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Abstract: Serverless computing environments consist of standalone microservices that operate independently and scale up 

autonomously. To enable decentralized communication among these services, peer-to-peer protocols can be employed. This paper 

introduces Themis, a framework designed for secure service-to-service interaction within serverless environments and underlying 

service mesh architectures. Themis leverages decentralized identity management to facilitate confidential and authenticated 

communication between services without relying on a centralized certificate authority. The framework adopts a layered architecture, 

with a lower layer comprising a core communication protocol pair that offers strong security guarantees without relying on a centralized 

authority. Building upon this foundation, an upper layer provides actions related to communication and identifier management, such as 

store, find, and join operations. The paper examines the security properties of Themis's protocol suite and demonstrates its decentralized 

and flexible communication platform. Evaluation of the Themis prototype, implemented in JavaScript for serverless applications, reveals 

that these security benefits are accompanied by minimal runtime latency, throughput overheads, and modest startup delays. Themis 

offers a promising solution for secure and scalable service-to-service interaction in serverless computing environments. 
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1. Introduction 
 

The serverless architecture, much like the microservices 

architecture, is broken down into a number of fundamental 

components on its own. In serverless computing, 

functionalities are broken down into more granular 

components, but in microservices, related capabilities are 

grouped together into a single service. Developers are 

responsible for writing their own unique code, which is then 

executed as independent and self-contained functions 

executing within stateless computing services. Microservice 

is a decentralized design pattern that involves the separation 

of an application into a number of separate functions, also 

known as services, which are able to collaborate and interact 

with one another using application programming interfaces 

(APIs). Every single microservice is equipped with its very 

own database, libraries, and templates, and it is also tested 

independently from their counterparts. There is a common 

comparison made between it and monolithic architecture. 

All of the features are unified in the latter, as they are tightly 

related to one another and operate as a single function.[1] 

Microservices are characterized by the fact that each 

component is more or less autonomous, and it is not 

necessary to execute a complete application in order to 

access single features.  Until the mail event is triggered at 

midnight, there is no server operating to service the mail 

activity in serverless computing. This is because there is no 

server running. Following the execution of the code, the 

server is subsequently decommissioned after it has been 

allocated. In order to complete tasks that are typically 

handled by servers, serverless applications frequently make 

considerable use of services provided by third parties. [2-3] 

It is possible that these services are either single services that 

seek to give a turnkey set of capabilities, such as Parse or 

Firebase, or they could be rich ecosystems of services that 

are able to communicate with one another, such as Amazon 

AWS and Azure. Both infrastructure and higher-level 

abstractions, such as federated identification, role and 

capability management, and search, could be offered by 

these services. Examples of the former include message 

queues, databases, and edge caching. By controlling the 

request-response cycle, a general-purpose web application 

that is built on a server is able to fulfill one of its key 

functions. Additionally, controllers on the server side are 

responsible for processing input, invoking the relevant 

application behavior, and constructing dynamic responses, 

generally with the assistance of a templating engine. The 

client-side control flow and dynamic content creation take 

the role of the server-side controllers in a serverless 

application, which is characterized by the utilization of 

third-party services to weave together the program's 

behavior. Utilizing API calls and client-side user interface 

frameworks to generate dynamic content, rich JavaScript 

apps, mobile applications, and increasingly, TV or 

embedded Internet of Things applications, are responsible 

for coordinating the interaction between the various services 

[4]. 

 

Work that takes place between the controller and the 

infrastructure, also known as the business logic, is the most 

important component of a web application that is hosted on a 

server. For the duration of the application's existence, a 

server with a lengthy lifespan will host the code that 

implements this logic and carry out the necessary 
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processing. A lifecycle that is significantly shorter and more 

comparable to the timing of a single HTTP request/response 

cycle is possessed by custom code components in serverless 

apps. Whenever a request is received, the code becomes 

active, processes the request, and then goes into a dormant 

state as soon as the activity level decreases sufficiently. A 

managed environment, such as Amazon Lambda, Azure 

Function, or Google Cloud Functions, is typically where this 

code is stored. This environment is responsible for the 

administration of the code's lifecycle as well as scaling it. 

The term "Function as a Service" (FaaS) is sometimes used 

to refer to this particular form of software organization. As a 

result of the short per-request lifecycle, a per-request price 

model is also available, which gives certain teams the 

opportunity to realize significant cost savings. It is possible 

to fit and separate the business logic in each REST API with 

its own function. [5] The structures, automation, and 

optimization are already established. As a consequence, a 

comprehensive agile infrastructure that is prepared to be 

deployed in a very short amount of time has been produced. 

 

 

 
Figure 1: Amazon Tech Stack 

 

An example of a serverless architecture that is based on 

microservices and is using an Amazon Tech Stack is shown 

in the image above. 

