
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Secure and Scalable Service-to-Service Interaction

in Serverless Microservices Environments

Roshan Mahant1, Sumit Bhatnagar2, Vikas Mendhe3

1LaunchIT Corp, Urbandale, IA USA

Corresponding Author Email: roshanmahant[at]gmail.com

2JPMorgan Chase & Co., New Jersey, USA

Email: sumit.bhatnagar[at]outlook.com

3LaunchIT Corp, Urbandale, IA USA

Email: Vikas.mendhe[at]gmail.com

Abstract: Serverless computing environments consist of standalone microservices that operate independently and scale up

autonomously. To enable decentralized communication among these services, peer-to-peer protocols can be employed. This paper

introduces Themis, a framework designed for secure service-to-service interaction within serverless environments and underlying

service mesh architectures. Themis leverages decentralized identity management to facilitate confidential and authenticated

communication between services without relying on a centralized certificate authority. The framework adopts a layered architecture,

with a lower layer comprising a core communication protocol pair that offers strong security guarantees without relying on a centralized

authority. Building upon this foundation, an upper layer provides actions related to communication and identifier management, such as

store, find, and join operations. The paper examines the security properties of Themis's protocol suite and demonstrates its decentralized

and flexible communication platform. Evaluation of the Themis prototype, implemented in JavaScript for serverless applications, reveals

that these security benefits are accompanied by minimal runtime latency, throughput overheads, and modest startup delays. Themis

offers a promising solution for secure and scalable service-to-service interaction in serverless computing environments.

Keywords: Lambda, microservices architectures, Themis, secure communication, service mesh, decentralized identity management,

serverless applications

1. Introduction

The serverless architecture, much like the microservices

architecture, is broken down into a number of fundamental

components on its own. In serverless computing,

functionalities are broken down into more granular

components, but in microservices, related capabilities are

grouped together into a single service. Developers are

responsible for writing their own unique code, which is then

executed as independent and self-contained functions

executing within stateless computing services. Microservice

is a decentralized design pattern that involves the separation

of an application into a number of separate functions, also

known as services, which are able to collaborate and interact

with one another using application programming interfaces

(APIs). Every single microservice is equipped with its very

own database, libraries, and templates, and it is also tested

independently from their counterparts. There is a common

comparison made between it and monolithic architecture.

All of the features are unified in the latter, as they are tightly

related to one another and operate as a single function.[1]

Microservices are characterized by the fact that each

component is more or less autonomous, and it is not

necessary to execute a complete application in order to

access single features. Until the mail event is triggered at

midnight, there is no server operating to service the mail

activity in serverless computing. This is because there is no

server running. Following the execution of the code, the

server is subsequently decommissioned after it has been

allocated. In order to complete tasks that are typically

handled by servers, serverless applications frequently make

considerable use of services provided by third parties. [2-3]

It is possible that these services are either single services that

seek to give a turnkey set of capabilities, such as Parse or

Firebase, or they could be rich ecosystems of services that

are able to communicate with one another, such as Amazon

AWS and Azure. Both infrastructure and higher-level

abstractions, such as federated identification, role and

capability management, and search, could be offered by

these services. Examples of the former include message

queues, databases, and edge caching. By controlling the

request-response cycle, a general-purpose web application

that is built on a server is able to fulfill one of its key

functions. Additionally, controllers on the server side are

responsible for processing input, invoking the relevant

application behavior, and constructing dynamic responses,

generally with the assistance of a templating engine. The

client-side control flow and dynamic content creation take

the role of the server-side controllers in a serverless

application, which is characterized by the utilization of

third-party services to weave together the program's

behavior. Utilizing API calls and client-side user interface

frameworks to generate dynamic content, rich JavaScript

apps, mobile applications, and increasingly, TV or

embedded Internet of Things applications, are responsible

for coordinating the interaction between the various services

[4].

Work that takes place between the controller and the

infrastructure, also known as the business logic, is the most

important component of a web application that is hosted on a

server. For the duration of the application's existence, a

server with a lengthy lifespan will host the code that

implements this logic and carry out the necessary

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1472

https://www.ijsr.net/
mailto:roshanmahant@gmail.com
mailto:sumit.bhatnagar@outlook.com
mailto:Vikas.mendhe@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

processing. A lifecycle that is significantly shorter and more

comparable to the timing of a single HTTP request/response

cycle is possessed by custom code components in serverless

apps. Whenever a request is received, the code becomes

active, processes the request, and then goes into a dormant

state as soon as the activity level decreases sufficiently. A

managed environment, such as Amazon Lambda, Azure

Function, or Google Cloud Functions, is typically where this

code is stored. This environment is responsible for the

administration of the code's lifecycle as well as scaling it.

