
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

A Comparative Analysis of Popular Distributed

Key-Value Stores

Ramprasad Chinthekindi1, Shyam Burkule2, Ashok Kumar Chintakindi3

1Email: ramprasad.ch[at]gmail.com

2Email: shyam.burkule[at]gmail.com

3Email: ashokkumar.chintakindi[at]gmail.com

Abstract: Distributed key - value stores have become increasingly popular in recent years due to their ability to provide high availability,

scalability, and fault tolerance for large - scale data storage and retrieval. This paper examines several prominent distributed key - value

stores, such as Apache Cassandra, Amazon DynamoDB, and CockroachDB, and presents a comparative analysis of their architectures,

design principles, and performance characteristics. The goal is to provide insights into the architecture, features, trade - offs, and

suitability of these systems for different use cases, aiding researchers, developers, and system architects in making informed decisions.

Keywords: Distributed Systems, Key Value Stores, Databases, Cloud Computing

1. Introduction

Distributed data storage is an essential component of modern

computing, enabling the storage and retrieval of large

amounts of data across multiple machines or nodes in a

distributed system. Distributed key - value stores, a type of

distributed database, allow for the storage and retrieval of data

in the form of key - value pairs, where the key is a unique

identifier and the value is the actual data. Distributed data

storage is an important aspect of modern computing for

several reasons. First, it allows for the storage and retrieval of

large amounts of data across multiple machines or nodes in a

distributed system. This can provide horizontal scaling and

increased availability, as the data can be spread across

multiple nodes and accessed from any node in the system.

Second, distributed data storage can improve performance by

allowing data to be stored closer to where it is needed. For

example, if a web application has users all over the world, it

may be beneficial to store the data in multiple locations so that

users can access it more quickly. Third, distributed data

storage can provide fault tolerance and disaster recovery

capabilities. If one node in the system fails, the data can still

be accessed from other nodes, ensuring that the system

remains available. Additionally, data can be replicated across

multiple nodes to protect against data loss in the event of a

disaster.

Distributed key - value stores are widely used in industry for

a variety of applications, such as web caching, content

delivery networks, real - time analytics, and applications

requiring fast and scalable data access. As the demand for

these systems continues to grow, it is important to understand

the architectural differences, design principles, and

performance characteristics of the various distributed key -

value stores available. This paper aims to provide a

comparative analysis of several popular distributed key -

value stores, including Apache Cassandra [1], Amazon

DynamoDB [2], and CockroachDB [3]. By examining the key

features, consistency models, scalability, and performance of

these systems, the goal is to offer insights that can guide

researchers, developers, and system architects in selecting the

most appropriate distributed key - value store for their specific

use cases.

This paper is structured as follows. Section II talks about the

Apache Cassandra architecture, its consistency model and

scalability and performance. Section III presents the Amazon

DynamoDB architecture and its consistency model and

scalability and performance. Section IV presents the

architecture of CockroachDB distributed key - value store.

Section V describes the comparative analysis of these systems

and suitable use cases for these systems. Finally section VI

concludes the distributed key value stores.

1.1 Apache Cassandra

A. Architecture

Apache Cassandra [1], [4] is a distributed NoSQL database,

designed to handle large amounts of data across many

commodity servers. It employs a decentralized, masterless

architecture, i. e. it’s a peer - to - peer distributed system,

where all nodes in the cluster are equal and communicate with

each other directly. Its design focuses on providing high

availability, fault tolerance and linear scalability. The main

components of the Cassandra architecture are:

1) Cluster: A Cassandra cluster is a group of nodes that work

together to store and manage data. Each node in the

cluster runs an instance of the Cassandra server, and all

nodes are equal and communicate with each other

directly.

2) Node: A node is a single instance of the Cassandra server

running on a physical or virtual machine. Each node is

responsible for storing and managing a portion of the data

in the cluster.

3) Data partitioning: Cassandra provides ability to scale

incrementally, with the increasing workloads, which

requires dynamic partitioning of data across the set of

nodes in the cluster. It uses Consistent Hashing [5], a

partitioning scheme to dynamically partition data across

the nodes in the cluster. Data is partitioned based on the

partition key, which is a column or set of columns in the

data that is used to determine the node where the data

should be stored.

Paper ID: SR24426081530 DOI: https://dx.doi.org/10.21275/SR24426081530 1730

https://www.ijsr.net/
mailto:ramprasad.ch@gmail.com
mailto:shyam.burkule@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4) Replication: Cassandra uses replication to achieve high

availability and durability. Cassandra provides

replication by creating multiple copies of the data and

distributing them across different nodes in the cluster.