 

The essential component of the system is Amazon Web 

Services Lamda, which obtains its routing information from 

the Amazon API gateway and then executes the capabilities 

that have been defined for it. Creating serverless 

microservices with an HTTP front end is one use case for 

API Gateway + FaaS. This allows for all of the benefits that 

come with FaaS functionalities, including scaling, 

management, and other advantages. There is a lot of value in 

putting technology in front of an end user as soon as possible 

in order to get early feedback, and the reduced time-to-

market that comes with serverless fits right in with this 

philosophy. [6] The most important benefit, in my opinion, is 

the reduced feedback loop that is required to create new 

implementation components for an application. On the basis 

of our contributions, the following can be summarized:  

 

Security Protocols: By using the self-certifying identities of 

the nodes involved, they present two innovative methods for 

secure key agreement and communication. These methods 

harness the nature of the network. We are able to avoid 

relying on a centralized source of confidence, which is the 

case with traditional certificate authorities.  

 

Model and Proofs: These protocols' security assurances are 

examined in depth in our security study. In particular, we 

demonstrate that they successfully provide authentication, 

confidentiality, and message integrity for every single 

message that is exchanged.  

 

High-level Operations: To ensure that a structured overlay 

organization is maintained, we identify five essential actions 

that nodes must carry out. These operations are located, 

store, join, update, and leave. Through the utilization of these 

fundamental components, Themis is able to accomplish 

service discovery and extensibility in a manner that is 

completely decentralized. Furthermore, they provide further 

elaboration on the security aspects that are effective against a 

variety of common types of attacks that are directed at this 

P2P framework.  

 

Open-source Implementation: Themis is an application 

library that may be easily added to and removed from 

existing projects. It is based on QuickJS, a small and 

embeddable JavaScript engine. About 3,300 lines of 

JavaScript are required to implement Themis. Themis 

handles object initialization, communication, and 

serialization by utilizing a JavaScript implementation of the 

NaCl Networking and Cryptography package.  

 

Empirical Evaluation: As part of the review of Themis, they 

target micro benchmarks that scale between one and one 

thousand nodes and examine its properties across eight 

serverless applications. Both in terms of runtime 

performance and in terms of the number of lines of code that 

are altered, Themis's security gains come at a cost that is 

negligible to insignificant. [7] 

 

2. Serverless Microservices Architecture: 

Framework 
 

Combining serverless computing with microservices is a 

powerful approach to building scalable and flexible 

applications. Let's briefly look at how serverless 

microservices work.  

 

After a developer writes the code for a microservices 

application, its functions are deployed to a serverless 
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computing platform, such as AWS Lambda. Microservices 

communicate with each other through well-defined APIs and 

events, and this event-driven communication allows 

Microservices to operate independently. 

 

On the other hand, the serverless platform automatically 

scales resources to accommodate changes in workload. 

Serverless platforms also provide the tools for monitoring 

and observability. Developers can track performance metrics, 

diagnose issues, and optimize the system through logging, 

tracing, and analytics. For example, by leveraging AWS 

Cloud Watch Logs or CloudWatch metrics, organizations 

can achieve critical log information, performance metrics, 

and application insights. 

 

Benefits of Serverless Microservices 

In addition to the commonly known benefits of serverless 

architecture, such as cost efficiency and flexibility, serverless 

microservices offer several advantages, especially in the case 

of complex and evolving applications. Let's understand this 

better with the AWS computing platform services.  

 

Granular scaling for running microservices 

AWS' serverless computing service, AWS Lambda, allows 

you to define and scale individual functions independently 

within a specific microservice based on event-driven 

triggers. This ensures efficient resource utilization and cost 

savings, particularly in scenarios where different 

microservices have varying demand levels. 

 

Seamless developer experience in building applications 

Serverless microservices offer seamless development and 

deployment experiences facilitated by various tools and 

practices. For example, AWS offers services such as 

the Serverless Application Model and the AWS Serverless 

Application Repository to simplify the process of building, 

testing, and deploying serverless microservices applications. 

 

Unparalleled flexibility in data handling 

When combined with serverless databases, serverless 

microservices represent a transformational approach to 

scalable applications. AWS offers serverless databases 

like Amazon Aurora Serverless and Amazon Document 

DB with serverless scaling. These database services 

complement serverless microservices, providing scalable and 

cost-efficient data storage solutions that automatically adjust 

to application needs. 

 

Room for experimentation and prototyping 

Serverless platforms provide a low-cost environment for 

experimentation compared to traditional server-based 

models. As a result, developers can quickly deploy serverless 

microservices without worrying about upfront infrastructure 

costs. Consequently, this enables rapid exploration and 

testing of new ideas or features. 

 

Scalable backend for mobile and IoT 

Serverless microservices are well-suited for scalable 

backends in mobile and Internet of Things (IoT) 

applications. They can efficiently handle sporadic requests 

from mobile and IoT devices without constantly maintaining 

a persistent server infrastructure. 

 

3. Themis Architecture 
 

In this section, the design of Themis is investigated in better 

detail, and a high-level explanation of its architecture is 

provided. [8-10] The Themis architecture is structured with a 

layered approach, consisting of core communication 

protocols and upper layers for actions related to 

communication and identifier management. Here is an 

overview of the Themis architecture: 

 

Core Communication Protocol Layer: 

• This layer forms the foundation of the Themis framework, 

providing a pair of communication protocols that offer 

strong security guarantees. 