The term "Function as a Service" (FaaS) is sometimes used

to refer to this particular form of software organization. As a

result of the short per-request lifecycle, a per-request price

model is also available, which gives certain teams the

opportunity to realize significant cost savings. It is possible

to fit and separate the business logic in each REST API with

its own function. [5] The structures, automation, and

optimization are already established. As a consequence, a

comprehensive agile infrastructure that is prepared to be

deployed in a very short amount of time has been produced.

Figure 1: Amazon Tech Stack

An example of a serverless architecture that is based on

microservices and is using an Amazon Tech Stack is shown

in the image above.

The essential component of the system is Amazon Web

Services Lamda, which obtains its routing information from

the Amazon API gateway and then executes the capabilities

that have been defined for it. Creating serverless

microservices with an HTTP front end is one use case for

API Gateway + FaaS. This allows for all of the benefits that

come with FaaS functionalities, including scaling,

management, and other advantages. There is a lot of value in

putting technology in front of an end user as soon as possible

in order to get early feedback, and the reduced time-to-

market that comes with serverless fits right in with this

philosophy. [6] The most important benefit, in my opinion, is

the reduced feedback loop that is required to create new

implementation components for an application. On the basis

of our contributions, the following can be summarized:

Security Protocols: By using the self-certifying identities of

the nodes involved, they present two innovative methods for

secure key agreement and communication. These methods

harness the nature of the network. We are able to avoid

relying on a centralized source of confidence, which is the

case with traditional certificate authorities.

Model and Proofs: These protocols' security assurances are

examined in depth in our security study. In particular, we

demonstrate that they successfully provide authentication,

confidentiality, and message integrity for every single

message that is exchanged.

High-level Operations: To ensure that a structured overlay

organization is maintained, we identify five essential actions

that nodes must carry out. These operations are located,

store, join, update, and leave. Through the utilization of these

fundamental components, Themis is able to accomplish

service discovery and extensibility in a manner that is

completely decentralized. Furthermore, they provide further

elaboration on the security aspects that are effective against a

variety of common types of attacks that are directed at this

P2P framework.

Open-source Implementation: Themis is an application

library that may be easily added to and removed from

existing projects. It is based on QuickJS, a small and

embeddable JavaScript engine. About 3,300 lines of

JavaScript are required to implement Themis. Themis

handles object initialization, communication, and

serialization by utilizing a JavaScript implementation of the

NaCl Networking and Cryptography package.

Empirical Evaluation: As part of the review of Themis, they

target micro benchmarks that scale between one and one

thousand nodes and examine its properties across eight

serverless applications. Both in terms of runtime

performance and in terms of the number of lines of code that

are altered, Themis's security gains come at a cost that is

negligible to insignificant. [7]

2. Serverless Microservices Architecture:

Framework

Combining serverless computing with microservices is a

powerful approach to building scalable and flexible

applications. Let's briefly look at how serverless

microservices work.

After a developer writes the code for a microservices

application, its functions are deployed to a serverless

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1473

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

computing platform, such as AWS Lambda. Microservices

communicate with each other through well-defined APIs and

events, and this event-driven communication allows

Microservices to operate independently.

On the other hand, the serverless platform automatically

scales resources to accommodate changes in workload.

Serverless platforms also provide the tools for monitoring

and observability. Developers can track performance metrics,

diagnose issues, and optimize the system through logging,

tracing, and analytics. For example, by leveraging AWS

Cloud Watch Logs or CloudWatch metrics, organizations

can achieve critical log information, performance metrics,

and application insights.

Benefits of Serverless Microservices

In addition to the commonly known benefits of serverless

architecture, such as cost efficiency and flexibility, serverless

microservices offer several advantages, especially in the case

of complex and evolving applications. Let's understand this

better with the AWS computing platform services.

Granular scaling for running microservices

AWS' serverless computing service, AWS Lambda, allows

you to define and scale individual functions independently

within a specific microservice based on event-driven

triggers. This ensures efficient resource utilization and cost

savings, particularly in scenarios where different

microservices have varying demand levels.

Seamless developer experience in building applications

Serverless microservices offer seamless development and

deployment experiences facilitated by various tools and

practices. For example, AWS offers services such as

the Serverless Application Model and the AWS Serverless

Application Repository to simplify the process of building,

testing, and deploying serverless microservices applications.

Unparalleled flexibility in data handling

When combined with serverless databases, serverless

microservices represent a transformational approach to

scalable applications. AWS offers serverless databases

like Amazon Aurora Serverless and Amazon Document

DB with serverless scaling. These database services

complement serverless microservices, providing scalable and

cost-efficient data storage solutions that automatically adjust

to application needs.