This ensures that the data remains available even if one

or more nodes fail. The data is replicated to N nodes,

where N is the replication factor, which is configurable

in Cassandra. Each key is assigned to a coordinator Node,

which saves one copy locally and is responsible for

replicating to N - 1 nodes in the cluster. Cassandra

supports various replication topologies, such as “Rack

Aware”, “Rack Unaware”, “Datacenter Aware”, etc. to

support different levels of reliability amidst various types

of failures.

5) Consistency: Cassandra offers tunable consistency,

allowing users to choose between strong consistency (all

nodes see the same data at the same time) and eventual

consistency (data may be temporarily inconsistent but

will eventually become consistent). It also offers tunable

consistency at a per operation level. For example, a user

needs a particular transaction to be available on all nodes

to mark the transaction complete vs a less critical data be

available eventually, providing relaxed consistency

guarantees.

6) Data modeling: Cassandra uses a denormalized data

model, where data is modeled as a collection of tables

with a flexible schema. This allows for efficient querying

and high write throughput.

7) Query language: Cassandra uses the Cassandra Query

Language (CQL) for querying and manipulating data.

CQL is similar to SQL and provides a simple and

intuitive way to interact with the database.

Overall, the architecture of Cassandra is designed to provide

scalability, high availability, and fault tolerance for large -

scale data storage and processing applications. It is widely

used in industry for applications such as web analytics, IoT

telemetry, and real - time data processing.

B. Consistency Model

Cassandra follows the eventual consistency model, allowing

tunable consistency levels based on the application’s

requirements, as explained in section.

Handling writes: The writes to Cassandra are first written to

the on - disk commit log on the coordinator node and are

simultaneously written to the in - memory write - back cache

called the memtable. The coordinator node sends the write

request to the identified replica nodes. Each replica node

independently writes the data to its commit log and memtable.

The write operation is acknowledged once a specified number

of replica nodes have successfully acknowledged the write.

Handling reads: The read path involves first looking up the

data in the memtable, similar to the standard LSM KV stores

[6], [7]. If the requested data is available in the memtable, it

is retrieved directly. Else, Cassandra searches the SST tables

(ondisk storage files). Read operations in Cassandra allow

users to specify a consistency level. The consistency level

determines how many replicas must respond to the read

request before it is considered successful. Consistency levels

can be adjusted to balance between consistency and

availability based on the application’s requirements.

Quorum Read: A common practice in Cassandra is to use a

quorum read, where the coordinator node sends read requests

to a majority of the replicas. This ensures consistency by

requiring acknowledgement from a majority of the replicas,

preventing stale or inconsistent data from being returned.

C. Scalability and Performance

As per NetFlix’s cloud benchmark [8], the scalability is linear

as shown in Figure 1. Each client system generates about 17,

500 write requests per second, and there are no bottlenecks as

the traffic was scaled up. Each client ran 200 threads to

generate traffic across the cluster.

Figure 1: Performance results from Netflix’s cloud

benchmark on Cassandra

1.2 Amazon DynamoDB

A. Architecture

Figure 2: DynamoDB Architecture

Amazon DynamoDB [2] is a fully managed, NoSQL database

service provided by Amazon Web Services (AWS). It is

designed to provide fast and predictable performance with

seamless scalability. The main components of Amazon

DynamoDB architecture are:

1) Partition: DynamoDB is designed to scale incrementally.

DynamoDB uses consistent hashing to split the total key

set into partitions, where each partition represents a

contiguous and partial key range. Each storage host is

assigned one or more partitions. Each data item identified

by a key is assigned to a node by hashing the data item’s

key to yield its position on the ring, and then walking the

ring clockwise to find the first node with a position larger

than the item’s position. For uniform distribution of load

per storage host, DynamoDB creates multiple virtual

nodes per each node and places them on the consistent

hash ring. It dynamically adjusts the total virtual nodes

Paper ID: SR24426081530 DOI: https://dx.doi.org/10.21275/SR24426081530 1731

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

on the ring, for uniform load balancing, as the load

distribution changes in the production.

2) Replication: To achieve high availability and durability,

DynamoDB replicates its partitions on multiple hosts

across different Availability Zones. The replicas for a

partition form the replication group. The replication

group uses Multi - Paxos [9] for leader election and

consensus. Any replica can trigger a round of the

election. Once elected leader, a replica can maintain

leadership as long as it periodically renews its leadership

lease. The writes go to the leader replica, which writes it

to the write - ahead log and sends to peer replica nodes.

3) Consistency: DynamoDB supports strong and eventually

consistent reads. A write is acknowledged to the

application once the quorum of nodes persist the data in

their local write - ahead logs. The writes and strongly

consistent reads always go to the leader replica node.

4) Data Model: DynamoDB tables don’t have a fixed

schema but instead allow each data item to contain any

number of attributes with varying types, including

multivalued attributes. Tables use a key - value or

document data model.

