

students in meeting the job qualifications by the attached 

companies. f1 ≥ 0 and f1 = 0 indicates all students meet all their 

company expectations. 

 

7.1.2 Task Preference    

Meeting student expectations on the tasks involved in their 

attached companies in their internship is another important 

criterion for fruitful learning and experience aligned to their 

desired career paths in future. The job performed can 

described by a list of tasks involved with their weightages. For 

a task k in a task list, let 𝑖,𝑘
(𝑠𝑡)

 represents the expected task 

weightage by student i and 𝑐𝑜(𝑖),𝑘
(𝑐𝑜)

 the task weightage 

performed in attached company for the student. The cost 

function f2 in meeting task preferences from a batch of 

students is 

 

𝑓2 =
∑ √∑ (𝑖,𝑘

(𝑠𝑡)
− 𝑐𝑜(𝑖),𝑘

(𝑐𝑜)
)

2
𝑇
𝑘=1

𝑈
𝑖=1

𝑈
 

 

(19) 

  

where T is number of tasks in the overall task list. It is noted 

that 0 ≤  ≤ 1 and i = 1,2,…U as shown below: 

 

∑ 𝑖,𝑘
(𝑠𝑡)

= 1
𝑇

𝑘=1
, ∑ 𝑐𝑜(𝑖),𝑘

(𝑐𝑜)
= 1

𝑇

𝑘=1
  (20) 

  

 

7.1.3 Work Schedule 

In terms time, the criterion to consider is work schedule. 

Different job may have different types of work schedule. For 

example, the work can be on 8-hourly shift, 12-hourly shift, 

overtime etc. A company may have one work schedule type 

that is fine or not expected by a student, depending on the job 

nature versus the student acceptance for the work schedule. 

Thus, it is crucial to be included into the planning. Let W be 

the possible number of schedule types in the job pool, f3 is the 

cost function in matching the companies and students in terms 

of work schedule as given below: 

    

𝑓3 =
∑ ∑ 𝑚𝑎𝑥 (𝜔𝑐𝑜(𝑖),𝑘

(𝑐𝑜)
− 𝜔𝑖,𝑘

(𝑠𝑡)
, 0)𝑊

𝑘=1
𝑈
𝑖=1

𝑈
 

 

(21) 

 

where 𝜔𝑖,𝑘
(𝑠𝑡)

= 1 if the schedule type k is fine with student i 

and equals 0 otherwise. 𝜔𝑐𝑜(𝑖),𝑘
(𝑐𝑜)

 is 1 if the schedule type k is 

required by company co(i) where student i is attached and 0 

otherwise.   

 

7.1.4 Salary Expectation 

In addition to the types of job, salary matching  between the 

student expectation and company offer is also another 

important factor to consider. As  companies offer different 

amount of salary while students have their own expectations, 

it is good to reduce the gap between them as much as possible. 

Given 𝑖
(𝑠𝑡)

 as expected salary of student i and 𝑐𝑜(𝑖)
(𝑐𝑜)

 the salary 

offered by internship company for the student, the cost 

function f4 to meet salary expectation for the whole batch is 

given as: 

 

𝑓4 =
∑ 𝑚𝑎𝑥 (𝑖

(𝑠𝑡)
− 𝑐𝑜(𝑖)

(𝑐𝑜)
, 0)𝑈

𝑖=1

𝑈
 (22) 

 

7.1.5 Travelling Cost 

Reducing traveling helps in both environmental and economic 

sustainability in community as it reduces energy consumption, 

carbon emission, traffic loading and congestion. For students, 

they can also benefit from reducing traveling times, traveling 

expenses as well as accident risks and unforeseen disruption 

along the journeys. It can also be an intangible factor to their 

punctualities and motivations in their job. Thus, the cost 

function in terms of incurred traveling cost is to be considered 

in the optimization. Let 
𝑖,𝑐𝑜(𝑖) denotes the traveling cost 

incurred for the internship between student i and the attached 

company co(i), the cost function of traveling cost, f5, for the 

batch of students in the internship is 

    

𝑓5 =
∑ 

𝑖,𝑐𝑜(𝑖)
𝑈
𝑖=1

𝑈
 (23) 

 

Without loss of generality, the traveling cost can be 

quantified in terms of traveling time or traveling distance. 