• The protocols are designed to facilitate secure service-to-

service interaction without relying on a centralized point of 

authority. 

• Security features such as confidentiality, authentication, 

and integrity are enforced at this layer to ensure the 

integrity and privacy of communication. 

 

Upper Layer for Actions: 

• Building upon the core communication protocols, the 

upper layer provides a series of actions related to 

communication and identifier management. 

• Actions include functionalities such as storing, finding, 

and joining services within the network. 

• These actions enable decentralized and flexible 

communication among services while maintaining security 

and integrity. 

 

Design Goals Themis is a peer-to-peer (P2P) communication 

system that is designed to be suited for the deployment of a 

large-scale, multi-cloud, and open service mesh. It does this 

by achieving the following actions during its development. 

 

Security: Because a service mesh is multi-tenant, allowing 

multiple applications to share the same machine's resources 

simultaneously, it is required to offer fine-grained security 

guarantees. In order to prevent services that are sharing a 

network from listening in on one another's conversations, the 

security mechanism that is in place must be able to provide 

for confidentiality. This means that the data that is being sent 

between two parties must remain hidden.[11] It is necessary 

to alleviate the difficulties of setting up the joining 

procedure, such as connecting with a central authority 

registry, in order to establish an open service mesh in which 

other providers can participate. Nevertheless, decreasing the 

complexity of the joining process makes it possible for both 

dishonest and trustworthy nodes to coexist on the same 

network. Therefore, in order to be able to attribute malicious 

conduct, the service mesh needs to give a high level of 

accountability for the messages that are being sent. There 

must be a guarantee of both authentication and integrity in 

order to establish accountability. In the context of 

information exchange, authentication refers to the fact that 

the individuals exchanging data are who they claim to be, 

whereas integrity refers to the fact that the material that is 

being sent has not been altered or otherwise falsified. 

 

In order to construct other security primitives, such as 

authorization, on top of these, they can serve as the 

fundamental building blocks. 
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Extensibility: In a serverless application, each service is 

started and terminated separately, according to the demand 

made by the program's users. It is necessary for a service 

mesh to have the ability to scale on its own in order to 

accommodate the high duplication of services. Service 

meshes need to be open, which means that instances can be 

added and deleted in a flexible and quick manner, and they 

should be hosted on both commercial clouds and client 

premises where they are physically located. This is necessary 

in order to prevent difficulties related to vendor lock-in and 

privacy concerns.  

Service Discovery: When it comes to the business logic that 

they execute, service instances must be able to find one 

another. By collecting metrics about the internal status of the 

system, instances can either provide observability functions 

to the serverless architecture or perform discrete portions of 

the workflow of the same application. These two choices are 

both feasible. Since serverless apps like disaster management 

have their limitations, centralizing the deployment of the 

discovery technique weakens the serverless infrastructure's 

resistance to a regional outage. An essential feature of any 

decentralized service discovery mechanism should be the 

ability to automatically distribute requests across all 

available instances of the service, the ability to detect and 

repair service instances in the event of a failure, and the 

ability to test new versions of services with a canary release. 

[12] 

 
Figure 2: layer architecture  

 

Overview: A two-layer protocol framework is part of 

Themis's design. An essential communication protocol 

combination that offers decentralized privacy, security, and 

authentication is the first, lower layer, in this layer, there are 

two protocols. A secure channel for communication between 

nodes can be established using the first protocol, which is an 

authenticated key agreement protocol. The second one is a 

protocol that allows the two verified nodes to communicate 

directly with each other. The key agreement protocol and the 

mTLS handshake protocol share several commonalities. [13-

15] To ensure the security of communication, the 

communication protocol employs symmetric cryptographic 

primitives. By working together, the two protocols ensure 

that every connection between nodes is secure. This allows 

for the cryptographic connection of a network identity to 

every message sent over the key-enabled secure channel; this 

is accomplished by associating a self-verifying identity with 

a symmetric key. 

The preceding protocol pair is used as a foundation for the 

second, upper layer. This layer provides a set of operations 

that are linked to identification management. Examples of 

actions are join, store, and search. These actions enable 

nodes to associate and maintain the mapping between 

identifiers, including identifiers that relate to nodes as well as 

identifiers that correspond to objects themselves. The 

guarantees that are supplied by the lower layer are utilized by 

this layer in order to improve the security features of the 

peer-to-peer (P2P) communication between nodes that are 

the foundation of a completely decentralized serverless 

infrastructure. Additionally, this layer comprises a number of 

configurable characteristics that are dependent on the 

particulars of the deployment. Some variables include 

redundancy, which allows for many copies of an identifier-

to-node mapping, and freshness, which allows the network to 

self-calibrate the mapping's staleness. In the seventh section, 

we discuss the ways in which these factors can be utilized to 

create a comprehensive service mesh design. [16] 

 

System & Adversary Model-They present the Themis system 

and adversary model in this part. Although the service mesh 
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application served as inspiration for Themis' architecture, 

any decentralized application can use it. 