Room for experimentation and prototyping

Serverless platforms provide a low-cost environment for

experimentation compared to traditional server-based

models. As a result, developers can quickly deploy serverless

microservices without worrying about upfront infrastructure

costs. Consequently, this enables rapid exploration and

testing of new ideas or features.

Scalable backend for mobile and IoT

Serverless microservices are well-suited for scalable

backends in mobile and Internet of Things (IoT)

applications. They can efficiently handle sporadic requests

from mobile and IoT devices without constantly maintaining

a persistent server infrastructure.

3. Themis Architecture

In this section, the design of Themis is investigated in better

detail, and a high-level explanation of its architecture is

provided. [8-10] The Themis architecture is structured with a

layered approach, consisting of core communication

protocols and upper layers for actions related to

communication and identifier management. Here is an

overview of the Themis architecture:

Core Communication Protocol Layer:

• This layer forms the foundation of the Themis framework,

providing a pair of communication protocols that offer

strong security guarantees.

• The protocols are designed to facilitate secure service-to-

service interaction without relying on a centralized point of

authority.

• Security features such as confidentiality, authentication,

and integrity are enforced at this layer to ensure the

integrity and privacy of communication.

Upper Layer for Actions:

• Building upon the core communication protocols, the

upper layer provides a series of actions related to

communication and identifier management.

• Actions include functionalities such as storing, finding,

and joining services within the network.

• These actions enable decentralized and flexible

communication among services while maintaining security

and integrity.

Design Goals Themis is a peer-to-peer (P2P) communication

system that is designed to be suited for the deployment of a

large-scale, multi-cloud, and open service mesh. It does this

by achieving the following actions during its development.

Security: Because a service mesh is multi-tenant, allowing

multiple applications to share the same machine's resources

simultaneously, it is required to offer fine-grained security

guarantees. In order to prevent services that are sharing a

network from listening in on one another's conversations, the

security mechanism that is in place must be able to provide

for confidentiality. This means that the data that is being sent

between two parties must remain hidden.[11] It is necessary

to alleviate the difficulties of setting up the joining

procedure, such as connecting with a central authority

registry, in order to establish an open service mesh in which

other providers can participate. Nevertheless, decreasing the

complexity of the joining process makes it possible for both

dishonest and trustworthy nodes to coexist on the same

network. Therefore, in order to be able to attribute malicious

conduct, the service mesh needs to give a high level of

accountability for the messages that are being sent. There

must be a guarantee of both authentication and integrity in

order to establish accountability. In the context of

information exchange, authentication refers to the fact that

the individuals exchanging data are who they claim to be,

whereas integrity refers to the fact that the material that is

being sent has not been altered or otherwise falsified.

In order to construct other security primitives, such as

authorization, on top of these, they can serve as the

fundamental building blocks.

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1474

https://www.ijsr.net/
https://aws.amazon.com/pm/lambda/?trk=5e541ab3-2fcc-4151-9e08-fdea53dc7fb8&sc_channel=ps&ef_id=Cj0KCQiAw6yuBhDrARIsACf94RW87Ze_jmuqSgk0qHNBWqEdFNa0titNnWEuk-IXSVnqi_XcoudcZ_kaAr2AEALw_wcB:G:s&s_kwcid=AL!4422!3!651541907473!e!!g!!amazon%20aws%20lambda!19836375769!150670855801&gclid=Cj0KCQiAw6yuBhDrARIsACf94RW87Ze_jmuqSgk0qHNBWqEdFNa0titNnWEuk-IXSVnqi_XcoudcZ_kaAr2AEALw_wcB
https://www.ibexlabs.com/services/cloud-native-development
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://www.ibexlabs.com/case-studies/nomo
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/documentdb/
https://aws.amazon.com/documentdb/
https://www.ibexlabs.com/solutions/data-led-migration

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Extensibility: In a serverless application, each service is

started and terminated separately, according to the demand

made by the program's users. It is necessary for a service

mesh to have the ability to scale on its own in order to

accommodate the high duplication of services. Service

meshes need to be open, which means that instances can be

added and deleted in a flexible and quick manner, and they

should be hosted on both commercial clouds and client

premises where they are physically located. This is necessary

in order to prevent difficulties related to vendor lock-in and

privacy concerns.

Service Discovery: When it comes to the business logic that

they execute, service instances must be able to find one

another. By collecting metrics about the internal status of the

system, instances can either provide observability functions

to the serverless architecture or perform discrete portions of

the workflow of the same application. These two choices are

both feasible. Since serverless apps like disaster management

have their limitations, centralizing the deployment of the

discovery technique weakens the serverless infrastructure's

resistance to a regional outage. An essential feature of any

decentralized service discovery mechanism should be the

ability to automatically distribute requests across all

available instances of the service, the ability to detect and

repair service instances in the event of a failure, and the

ability to test new versions of services with a canary release.