5) Failure Detection for leader election: During the leader

election process, the replica is not available for writes and

consistent read traffic, affecting the availability. False

positive failures affect the overall availability of the

system, possibly due to gray network failures. In order to

reduce the false positives, DynamoDB triggers failover

only when all the replica nodes are unable to

communicate with the leader.

B. Consistency Model

DynamoDB offers strong consistency and eventual

consistency options, allowing users to choose based on their

application’s needs.

C. Scalability and Performance

Amazon DynamoDB [2] is designed for seamless scalability,

automatically handling the distribution of data across multiple

servers. Figure 3 shows the read latencies on DynamoDB on

two different workloads of YCSB [10]. The DynamoDB read

latencies do not vary much with increased throughput, Figure

4 shows the write latencies of two YCSB workloads at p50

and p99. The write latencies too vary little with the throughput

of the workload.

Figure 3: Summary of YCSB read latencies on DynamoDB

[2]

Figure 4: Summary of YCSB write latencies on DynamoDB

[2]

1.3 CockroachDB

A. Architecture

CockroachDB (CRDB) utilizes a standard shared - nothing

architecture where each node is responsible for both data

storage and computation. [3] The cluster can consist of any

number of nodes located in the same datacenter or spread

globally, giving clients the flexibility to connect to any node

within the cluster. Internally, CRDB is structured in layers,

each serving a specific purpose.

1) SQL Layer: The topmost SQL layer serves as the primary

interface for user interactions with the database. It

comprises the parser, optimizer, and SQL execution

engine, which convert high - level SQL statements into

low - level read and write requests for the underlying key

- value (KV) store. Typically, the SQL layer operates

without knowledge of data partitioning or distribution, as

the subsequent layers present the illusion of a single,

unified KV store.

2) Transactional KV Layer: Requests from the SQL layer are

directed to the Transactional KV layer, ensuring atomicity

for changes involving multiple KV pairs. This layer also

plays a significant role in providing CRDB’s isolation

guarantees.

3) Distribution Layer: This layer provides the notion of a

monolithic logical key space organized by key, where all

data (system data and user data) is addressable. CRDB

employs range - partitioning on the keys to segment the

data into contiguous, ordered chunks (Ranges) of about

4) 64 MiB in size, distributed across the cluster. These

Ranges are carefully indexed in a two - level structure

within a cache of system Ranges for swift key lookups.

The Distribution layer determines which Ranges handle

subsets of each query and routes them accordingly.

Dynamically adjusting their size, Ranges split when they

grow too large and merge when they shrink, while

loadbased splitting helps alleviate hotspots and CPU usage

imbalances.

5) Replication Layer: Each Range is replicated three times by

default, with each replica stored on a different node. The

Replication layer ensures the durability of modifications

via consensus - based replication.

6) Storage: The bottom - most Storage layer represents a

local disk - backed KV store, facilitating efficient writes

and range scans to support high - performance SQL

execution.

Paper ID: SR24426081530 DOI: https://dx.doi.org/10.21275/SR24426081530 1732

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

B. Consistency Model

The consensus model in CockroachDB is based on the Raft

consensus algorithm, which is a widely - used distributed

consensus protocol and provides strong consistency.

C. Scalability and Performance

CockroachDB is a highly - scalable, consistently replicated,

and transactional database that is specifically designed to

operate on cloud platforms with exceptional fault tolerance.

This powerful datastore offers seamless horizontal scaling

while maintaining strong consistency across multiple nodes,

making it an ideal solution for businesses requiring reliable,

high - performance data storage capabilities that can adapt to

ever - changing workload demands [11]. The Figure 5 shows

the latency and throughput performance of CockroachDb

[12]. It shows that the p95 throughput scales linearly with

number of nodes in the cluster. Also, with increasing number

of nodes, there is little variance in p50 and p95 latencies.

Figure 5: CockroachDB Throughput and Latency with

number of nodes [12]

2. Comparative Analysis

Performance and Scalability Analysis:

DynamoDB is known for its low - latency performance and

scalability, especially for read - heavy and write - heavy

workloads. It offers consistent single - digit millisecond

latency for both read and write operations, making it suitable

for real - time applications. DynamoDB’s performance scales

automatically with workload demand, thanks to its managed

infrastructure, which dynamically adjusts resources based on

usage patterns. Benchmarking results often highlight

DynamoDB’s ability to handle millions of requests per second

with minimal latency fluctuations.

Cassandra is designed for high throughput and linear

scalability, making it suitable for large - scale distributed

applications. It offers tunable consistency levels, allowing

users to balance between consistency and availability based

on their application requirements. Cassandra can handle a

high volume of read and write operations across multiple

nodes, with benchmarking results showcasing its ability to

sustain tens of thousands of transactions per second.

Performance benchmarks often highlight Cassandra’s ability

to maintain lowlatency responses even under heavy load and

in geographically distributed deployments.