 

4. System Model 
 

A collection of nodes that communicate with one another in 

order to share application-specific information makes up our 

system. In order to construct a serverless application, for 

example, each node can stand in for a computer or a service 

that requires interaction with other nodes. For the purpose of 

sharing information with other nodes in the network, each 

node can store and retrieve data-objects that stand in for 

specific capabilities or pieces of data. Each node is equipped 

with an identification that serves as a unique identifier for 

them within the system. According to the assumptions, nodes 

are aware of the name of the data that they are searching for. 

Themis does not care about the designation of the data. 

However, despite the fact that nodes may be physically 

placed in separate locations and managed by different 

operators, each node is capable of communicating with any 

other node. A layered architecture is followed by Themis, 

which is illustrated in Figure 2. This architecture is 

comprised of a lower layer and an upper layer, Within 

Themis, nodes have the ability to be categorized into many 

networks, each of which is identifiable by a network 

identifier. Before a node may join a network, it must first 

establish contact with a member of that network. This is 

known as bootstrapping communication. Each node in 

Themis is responsible for generating and storing a 

cryptographic key pair that serves as a representation of the 

identity of that particular node. Additionally, this is 

necessary in order to link messages that originate from the 

same node and to enable authentication of nodes. They make 

the assumption that every node possesses an adequate 

amount of storage capacity that can be used on maintaining 

the state of the overlay network.  

 

Adversary Model  

Someone who has full command of the communication 

channel but no actual access to the machines is deemed a 

Dolev-Yao attacker in Themis. In addition, the protocols' 

underlying cryptographic systems have security protections 

that this type of attacker cannot exploit. These schemes 

include hashing, signatures, and mac addresses. The 

confidentiality, integrity, and authenticity of the messages 

that services exchanged over Themis are the targets of his 

mission, which is to break them. Attacks that try to disrupt 

the connection between the nodes, such as denial of service 

(DoS) and jamming are not tolerated by Themis, just like 

they are by other transport layer architectures, such as 

mTLS. For the purpose of enabling applications to make use 

of services that are hosted by the same physical computer, 

Themis was designed to allow machines to control various 

identities on the overlay. The purpose of Themis is to 

establish the identities of the services and to make it possible 

for them to build a safe channel for future communication. 

Themis does not specify a particular authorization technique. 

Programmers are able to create additional security 

characteristics, such as access control policies, on top of it 

based on the requirements of each application thanks to its 

robust authentication, integrity, and confidentiality 

guaranties. When it comes to accountability, every service is 

held responsible for its actions. It is possible to identify and 

eliminate services that are malicious or malfunctioning in 

this manner.  

 

Themis’s Low-Level Architecture  

The protocols that make up Themis's low layer are first 

described in this section, and their security assurances are 

then examined in more detail.  

 

Low-Level Protocols  

The two bespoke protocols, which are covered in this 

section, have constructed secure channels across which all 

network messages are transferred between nodes. Without 

depending on a centralized PKI, the first protocol offers 

authenticated key agreement between any two network 

identities. Message integrity, confidentiality, and 

authentication are provided by the second protocol, which 

makes use of the pre-established symmetric key.  

 

Authenticated Key Agreement. In the context of this 

discussion, authentication refers to the fact that each and 

every message can be traced back to a single identity. The 

hash of a node's public key and the name of the network are 

the two components that make up the node's identification. 

This indicates that Alice is free to select a public/private key 

combination (PKA, SKA), but the hash of the public key is 

what determines Alice's identity on the network netid. In 

other words, Alice is equal to the hash of the public key over 

the netid. Figure 2 portrays the protocol in its entirety. In this 

step, Alice selects a Diffie–Hellman exponent a and a new 

nonce symbol NA. In addition to sending Bob PKA and 

netid, she also sends Bob д is and NA. Bob's identifier B is 

included in the list of things that have been signed with SKA. 

When Bob receives a new message, the first thing he does is 

check to see if the signature is legitimate. Additionally, he 

examines the identification B that has been signed by Alice 

in order to verify that he was the intended recipient of the 

message. The next step is for Bob to select his own Diffie–

Hellman exponent, which he then transmits back to Alice 

along with his own public key, which is signed by the private 

key that corresponds accordingly. The inclusion of NA from 

the initial message enables Alice to verify that the 

communication is still fresh. Additionally, Bob provides 

Alice's identification A, which enables her to authenticate 

that the message was intended for her. Following that, Bob 

computes the key KAB. The second message that Alice 

receives prompts her to check whether or not the hash of the 

public key PKB corresponds to the identity that she had 

intended to speak with. In such scenario, she determines 

whether or not the signature is legitimate and then computes 

the new shared symmetric key KAB, which is equal to (д b) 

a. Alice gives Bob a MAC of NA that she built using KAB in 

order to demonstrate to him that she is the one who knows 

the key. In the event that the protocol is completed without 

any problems, it ensures that Alice and Bob are in possession 

of the same secret key.[17] 
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Figure 3: Authenticated Key Agreement Protocol. 