[12]

Figure 2: layer architecture

Overview: A two-layer protocol framework is part of

Themis's design. An essential communication protocol

combination that offers decentralized privacy, security, and

authentication is the first, lower layer, in this layer, there are

two protocols. A secure channel for communication between

nodes can be established using the first protocol, which is an

authenticated key agreement protocol. The second one is a

protocol that allows the two verified nodes to communicate

directly with each other. The key agreement protocol and the

mTLS handshake protocol share several commonalities. [13-

15] To ensure the security of communication, the

communication protocol employs symmetric cryptographic

primitives. By working together, the two protocols ensure

that every connection between nodes is secure. This allows

for the cryptographic connection of a network identity to

every message sent over the key-enabled secure channel; this

is accomplished by associating a self-verifying identity with

a symmetric key.

The preceding protocol pair is used as a foundation for the

second, upper layer. This layer provides a set of operations

that are linked to identification management. Examples of

actions are join, store, and search. These actions enable

nodes to associate and maintain the mapping between

identifiers, including identifiers that relate to nodes as well as

identifiers that correspond to objects themselves. The

guarantees that are supplied by the lower layer are utilized by

this layer in order to improve the security features of the

peer-to-peer (P2P) communication between nodes that are

the foundation of a completely decentralized serverless

infrastructure. Additionally, this layer comprises a number of

configurable characteristics that are dependent on the

particulars of the deployment. Some variables include

redundancy, which allows for many copies of an identifier-

to-node mapping, and freshness, which allows the network to

self-calibrate the mapping's staleness. In the seventh section,

we discuss the ways in which these factors can be utilized to

create a comprehensive service mesh design. [16]

System & Adversary Model-They present the Themis system

and adversary model in this part. Although the service mesh

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1475

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

application served as inspiration for Themis' architecture,

any decentralized application can use it.

4. System Model

A collection of nodes that communicate with one another in

order to share application-specific information makes up our

system. In order to construct a serverless application, for

example, each node can stand in for a computer or a service

that requires interaction with other nodes. For the purpose of

sharing information with other nodes in the network, each

node can store and retrieve data-objects that stand in for

specific capabilities or pieces of data. Each node is equipped

with an identification that serves as a unique identifier for

them within the system. According to the assumptions, nodes

are aware of the name of the data that they are searching for.

Themis does not care about the designation of the data.

However, despite the fact that nodes may be physically

placed in separate locations and managed by different

operators, each node is capable of communicating with any

other node. A layered architecture is followed by Themis,

which is illustrated in Figure 2. This architecture is

comprised of a lower layer and an upper layer, Within

Themis, nodes have the ability to be categorized into many

networks, each of which is identifiable by a network

identifier. Before a node may join a network, it must first

establish contact with a member of that network. This is

known as bootstrapping communication. Each node in

Themis is responsible for generating and storing a

cryptographic key pair that serves as a representation of the

identity of that particular node. Additionally, this is

necessary in order to link messages that originate from the

same node and to enable authentication of nodes. They make

the assumption that every node possesses an adequate

amount of storage capacity that can be used on maintaining

the state of the overlay network.

Adversary Model

Someone who has full command of the communication

channel but no actual access to the machines is deemed a

Dolev-Yao attacker in Themis. In addition, the protocols'

underlying cryptographic systems have security protections

that this type of attacker cannot exploit. These schemes

include hashing, signatures, and mac addresses. The

confidentiality, integrity, and authenticity of the messages

that services exchanged over Themis are the targets of his

mission, which is to break them. Attacks that try to disrupt

the connection between the nodes, such as denial of service

(DoS) and jamming are not tolerated by Themis, just like

they are by other transport layer architectures, such as

mTLS. For the purpose of enabling applications to make use

of services that are hosted by the same physical computer,

Themis was designed to allow machines to control various

identities on the overlay. The purpose of Themis is to

establish the identities of the services and to make it possible

for them to build a safe channel for future communication.

Themis does not specify a particular authorization technique.

Programmers are able to create additional security

characteristics, such as access control policies, on top of it

based on the requirements of each application thanks to its

robust authentication, integrity, and confidentiality

guaranties. When it comes to accountability, every service is

held responsible for its actions. It is possible to identify and

eliminate services that are malicious or malfunctioning in

this manner.

Themis’s Low-Level Architecture

The protocols that make up Themis's low layer are first

described in this section, and their security assurances are

then examined in more detail.

Low-Level Protocols

The two bespoke protocols, which are covered in this

section, have constructed secure channels across which all

network messages are transferred between nodes. Without

depending on a centralized PKI, the first protocol offers

authenticated key agreement between any two network

identities. Message integrity, confidentiality, and

authentication are provided by the second protocol, which

makes use of the pre-established symmetric key.