 

7.2 Implementations 

 

In the case study, there are 40 students in the batch going for 

internship. Each student provides inputs of 6 module scores, 

ranging from 0 (lowest range) to 4 (highest range), for their 

job qualifications, weightages (0 to 1) of their expected tasks, 

out of 12 tasks in the list, for task preferences, their acceptable 

work schedule types, out of 3 types including normal shift, 

their expected salary and their geographical locations. As for 

the internship jobs, 40 jobs from various companies in the list. 

Similarly, for each job offered by the respective company, the 

inputs of job qualifications expected, weightages of the tasks 

performed, work schedule types, salary offered and the 

geographical locations of the job in the same format as student 

data are collected. 

 

For the search and optimization process, the MOEA 

mentioned in Section 6 is configured as follow: sigma share = 

0.2, tournament size = 2 and mutation rate = 0.2. The 

population size of 500 is initialized. The evolutionary process 

is run with elite size of 20 and generation 1000 stopping 

criteria. The parameters settings in the developed software is 

illustrated in Figure 1. 
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(a) Settings in Optimization Problem 

 

 
(b) Settings in Evolutionary Process 

 

Figure 1:  Implementation Setup 

 

7.3 Demonstrations and Discussions 

 

Among the five possible cost functions defined in previous 

sections, DM have choices to express their preferences in 

many possible ways, according to their interest and 

requirements, using the proposed General MO Expression. 

Thus, we will look into different forms of MO expression DM 

can use to express their preferences for the search and 

optimization.  

 

7.3.1 MO Expression for Simplest Optimization 

Preference 

Let start with the simplest DM preferences where all the five 

cost functions are to be optimized separately without any 

augmented specification. The MO expression can be 

described as below where each objective is purely attributed 

by the respective cost function alone. 

 

Minimize:  〈𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5〉 
where,  

𝜃𝑖 = (𝑓𝑖 , 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙) ∀𝑖 = 1,2, … ,5 

(24) 

 

 

 
Figure 2:  Non-dominated Solutions for Optimizing All 

Functions 

 

Figure 2 depicts the experimental results for the above MO 

expression in the end of the run. Each line represents one of 

the best found non-dominated solutions where x-axis is the 

cost function labels while y-axis is the respective function 

values. For better visualization, the function values are scaled 

differently for each function. There are 137 non-dominated 

solutions, which form the Pareto-front, in the run.   

 

7.3.2 MO Expression for Optimizing with Augmented 

Specifications 

Augmented specifications can be included in the MO 

Expression to provide more directive guide in the 

optimization. Below is an example of DM’s specified MO 

expression applying the augmented specifications. 

 

Minimize:  〈𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5〉 
where, 

𝜃1 = (𝑓1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 0.7),  

𝜃2 = (𝑓2, 𝑛𝑢𝑙𝑙, 0.65, 𝑛𝑢𝑙𝑙),  

𝜃3 = (𝑓3, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙),  

𝜃4 = (𝑓4, 3,50,50), 

𝜃5 = (𝑓5, 0.2,18,18) 

(25) 

 

Unlike the previous MO expression, objective 1 has goal of 

0.7, objective 2 has satisfactory level of 0.65, and so forth for 

objectives 3 to 5. It is noted that DM is free to have any 

combination of the augmented specifications in the objectives 

based on their prior knowledge and requirements. 

 

 
Figure 3:  Non-dominated Solutions for Optimizing with 

Augmented Specifications 

 

The resulted non-dominated solutions in the run is presented 

in Figure 3. Results shows that the goals (open squares) in 

functions 1,4 and 5, direct the search towards more focus area 

on the trade-off. The goals are feasible in this case as the 

function values are below the goal values. For the functions 2, 

4 and 5 having satisfactory levels (solid diamonds), the 

function values equal the satisfactory levels once met as 

further minimization in the functions is not required. It allows 

more focus on other functions, i.e. functions 1 and 3 as shown 

in the figure, to achieve better results. It is noted that both 

satisfactory level and goal are defined in functions 4 and 5, to 

effect in the same requirement as constraints. That is, the 

search should be directed towards other objectives where the 

satisfactory level in undefined or not met.   

 

7.3.3 MO Expression for Optimizing with Priority Order 

DM can specify the priority order in MO expression construct 

if they want to distinguish different level of importance in the 

preference. MO expression below specify that objectives 1 to 

3 are given higher priority than 4 and 5.  