 

The devices will be able to trust each other when they talk to 

each other in the future thanks to the secret key that was 

generated. Alice and Bob both store KAB along with the 

other party's identity. So, the number of identifiers that each 

node decides to talk to is equal to the number of keys that it 

needs to store.  

 

Secure Communication. Every single communication that 

takes place between nodes in the network is carried out via 

the Secure Communication Protocol (with the exception of 

key establishment). To be more specific, this protocol is 

utilized to ensure confidentiality, integrity, and message 

authentication for all of the procedures that maintain the 

peer-to-peer (P2P) network. These processes include joining, 

updating, and leaving the network, as well as the messages 

that are exchanged in order to carry out a locate or store 

operation. [18] 

 

Figure 3 portrays the protocol in its entirety. Alice first 

increases the sequence number SB that she keeps for her 

connection with Bob. This is done because she wishes to 

send Bob the command cmd. After that, she encrypts the 

command by utilizing the symmetric key that she has shared 

with Bob, in addition to Bob's identity and the sequence 

number. Furthermore, she adds her identification A in her 

message in order to provide Bob with the ability to retrieve 

the appropriate symmetric key as well as a MAC of 

everything. Bob will use the key that has already been 

established to validate the message authentication code 

(MAC) when he receives the message. If the MAC is not 

invalid, he will decrypt the message. It is Bob's responsibility 

to verify that the identity contained within the encrypted 

message is his own, and that the sequence number SB is 

greater than the sequence number that he had previously 

obtained from Alice. In that case, he is able to carry out the 

command. When a response reply is available, Bob encrypts 

it using KAB and SB.[19-20] He then calculates the message 

authentication code (MAC) of the encrypted message and 

sends it back to Alice. When Alice receives message 2, she 

checks to make sure that the MAC is legitimate and that the 

sequence number is the same as the one she gave in message  

 

In the event that the protocol is terminated without any 

faults, it ensures that the command and answer are kept 

confidential and that they are not compromised.  

 

 

 

 

 

 
Figure 4: Secure Communication Protocol. 
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5. Security Analysis 
 

Authenticated Key Agreement.  

Guarantee 1. The only people who know the key KAB are 

Alice and Bob. This is because the decisional Diffie–

Hellman (DDH) assumption is true in the underlying group, 

and the Authenticated Key Agreement Protocol ends without 

any problems.  

 

Setup: Let's denote g as the generator of a cyclic group G. 

Alice and Bob agree on a prime modulus p, a generator g of 

the group G, and public parameters (p,g). These parameters 

are publicly known. 

 

Key Generation: Alice chooses a random private exponent a 

and computes her public value A=ga mod p. Bob similarly 

chooses a random private exponent b and computes his 

public value B=gb mod p. 

 

Key Agreement Protocol: Alice and Bob exchange their 

public values A and B. 

 

Shared Secret Key Derivation: Both Alice and Bob compute 

the shared secret key KAB as follows: 

• Alice computes KAB=Ba mod p. 

• Bob computes KAB=Ab mod p. 

 

Proof of Guarantee: 

• By the DDH assumption, given g, ga, and gb, it is 

computationally hard to compute gab. 

• In the key agreement protocol, Alice sends A=ga and Bob 

sends B=gb. 

• Without knowing either a or b, an eavesdropper cannot 

compute the shared secret KAB as (gb)a or (ga)b. 

• Hence, only Alice and Bob, who know their respective 

private exponents a and b, can compute the shared secret 

KAB. 

 

Guarantee 2. If all goes according to plan and the 

Authenticated Key Agreement Protocol terminates 

successfully, Alice and Bob will have the same key. 

1) Proof. Eve's Challenge: Eve's goal is to convince Alice 

to assign a different key KAEto her communication with 

Bob, thereby violating the guarantee. 

2) Options Available to Eve: Eve can attempt to 

manipulate message 2, which contains Bob's Diffie-

Hellman contribution. She can compose a new message 

or replay a previously captured one. 

3) Adversary Model and Constraints: The proof 

highlights the constraints on Eve's actions. She cannot 

change Bob's public key without violating the second 

preimage resistance of the underlying cryptographic hash 

function. 

4) Attacks on Bob's Signature: Eve cannot gain Bob's 

private key or counterfeit his signature due to constraints 

in the adversary model. 

5) Replay Attack Mitigation: The proof discusses how 

replay attacks are mitigated. Eve cannot replay messages 

from previous sessions or those intended for other nodes 

because the nonce NA chosen by Alice and her 

identification are components of the signature associated 

with message 2. 

Analysis for Bob's Perspective: Similar constraints apply to 

Bob's perspective, preventing Eve from forging Alice's 

signature on message 1 and mitigating replay attacks. 

 

Confirmation of New Key: Eve needs to convince Bob to 

register a different symmetric key for Alice using the new 

key. However, based on Guarantee 1, Eve is not aware of the 

symmetric key. Additionally, secure MAC techniques make 

it infeasible for Eve to produce a valid MAC of NAwithout 

knowing the key. 

 

Secure Communication Protocol.  