Authenticated Key Agreement. In the context of this

discussion, authentication refers to the fact that each and

every message can be traced back to a single identity. The

hash of a node's public key and the name of the network are

the two components that make up the node's identification.

This indicates that Alice is free to select a public/private key

combination (PKA, SKA), but the hash of the public key is

what determines Alice's identity on the network netid. In

other words, Alice is equal to the hash of the public key over

the netid. Figure 2 portrays the protocol in its entirety. In this

step, Alice selects a Diffie–Hellman exponent a and a new

nonce symbol NA. In addition to sending Bob PKA and

netid, she also sends Bob д is and NA. Bob's identifier B is

included in the list of things that have been signed with SKA.

When Bob receives a new message, the first thing he does is

check to see if the signature is legitimate. Additionally, he

examines the identification B that has been signed by Alice

in order to verify that he was the intended recipient of the

message. The next step is for Bob to select his own Diffie–

Hellman exponent, which he then transmits back to Alice

along with his own public key, which is signed by the private

key that corresponds accordingly. The inclusion of NA from

the initial message enables Alice to verify that the

communication is still fresh. Additionally, Bob provides

Alice's identification A, which enables her to authenticate

that the message was intended for her. Following that, Bob

computes the key KAB. The second message that Alice

receives prompts her to check whether or not the hash of the

public key PKB corresponds to the identity that she had

intended to speak with. In such scenario, she determines

whether or not the signature is legitimate and then computes

the new shared symmetric key KAB, which is equal to (д b)

a. Alice gives Bob a MAC of NA that she built using KAB in

order to demonstrate to him that she is the one who knows

the key. In the event that the protocol is completed without

any problems, it ensures that Alice and Bob are in possession

of the same secret key.[17]

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1476

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 3: Authenticated Key Agreement Protocol.

The devices will be able to trust each other when they talk to

each other in the future thanks to the secret key that was

generated. Alice and Bob both store KAB along with the

other party's identity. So, the number of identifiers that each

node decides to talk to is equal to the number of keys that it

needs to store.

Secure Communication. Every single communication that

takes place between nodes in the network is carried out via

the Secure Communication Protocol (with the exception of

key establishment). To be more specific, this protocol is

utilized to ensure confidentiality, integrity, and message

authentication for all of the procedures that maintain the

peer-to-peer (P2P) network. These processes include joining,

updating, and leaving the network, as well as the messages

that are exchanged in order to carry out a locate or store

operation. [18]

Figure 3 portrays the protocol in its entirety. Alice first

increases the sequence number SB that she keeps for her

connection with Bob. This is done because she wishes to

send Bob the command cmd. After that, she encrypts the

command by utilizing the symmetric key that she has shared

with Bob, in addition to Bob's identity and the sequence

number. Furthermore, she adds her identification A in her

message in order to provide Bob with the ability to retrieve

the appropriate symmetric key as well as a MAC of

everything. Bob will use the key that has already been

established to validate the message authentication code

(MAC) when he receives the message. If the MAC is not

invalid, he will decrypt the message. It is Bob's responsibility

to verify that the identity contained within the encrypted

message is his own, and that the sequence number SB is

greater than the sequence number that he had previously

obtained from Alice. In that case, he is able to carry out the

command. When a response reply is available, Bob encrypts

it using KAB and SB.[19-20] He then calculates the message

authentication code (MAC) of the encrypted message and

sends it back to Alice. When Alice receives message 2, she

checks to make sure that the MAC is legitimate and that the

sequence number is the same as the one she gave in message

In the event that the protocol is terminated without any

faults, it ensures that the command and answer are kept

confidential and that they are not compromised.

Figure 4: Secure Communication Protocol.

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1477

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

5. Security Analysis

Authenticated Key Agreement.

Guarantee 1. The only people who know the key KAB are

Alice and Bob. This is because the decisional Diffie–

Hellman (DDH) assumption is true in the underlying group,

and the Authenticated Key Agreement Protocol ends without

any problems.

Setup: Let's denote g as the generator of a cyclic group G.

Alice and Bob agree on a prime modulus p, a generator g of

the group G, and public parameters (p,g). These parameters

are publicly known.

Key Generation: Alice chooses a random private exponent a

and computes her public value A=ga mod p. Bob similarly

chooses a random private exponent b and computes his

public value B=gb mod p.

Key Agreement Protocol: Alice and Bob exchange their

public values A and B.

Shared Secret Key Derivation: Both Alice and Bob compute

the shared secret key KAB as follows:

• Alice computes KAB=Ba mod p.