CockroachDB aims to provide distributed SQL with ACID

transactions while maintaining high availability and

scalability. It offers strong consistency guarantees and multi -

active availability, allowing multiple nodes to handle read and

write requests simultaneously. Benchmarking results

demonstrate CockroachDB’s ability to handle large - scale

transactions with low - latency responses, making it suitable

for OLTP (Online Transaction Processing) workloads.

CockroachDB’s performance scales linearly with the number

of nodes in the cluster, allowing it to handle increasing

workload demands by adding more nodes.

Suitable Use Cases:

DynamoDB’s low - latency performance makes it well -

suited for real - time applications such as gaming

leaderboards, live chat, and real - time analytics. Applications

that require seamless scalability to handle fluctuating

workloads, such as ecommerce platforms, social media

applications, and IoT (Internet of Things) data ingestion.

DynamoDB integrates well with serverless architectures on

AWS, such as AWS Lambda, making it a preferred choice for

serverless applications with variable traffic patterns.

Cassandra excels in distributed environments where data

needs to be replicated across multiple nodes and data centers,

making it suitable for global - scale applications like content

delivery networks (CDNs), messaging platforms, and

distributed sensor networks. Applications that require high

write throughput and low - latency writes, such as time - series

data storage, logging, and financial transaction processing.

Cassandra’s ability to handle large volumes of data and

perform ad - hoc queries makes it suitable for analytics and

reporting applications that require fast data retrieval and

analysis.

CockroachDB’s support for ACID transactions and

distributed SQL makes it suitable for transactional

applications such as e - commerce platforms, financial

systems, and order management systems. CockroachDB’s

ability to replicate data across multiple geographically

distributed clusters makes it suitable for global deployments

where data sovereignty and low - latency access are critical.

Applications that require multiactive availability and can

benefit from distributing read and write traffic across multiple

nodes, such as content management systems (CMS),

collaboration platforms, and multiplayer online games.

3. Conclusion

In summary, distributed key - value stores provide a scalable

and fault - tolerant solution for managing and accessing data

in a distributed environment. They are well - suited for

applications that require high availability, low - latency access

to data, and the ability to scale horizontally as the workload

increases.

References

[1] Lakshman and P. Malik, “Cassandra - a decentralized

structured storage system, ” in In Proceedings of ACM

SIGOPS symposium on Operating Systems Review,

2010, pp.35–40.

[2] M. Elhemali, N. Gallagher, B. Tang, N. Gordon, H.

Huang, H. Chen, J. Idziorek, M. Wang, R. Krog, Z. Zhu

et al., “Amazon {DynamoDB}: A scalable, predictably

performant, and fully managed {NoSQL} database

Paper ID: SR24426081530 DOI: https://dx.doi.org/10.21275/SR24426081530 1733

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

service, ” in 2022 USENIX Annual Technical

Conference (USENIX ATC 22), 2022, pp.1037–1048.

[3] Cockroachdb: The resilient geo - distributed sql

database. [Online]. Available: https: //dl. acm.

org/doi/pdf/10.1145/3318464.3386134

[4] DataStax. Introduction to apache cassandra. [Online].

[5] Available: https: //www.odbms. org/wp -

content/uploads/2014/06/WPIntroToCassandra. pdf

[6] D. Karger, E. Lehman, T. Leighton, M. Levine, D.

Lewin, and R. Panigrahy, “Consistent hashing and

random trees: Distributed caching protocols for

relieving hot spots on the world wide web, ” in In ACM

Symposium on Theory of Computing, 1997, pp.654–

663.

[7] Leveldb. [Online]. Available: https: //github.

com/google/leveldb

[8] Rocksdb. [Online]. Available: https: //github.

com/facebook/rocksdb

[9] Netflix. Benchmarking cassandra scalability on aws

over a million writes per second. [Online]. Available:

https: //netflixtechblog. com/benchmarking - cassandra

- scalabilityon - aws - over - a - million - writes - per -

second - 39f45f066c9e [9] L. Lamport, “Paxos made

simple, ” in ACM Sigact News, vol.32 (4), 2001, pp.18–

25.

[10] F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears, “Benchmarking cloud serving systems with

ycsb, ” in Proceedings of the 1st ACM symposium on

Cloud computing, 2010, pp.143–154.

[11] Doordash. How we scaled new verticals fulfillment

backend with cockroachdb. [Online]. Available: https:

//doordash. engineering/2023/02/07/how - we - scaled -

newverticals - fulfillment - backend - with -

cockroachdb

[12] Cockroachdb: Benchmarking overview. [Online].

Available: https: //www.cockroachlabs.

com/docs/stable/performance

Paper ID: SR24426081530 DOI: https://dx.doi.org/10.21275/SR24426081530 1734

https://www.ijsr.net/