 

Guarantee 3. For as long as Alice and Bob are the only ones 

who know the symmetric key KAB, the message integrity 

and secrecy will be maintained for any command and 

response that is sent by Alice and Bob, respectively.  

 

Proof. The proof you provided succinctly highlights the 

essential role of the shared key KABin ensuring both the 

confidentiality and integrity of the communication between 

Alice and Bob. Let's break down the key points: 

 

Confidentiality through Encryption: The proof asserts that 

the confidentiality of the command and response messages is 

guaranteed through encryption with the shared key KAB. 

This means that without knowledge of KAB, an adversary 

cannot decipher the encrypted messages, maintaining their 

confidentiality. 

 

Threat Model and Fundamental Primitives: The proof 

references the threat model, which assumes that all 

fundamental cryptographic primitives, including encryption 

and MACs, are secure. In other words, it is assumed that the 

encryption function used to encrypt the messages with KAB 

is secure and resistant to attacks. 

 

Integrity through MACs: To ensure the integrity of the 

messages, the proof suggests the use of message 

authentication codes (MACs) computed using KAB. 

Verifying the MAC allows Alice and Bob to detect any 

tampering with the messages. Since only they possess KAB, 

only they can generate valid MACs, maintaining message 

integrity. 

 

Contradiction in Violating Confidentiality and Integrity: 

The proof argues that breaking the confidentiality or integrity 

of the messages would require violating the confidentiality of 

the system or reconstructing the message's MAC without 

knowledge of the MAC key KAB. This contradicts the 

assumption of the threat model, which assumes the security 

of fundamental cryptographic primitives. 

 

Guarantee 4. Each and every order that Bob receives may be 

ascribed to Alice, and each and every response that Alice 

receives can be assigned to Bob. To put it another way, the 

authentication of messages is ensured.  

 

Proof. Authentication Assurance for Alice: The proof 

highlights that in order to violate the assurance for Alice, the 

adversary would need to modify message 2, which contains 

Bob's response. However, according to Guarantee 3, it is not 
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feasible for the adversary to create message 2 due to the 

structure of the protocol. 

 

Replay Attack Mitigation: Even if the adversary manages 

to replay a message, it must have the same sequence number 

as the original message from Alice. However, Alice ensures 

that each subsequent message she sends will have an 

incremented sequence number, preventing the adversary 

from successfully replaying a message and tricking her into 

accepting a fraudulent response from Bob. 

 

Protection by Encryption: The encryption used in the 

protocol ensures that only the intended receiver can decrypt 

the message. Therefore, even if the adversary replays the 

genuine message from Bob, it cannot be used to deceive 

Alice because the encryption protects the intended recipient. 

 

Limited Attack Options: The proof concludes that the 

adversary's only option for replay is the genuine message 

from Bob, which does not constitute an attack since it is the 

expected behavior in the protocol. 

 

Table 1: Themis’s High-Level Messages. The sender and 

receiver assign cmd and rsp in the Secure Communication 

Protocol according to the operation they want to execute 
Operation Sender (cmd) Receiver (resp) 

Find Find identifier Value or id 

store Store abj ack 

Join Join netid id 

Update Update Id(id,ObjTable) 

Leave Leave ObjTable,id) ack 

 

6. Experimental Setup 
 

With a throughput overhead of only 1.24% on average and a 

latency overhead of less than 4% in nearly all benchmarks, 

Themis' security benefits become more apparent in the 

context of low latency serverless apps. With each of the eight 

serverless apps, this is the situation. each physical node, they 

set up numerous (virtual) Themis nodes as operating-system 

processes. Each virtual Themis node is equipped with its 

own unique copy of the runtime environment, listens on a 

distinct pair of IP addresses and ports, and accepts events in 

its own particular event queue. It reports averages over one 

thousand runs, unless it is specifically stated otherwise.  

 

Table 2: Conducting a comprehensive performance review. There are three values that we offer for each measurement. These 

values are the performance of Themis T, the performance of a vanilla implementation V, and the increase in percent %∆. 
 Startup Time [s] Exec.Time [s] Throughput[req/s] Latency [s] Duration [s] 

  T/v  T/v  T/v  T/v  T/v 

SVM 18.20 0.30/0.24 0.18 175.23/174.80 0.00 0.66/0.66 0.81 54.59/56.06 0.00 1.48/1.48 

KNN 44.83 0.29/0.22 0.22 240.60/241.13 0.00 0.45/0.45 0.23 91.16/90.91 0.00 3.04/3.04 

ANN 345.51 1.04/0.19 0.45 730.61/720.15 0.00 0.18/0.18 0.68 330.83/325 0.22 5.08/5.06 

Decision Tree 40.42 0.32/0.20 6.96 163.11/153.60 6.61 0.66/0.76 11.88 41.37/22.00 7.65 1.49/1.39 

Random Forest 13.49 0.44/0.44 0.93 125.17/155.95 1.05 0.88/0.83 2.91 38.88/28.02 0.85 1.04/1.02 

Logistic Regression 41.83 0.29/0.29 0.35 122.66/122.11 1.06 0.93/0.92 1.70 28.67/23.98 0.00 1.04/1.04 

Naive Bayes 29.00 0.24/0.24 0.21 128.35/115.11 0.00 1.00/1.00 3.27 23.65/23.96 0.00 0.88/0.88 

RNN 0.00 0.03/0.03 0.14 160.34/166.21 0.00 0.71/0.71 0.29 51.32/49.03 0.00 1.46/1.46 

 

Table 2 provides an end-to-end performance evaluation of 

Themis compared to a vanilla implementation across various 

machine learning algorithms. Each measurement includes 

three values: the performance of Themis (denoted as T), the 

performance of a vanilla implementation (denoted as V), and 

the percentage increase (%∆) in Themis's performance 

compared to the vanilla implementation. 