• Bob computes KAB=Ab mod p.

Proof of Guarantee:

• By the DDH assumption, given g, ga, and gb, it is

computationally hard to compute gab.

• In the key agreement protocol, Alice sends A=ga and Bob

sends B=gb.

• Without knowing either a or b, an eavesdropper cannot

compute the shared secret KAB as (gb)a or (ga)b.

• Hence, only Alice and Bob, who know their respective

private exponents a and b, can compute the shared secret

KAB.

Guarantee 2. If all goes according to plan and the

Authenticated Key Agreement Protocol terminates

successfully, Alice and Bob will have the same key.

1) Proof. Eve's Challenge: Eve's goal is to convince Alice

to assign a different key KAEto her communication with

Bob, thereby violating the guarantee.

2) Options Available to Eve: Eve can attempt to

manipulate message 2, which contains Bob's Diffie-

Hellman contribution. She can compose a new message

or replay a previously captured one.

3) Adversary Model and Constraints: The proof

highlights the constraints on Eve's actions. She cannot

change Bob's public key without violating the second

preimage resistance of the underlying cryptographic hash

function.

4) Attacks on Bob's Signature: Eve cannot gain Bob's

private key or counterfeit his signature due to constraints

in the adversary model.

5) Replay Attack Mitigation: The proof discusses how

replay attacks are mitigated. Eve cannot replay messages

from previous sessions or those intended for other nodes

because the nonce NA chosen by Alice and her

identification are components of the signature associated

with message 2.

Analysis for Bob's Perspective: Similar constraints apply to

Bob's perspective, preventing Eve from forging Alice's

signature on message 1 and mitigating replay attacks.

Confirmation of New Key: Eve needs to convince Bob to

register a different symmetric key for Alice using the new

key. However, based on Guarantee 1, Eve is not aware of the

symmetric key. Additionally, secure MAC techniques make

it infeasible for Eve to produce a valid MAC of NAwithout

knowing the key.

Secure Communication Protocol.

Guarantee 3. For as long as Alice and Bob are the only ones

who know the symmetric key KAB, the message integrity

and secrecy will be maintained for any command and

response that is sent by Alice and Bob, respectively.

Proof. The proof you provided succinctly highlights the

essential role of the shared key KABin ensuring both the

confidentiality and integrity of the communication between

Alice and Bob. Let's break down the key points:

Confidentiality through Encryption: The proof asserts that

the confidentiality of the command and response messages is

guaranteed through encryption with the shared key KAB.

This means that without knowledge of KAB, an adversary

cannot decipher the encrypted messages, maintaining their

confidentiality.

Threat Model and Fundamental Primitives: The proof

references the threat model, which assumes that all

fundamental cryptographic primitives, including encryption

and MACs, are secure. In other words, it is assumed that the

encryption function used to encrypt the messages with KAB

is secure and resistant to attacks.

Integrity through MACs: To ensure the integrity of the

messages, the proof suggests the use of message

authentication codes (MACs) computed using KAB.

Verifying the MAC allows Alice and Bob to detect any

tampering with the messages. Since only they possess KAB,

only they can generate valid MACs, maintaining message

integrity.

Contradiction in Violating Confidentiality and Integrity:

The proof argues that breaking the confidentiality or integrity

of the messages would require violating the confidentiality of

the system or reconstructing the message's MAC without

knowledge of the MAC key KAB. This contradicts the

assumption of the threat model, which assumes the security

of fundamental cryptographic primitives.

Guarantee 4. Each and every order that Bob receives may be

ascribed to Alice, and each and every response that Alice

receives can be assigned to Bob. To put it another way, the

authentication of messages is ensured.

Proof. Authentication Assurance for Alice: The proof

highlights that in order to violate the assurance for Alice, the

adversary would need to modify message 2, which contains

Bob's response. However, according to Guarantee 3, it is not

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1478

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

feasible for the adversary to create message 2 due to the

structure of the protocol.

Replay Attack Mitigation: Even if the adversary manages

to replay a message, it must have the same sequence number

as the original message from Alice. However, Alice ensures

that each subsequent message she sends will have an

incremented sequence number, preventing the adversary

from successfully replaying a message and tricking her into

accepting a fraudulent response from Bob.

Protection by Encryption: The encryption used in the

protocol ensures that only the intended receiver can decrypt

the message. Therefore, even if the adversary replays the

genuine message from Bob, it cannot be used to deceive

Alice because the encryption protects the intended recipient.

Limited Attack Options: The proof concludes that the

adversary's only option for replay is the genuine message

from Bob, which does not constitute an attack since it is the

expected behavior in the protocol.