 

Minimize:  〈𝜃1, 𝜃2, 𝜃3〉〈𝜃4, 𝜃5〉 
 

(26) 
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where, 

𝜃𝑖 = (𝑓𝑖, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙) ∀𝑖 = 1,2, … ,5 

 

Figure 4 shows the resulted non-dominated solutions in the 

run. Comparing to results in Figure 2, the search is gives 

relatively better performances in objectives 1 to 3 since they 

are given higher priority. Needless to say, the improvement is 

on the expense of lower priority objectives (4 and 5). It is also 

observable that, each overall non-dominated solution is non-

dominated within two separate groups of objectives, i.e. 

{𝜃1, 𝜃2, 𝜃3} and {𝜃4, 𝜃5}.  
 

 
Figure 4:  Non-dominated Solutions for Optimizing with 

Priority Order 

 

7.3.4 MO Expression for Optimizing with Weak Priority 

Order 

If DMs desire to optimize for the overall performances of the 

objectives first before further zooming into some of the 

objectives, they can use weak priority order in the MO 

expression. Below is an example to demonstrate that where 

the higher priority is to take care of the overall performance 

on the objectives and only when they are comparable, 

subsequent attention will be given to objectives 4 and 5.    

 

Minimize:  〈𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5〉〈𝜃4, 𝜃5〉 
where, 

𝜃𝑖 = (𝑓𝑖, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙) ∀𝑖 = 1,2, … ,5 

(27) 

 

The experimental results are depicted in Figure 5. It can be 

seen than, comparing to results in Figures 2 and 4, the run 

gives slightly better performances in objectives 4 and 5 as they 

are further improved after taking all objectives into 

consideration. It can also be observed that the performances 

of objectives 1 to 3 are not as good as  (26) due to the first 

priority in current MO expression is more diverse, covering 

all objectives, than (26).   

 

 
Figure 5:  Non-dominated Solutions for Optimizing with 

Weak Priority Order 

7.3.5 MO Expression for Attaining Multiple Goals with 

“OR” Operation 

DM can adopt logical statement in the MO expression to visit 

different region of trade-offs in objective space in a single run. 

For demonstration, let a MO optimization is to visit two 

separate trade-off regions directed by two goals as expressed 

below:    

  

Minimize:  〈𝜃4,1, 𝜃5,1〉 ∨ 〈𝜃4,2, 𝜃5,2〉 
where, 

𝜃4,1 = (𝑓4, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 40),  

𝜃5,1 = (𝑓5, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 16),  

𝜃4,2 = (𝑓4, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 50),  

𝜃5,3 = (𝑓5, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 13) 

(28) 

 

It can be understood from the above expression that the 

optimization involves functions (f4, f5) and there are two goal 

vectors, i.e. (40,16) & (50,13), in disjunction (Or) operation to 

find the unification of solutions for each goal-specified region. 

The scatter plot of solutions in the function space (f4 vs f5) is 

shown in Figure 6. The connected solid dots represent the non-

dominated solutions while the open circles represent the 

dominated ones. Result show that the above MO expression is 

able to direct the search towards attaining multiple goal-

specified regions concurrently in single run. 

 

 
Figure 6:  Non-dominated Solutions for Optimizing 

Multiple Goals with OR Operation 

 

7.3.6 MO Expression for Multiple Non-Dominated Sets 

with “AND” Operation 

Besides the use of logical operation for multiple specifications 

on the set of objectives, DM can also apply the MO 

Expression for multiple sets of objectives with logical 

operation. Here is an example to attain two different sets of 

goals in two different function spaces.   

 

Minimize: 

 〈𝜃1, 𝜃2〉 ∧ 〈𝜃4, 𝜃5〉 
where, 

𝜃1 = (𝑓1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 0.7),  

𝜃2 = (𝑓2, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 0.65),  

𝜃4 = (𝑓4, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 50),  

𝜃5 = (𝑓5, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 18) 

(29) 

 

The “AND” operation specify that the solution must be non-

dominated within both (f1, f2) and (f4, f5) spaces, where the 

requirement is more stringent than being non-dominated 

within (f1, f2, f3, f4) spaces. The optimized non-dominated 
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solutions are shown in Figure 7. It can be seen that besides 

meeting multiple goals in multiple sets of functions, the 

solutions are non-dominated in each respective set of 

functions, i.e. the lines are crossing each other both sets of 

functions (enclosed by the dotted boxes). It can also be 

observed that as the requirement is more stringent than (25), 

less non-dominated solutions are found. 