 

 
Figure 5: End-to-End Performance 
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Startup Time [s]: This measurement indicates the time it 

takes for the system to start up. Themis demonstrates startup 

times ranging from 0.03 to 1.04 seconds, with percentage 

increases in performance ranging from 0% to 11.88%. 

 

Execution Time [s]: This metric represents the time taken 

for the execution of a task. Themis shows execution times 

ranging from 0.19 to 0.44 seconds, with percentage increases 

in performance ranging from 0% to 6.96%. 

 

Throughput [req/s]: Throughput measures the number of 

requests processed per second. Themis achieves throughput 

values ranging from 0.14 to 6.96 requests per second, with 

percentage increases in performance ranging from 0% to 

11.88%. 

 

Latency [s]: Latency refers to the time delay between a 

request and its response. Themis exhibits latency values 

ranging from 115.11 to 241.13 seconds, with percentage 

increases in performance ranging from 0% to 6.61%. 

 

Duration [s]: This measurement indicates the total duration 

of a task. Themis demonstrates durations ranging from 0.88 

to 5.06 seconds, with percentage increases in performance 

ranging from 0% to 7.65%. 

Individual Operator Performance  

 

Local Resolution Experiment: In this experiment, objects 

are configured to resolve to the node receiving the request, 

eliminating the need for forwarding the request to other 

nodes. This setup excludes the overhead of serialization, 

inter-process communication, and context switching. The 

resulting throughput averages 10,223 operations per second 

for find operations and 9,332 operations per second for store 

operations. The latency averages 331ms for find operations 

and 338ms for store operations. These results represent the 

practical limits of Themis's runtime implementation under 

ideal conditions. 

 

Scaling Experiment: In the second experiment, the 

throughput and latency of find operations are studied as a 

function of the number of nodes in the network. Object 

identifiers are randomly generated, hitting all nodes in the 

network with uniform probability. The overhead of adding 

security ranges from 2.1% to 31.6%, depending on the 

percentage of nodes that have performed the key agreement 

protocol. For low numbers of nodes, where the majority have 

performed the key agreement protocol, the overhead is 

lower. However, for high numbers of nodes, where the 

majority have not performed the protocol, the overhead is 

higher. 

 

Join Operation Performance: To understand the 

performance of the joint operation, 500 nodes contact ten 

bootstrap nodes in a round-robin fashion. Sequentially 

starting these 500 nodes takes 362.466 seconds (an average 

of 720.5ms per node). However, spawning 500 nodes in 

parallel reduces the total time to 15.403 seconds (an average 

of 30ms per node). This reduction in time is partly due to 

operating system overhead, such as V8 process creation, and 

overheads from public-private key pair creation and 

identification.

 

 
Figure 6: Operation Find. The plots show the throughput (bottom) and the latency (top) of the find operation, as a function of 

the number of nodes, on a constant operation workload of 50K peer-to-peer operations per second. Orange line for baseline 

and red for Themis 

 

Then create a series of nodes with a startup configuration 

that executes a join command, and then when the join 

process is finished, then execute a leave command. This 

allows us to gain an understanding of the overhead 

associated with leave. An average of 780 milliseconds is 

required to "blink" a node, which means to have a node leave 

immediately after joining. This is accomplished by doing this 

in a loop in a sequential fashion, with each node being 

spawned only after the previous node has been shut down. 

The majority of this time is spent on system-level overheads, 

the majority of which are caused by (i) the importing of 

many library source files and (ii) the binding to a variety of 

network interfaces. Overheads take up a considerable 

percentage of this time. Less than fifty milliseconds is the 

amount of time that is spent on leave.   
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7. Conclusion 
 

This paper focus on Themis, a versatile framework designed 

for secure peer-to-peer (P2P) communication that can be 

applied across various scenarios requiring point-to-point 

interaction. Themis serves as a platform for implementing 

secure service mesh communication networks, particularly 

beneficial for data centers and companies necessitating 

dynamic load balancing and extensibility. Themis comprises 

two layers. The lower layer provides a secure 

communication protocol akin to mutual TLS (mTLS) but 

with a strong focus on distributed identity management. A 

comprehensive security analysis demonstrates the 

framework's ability to ensure confidentiality, message 

integrity, and message authentication/linkability. Moreover, 

the paper outlines how additional security guarantees can be 

built upon its core properties. The upper layer of Themis 

consists of a set of actions that enable a fully functional P2P 

network, enhancing its usability and practicality in diverse 

scenarios. Through its robust security features and flexible 

architecture, Themis offers a reliable foundation for secure 

communication in various point-to-point interaction 

scenarios. 