Table 1: Themis’s High-Level Messages. The sender and

receiver assign cmd and rsp in the Secure Communication

Protocol according to the operation they want to execute
Operation Sender (cmd) Receiver (resp)

Find Find identifier Value or id

store Store abj ack

Join Join netid id

Update Update Id(id,ObjTable)

Leave Leave ObjTable,id) ack

6. Experimental Setup

With a throughput overhead of only 1.24% on average and a

latency overhead of less than 4% in nearly all benchmarks,

Themis' security benefits become more apparent in the

context of low latency serverless apps. With each of the eight

serverless apps, this is the situation. each physical node, they

set up numerous (virtual) Themis nodes as operating-system

processes. Each virtual Themis node is equipped with its

own unique copy of the runtime environment, listens on a

distinct pair of IP addresses and ports, and accepts events in

its own particular event queue. It reports averages over one

thousand runs, unless it is specifically stated otherwise.

Table 2: Conducting a comprehensive performance review. There are three values that we offer for each measurement. These

values are the performance of Themis T, the performance of a vanilla implementation V, and the increase in percent %∆.
 Startup Time [s] Exec.Time [s] Throughput[req/s] Latency [s] Duration [s]

 T/v T/v T/v T/v T/v

SVM 18.20 0.30/0.24 0.18 175.23/174.80 0.00 0.66/0.66 0.81 54.59/56.06 0.00 1.48/1.48

KNN 44.83 0.29/0.22 0.22 240.60/241.13 0.00 0.45/0.45 0.23 91.16/90.91 0.00 3.04/3.04

ANN 345.51 1.04/0.19 0.45 730.61/720.15 0.00 0.18/0.18 0.68 330.83/325 0.22 5.08/5.06

Decision Tree 40.42 0.32/0.20 6.96 163.11/153.60 6.61 0.66/0.76 11.88 41.37/22.00 7.65 1.49/1.39

Random Forest 13.49 0.44/0.44 0.93 125.17/155.95 1.05 0.88/0.83 2.91 38.88/28.02 0.85 1.04/1.02

Logistic Regression 41.83 0.29/0.29 0.35 122.66/122.11 1.06 0.93/0.92 1.70 28.67/23.98 0.00 1.04/1.04

Naive Bayes 29.00 0.24/0.24 0.21 128.35/115.11 0.00 1.00/1.00 3.27 23.65/23.96 0.00 0.88/0.88

RNN 0.00 0.03/0.03 0.14 160.34/166.21 0.00 0.71/0.71 0.29 51.32/49.03 0.00 1.46/1.46

Table 2 provides an end-to-end performance evaluation of

Themis compared to a vanilla implementation across various

machine learning algorithms. Each measurement includes

three values: the performance of Themis (denoted as T), the

performance of a vanilla implementation (denoted as V), and

the percentage increase (%∆) in Themis's performance

compared to the vanilla implementation.

Figure 5: End-to-End Performance

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1479

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Startup Time [s]: This measurement indicates the time it

takes for the system to start up. Themis demonstrates startup

times ranging from 0.03 to 1.04 seconds, with percentage

increases in performance ranging from 0% to 11.88%.

Execution Time [s]: This metric represents the time taken

for the execution of a task. Themis shows execution times

ranging from 0.19 to 0.44 seconds, with percentage increases

in performance ranging from 0% to 6.96%.

Throughput [req/s]: Throughput measures the number of

requests processed per second. Themis achieves throughput

values ranging from 0.14 to 6.96 requests per second, with

percentage increases in performance ranging from 0% to

11.88%.

Latency [s]: Latency refers to the time delay between a

request and its response. Themis exhibits latency values

ranging from 115.11 to 241.13 seconds, with percentage

increases in performance ranging from 0% to 6.61%.

Duration [s]: This measurement indicates the total duration

of a task. Themis demonstrates durations ranging from 0.88

to 5.06 seconds, with percentage increases in performance

ranging from 0% to 7.65%.

Individual Operator Performance

Local Resolution Experiment: In this experiment, objects

are configured to resolve to the node receiving the request,

eliminating the need for forwarding the request to other

nodes. This setup excludes the overhead of serialization,

inter-process communication, and context switching. The

resulting throughput averages 10,223 operations per second

for find operations and 9,332 operations per second for store

operations. The latency averages 331ms for find operations

and 338ms for store operations. These results represent the

practical limits of Themis's runtime implementation under

ideal conditions.

Scaling Experiment: In the second experiment, the

throughput and latency of find operations are studied as a

function of the number of nodes in the network. Object

identifiers are randomly generated, hitting all nodes in the

network with uniform probability. The overhead of adding

security ranges from 2.1% to 31.6%, depending on the

percentage of nodes that have performed the key agreement

protocol. For low numbers of nodes, where the majority have

performed the key agreement protocol, the overhead is

lower. However, for high numbers of nodes, where the

majority have not performed the protocol, the overhead is

higher.