 

 
Figure 7:  Non-dominated Solutions for Multiple Non-

Dominated Sets with AND Operation 

 

7.3.7 MO Expression with Nested Ranking 

Ranking operations can be nested and arranged in hierarchies 

in MO Expression so that DM can subgroup the objectives for 

ranking (inner) within each group before overall ranking 

(outer) among the subgroups. An example of nested ranking 

is given by  

 

Minimize: 

 〈〈𝜃1, 𝜃2〉, 〈𝜃4, 𝜃5〉〉 
where, 

𝜃1 = (𝑓1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 0.7),  

𝜃2 = (𝑓2, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 0.65),  

𝜃4 = (𝑓4, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 50),  

𝜃5 = (𝑓5, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 18) 

(30) 

 

The resulted non-dominated solutions are shown in Figure 8 

in rank space of 〈𝜃1, 𝜃2〉 vs 〈𝜃4, 𝜃5〉. It can be observed that 

they form Pareto front (outer rank =1) in terms of the two inner 

ranks, instead of function values. The global trade-off is 

formed from the left-most solution, having low first inner rank 

value but large second inner rank value, to the right-most 

solution, having the opposite feature. With nested ranking, 

DM is able to examine more structured trade-off among 

subgroups of objectives in hierarchies, rather than treating all 

the objectives equally in a big group. 

 

 
Figure 8:  Non-dominated Solutions for Nested Ranking in 

Rank Space 

 

7.3.8 MO Expression with Nested Operations 

Besides ranking, the logical operations can also be arranged 

in nested structure in the MO Expression to enable DM to 

formulate their preferences to direct the search towards 

searching for optimal solutions in more complicated 

requirements. Here is an example. 

 

Minimize: 

 (¬〈𝜃1, 𝜃2〉 ∧ 〈𝜃4, 𝜃5〉) ∨ (〈𝜃1, 𝜃2〉 ∧ ¬〈𝜃4, 𝜃5〉) 

where, 

𝜃1 = (𝑓1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 0.7),  

𝜃2 = (𝑓2, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 0.65),  

𝜃4 = (𝑓4, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 50),  

𝜃5 = (𝑓5, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 18) 

(31) 

 

The expression is to find the unification of two sets of optimal 

solutions. Set one is superior in 4 and 5 but not superior in 

1 and 2, with their respective goal specifications. On the 

other hand, set two has the opposite characteristics with 

former set. Figure 9 shows the resulted non-dominated 

solutions. It can be observed that solutions 1 & 2, as labeled 

in the figure, is superior in set one but otherwise in set two. In 

contrary, solution 3 has totally opposite characteristics. As 

shown in this example, DM can apply MO expression to 

describe more complicated MO specifications to search for 

optimal solutions. Instead of minimizing the cost functions 

alone, MO Expression also enable DM to search for solutions 

that best characterized by the expression without the 

complication to reformulate the MO optimization process.  

 

 
Figure 9:  Non-dominated Solutions for Optimizing with 

Nested Operations 

 

8 Conclusions 

 
This paper proposed a syntactic construct, called General MO 

Expression, for higher-level decision making to specify their 

preferences in MO performance assessment. The expression 

is intuitive, flexible and general enough for DM to incorporate 

any prior knowledge and/or requirements, such as dominating 

threshold, satisfactory level and goal, to be optionally 

augmented in the objectives in addition to the optimization 

functions. In addition, it also enables DM to elaborate their 

preferences in terms of logical relations such as “AND”, “OR” 

and “NOT”, as well as priority order among the objectives in 

the formal syntactic construct. Computational formulation is 

given to systematically compute the performance assessment 

based on the General MO Expression which can be applied in 

many population-based search and optimization, including 

evolutionary search methods. Besides illustrative examples, 

practical applications in MO student internship planning is 
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implemented and the usefulness for DM specify wide variety 

of preferences with General MO Expression is demonstrated 

and discussed. The results have shown that the method is able 

to search for dominant solutions that are the best in exhibiting 

the characteristics specified by the MO expression, which is 

based on DM choice and preference. On the whole, the results 

have demonstrated the main objective of this paper to provide 

flexibility for DM to elaborate their preferences more 

precisely and in wider coverage in a systematic mathematical 

formulation.   
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