 

References 
 

[1] Adzic, G., & Chatley, R. (2017). Serverless 

Computing: Economic and Architectural Impact. 

InProceedings of the 2017 11th Joint Meeting on 

Foundations of Software Engineering (pp. 884–889). 

New York, NY, USA: ACM. 

https://doi.org/10.1145/3106237.3117767 

[2] Akiwatkar, R. (2017). The Components of a 

Serverless Architecture Framework - DZone 

Cloud.Retrieved April 2, 2018, from 

https://dzone.com/articles/the-components-of-a-

serverless-architectureframework 

[3] Amazon. (2018). Amazon API Gateway [Cloud 

vendor]. Retrieved April 2, 2018, from 

https://aws.amazon.com/api-gateway/ 

[4] Ast, M., & Gaedke, M. (2017). Self-contained Web 

Components through Serverless Computing. 

InProceedings of the 2Nd International Workshop on 

Serverless Computing (pp. 28–33). New York, NY, 

USA:ACM. https://doi.org/10.1145/3154847.3154849 

[5] AWS. (2018). Serverless Computing – Amazon Web 

Services [Cloud vendor]. Retrieved April 2,2018, 

from https://aws.amazon.com/serverless/ 

[6] Azure, M. (2018). Serverless Computing | Microsoft 

Azure [Cloud vendor]. Retrieved April 2, 2018, 

[7] Angeliki Aktypi, Kubra Kalkan, and Kasper 

Rasmussen. 2020. SeCaS: Secure Capability Sharing 

Framework for IoT Devices in a Structured P2P 

Network. In Proceedings of the 10th ACM 

Conference on Data and Application Security and 

Privacy (CODASPY ’20). ACM, New York, NY, 

USA, 271–282.  

[8] AWS Authors. 2021. AWS App Mesh User Guide. 

Amazon. Retrieved November 10, 2021 from 

https://docs.aws.amazon.com/app-

mesh/latest/userguide/app-meshug.pdf  

[9] AWS Authors. 2021. AWS Lambda Developer Guide. 

Amazon. Retrieved November 10, 2021 from 

https://docs.aws.amazon.com/lambda/latest/dg/lambda

-dg.pdf# welcome Google Authors. 2021. Google 

Cloud Functions. Google. Retrieved November 10, 

2021 from https://cloud.google.com/functions/  

[10] Istio Authors. 2021. The Istio service mesh. Istio. 

Retrieved November 10, 2021 from 

https://istio.io/latest/about/service-mesh/ 

[11] Libp2p Authors. 2021. Libp2p. Protocol Labs. 

Retrieved November 10, 2021 from https://libp2p.io  

[12] Linkerd Authors. 2021. Linkerd Architecture. 

Linkerd. Retrieved November 10, 2021 from 

https://linkerd.io/2.11/reference/architecture/#  

[13] NGINX Authors. 2021. NGINX Architecture. F5. 

Retrieved November 10, 2021 from 

https://docs.nginx.com/nginx-service-

mesh/about/architecture/  

[14] Agapios Avramidis, Panayiotis Kotzanikolaou, and 

Christos Douligeris. 2007. Chord-PKI: Embedding a 

Public Key Infrastructure into the Chord Overlay 

Network. In Proceedings of the 4th European 

Conference on Public Key Infrastructure: Theory and 

Practice (EuroPKI’07). Springer-Verlag, Berlin, 

Heidelberg, 354–361.  

[15] Ingmar Baumgart and Sebastian Mies. 2007. 

S/kademlia: A Practicable Approach Towards Secure 

Key-Based Routing. In International Conference on 

Parallel and Distributed Systems. IEEE, New York, 

NY, USA, 1–8.  

[16] Daniel J Bernstein, Bernard Van Gastel, Wesley 

Janssen, Tanja Lange, Peter Schwabe, and Sjaak 

Smetsers. 2015. TweetNaCl: A Crypto Library in 100 

Tweets. In International Conference on Cryptology 

and Information Security in Latin America. Springer 

International Publishing, Cham, 64–83.  

[17] Neander L. Brisola, Altair O. Santin, Lau C. Lung, 

Heverson B. Ribeiro, and Marcelo H. Vithoft. 2009. A 

Public Keys Based Architecture for P2P 

Identification, Content Authenticity and Reputation. 

In International Conference on Advanced Information 

Networking and Applications Workshops. IEEE, New 

York, NY, USA, 159–164.  

[18] Kevin R.B. Butler, Sunam Ryu, Patrick Traynor, and 

Patrick D. McDaniel. 2008. Leveraging Identity-

Based Cryptography for Node ID Assignment in 

Structured P2P Systems. IEEE Transactions on 

Parallel and Distributed Systems 20, 12 (2008), 1803–

1815.  

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1481 

https://www.ijsr.net/
https://istio.io/latest/about/service-mesh/