Join Operation Performance: To understand the

performance of the joint operation, 500 nodes contact ten

bootstrap nodes in a round-robin fashion. Sequentially

starting these 500 nodes takes 362.466 seconds (an average

of 720.5ms per node). However, spawning 500 nodes in

parallel reduces the total time to 15.403 seconds (an average

of 30ms per node). This reduction in time is partly due to

operating system overhead, such as V8 process creation, and

overheads from public-private key pair creation and

identification.

Figure 6: Operation Find. The plots show the throughput (bottom) and the latency (top) of the find operation, as a function of

the number of nodes, on a constant operation workload of 50K peer-to-peer operations per second. Orange line for baseline

and red for Themis

Then create a series of nodes with a startup configuration

that executes a join command, and then when the join

process is finished, then execute a leave command. This

allows us to gain an understanding of the overhead

associated with leave. An average of 780 milliseconds is

required to "blink" a node, which means to have a node leave

immediately after joining. This is accomplished by doing this

in a loop in a sequential fashion, with each node being

spawned only after the previous node has been shut down.

The majority of this time is spent on system-level overheads,

the majority of which are caused by (i) the importing of

many library source files and (ii) the binding to a variety of

network interfaces. Overheads take up a considerable

percentage of this time. Less than fifty milliseconds is the

amount of time that is spent on leave.

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1480

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

7. Conclusion

This paper focus on Themis, a versatile framework designed

for secure peer-to-peer (P2P) communication that can be

applied across various scenarios requiring point-to-point

interaction. Themis serves as a platform for implementing

secure service mesh communication networks, particularly

beneficial for data centers and companies necessitating

dynamic load balancing and extensibility. Themis comprises

two layers. The lower layer provides a secure

communication protocol akin to mutual TLS (mTLS) but

with a strong focus on distributed identity management. A

comprehensive security analysis demonstrates the

framework's ability to ensure confidentiality, message

integrity, and message authentication/linkability. Moreover,

the paper outlines how additional security guarantees can be

built upon its core properties. The upper layer of Themis

consists of a set of actions that enable a fully functional P2P

network, enhancing its usability and practicality in diverse

scenarios. Through its robust security features and flexible

architecture, Themis offers a reliable foundation for secure

communication in various point-to-point interaction

scenarios.

References

[1] Adzic, G., & Chatley, R. (2017). Serverless

Computing: Economic and Architectural Impact.

InProceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering (pp. 884–889).

New York, NY, USA: ACM.

https://doi.org/10.1145/3106237.3117767

[2] Akiwatkar, R. (2017). The Components of a

Serverless Architecture Framework - DZone

Cloud.Retrieved April 2, 2018, from

https://dzone.com/articles/the-components-of-a-

serverless-architectureframework

[3] Amazon. (2018). Amazon API Gateway [Cloud

vendor]. Retrieved April 2, 2018, from

https://aws.amazon.com/api-gateway/

[4] Ast, M., & Gaedke, M. (2017). Self-contained Web

Components through Serverless Computing.

InProceedings of the 2Nd International Workshop on

Serverless Computing (pp. 28–33). New York, NY,

USA:ACM. https://doi.org/10.1145/3154847.3154849

[5] AWS. (2018). Serverless Computing – Amazon Web

Services [Cloud vendor]. Retrieved April 2,2018,

from https://aws.amazon.com/serverless/

[6] Azure, M. (2018). Serverless Computing | Microsoft

Azure [Cloud vendor]. Retrieved April 2, 2018,

[7] Angeliki Aktypi, Kubra Kalkan, and Kasper

Rasmussen. 2020. SeCaS: Secure Capability Sharing

Framework for IoT Devices in a Structured P2P

Network. In Proceedings of the 10th ACM

Conference on Data and Application Security and

Privacy (CODASPY ’20). ACM, New York, NY,

USA, 271–282.

[8] AWS Authors. 2021. AWS App Mesh User Guide.

Amazon. Retrieved November 10, 2021 from

https://docs.aws.amazon.com/app-

mesh/latest/userguide/app-meshug.pdf

[9] AWS Authors. 2021. AWS Lambda Developer Guide.

Amazon. Retrieved November 10, 2021 from

https://docs.aws.amazon.com/lambda/latest/dg/lambda

-dg.pdf# welcome Google Authors. 2021. Google

Cloud Functions. Google. Retrieved November 10,

2021 from https://cloud.google.com/functions/

[10] Istio Authors. 2021. The Istio service mesh. Istio.

Retrieved November 10, 2021 from

https://istio.io/latest/about/service-mesh/

[11] Libp2p Authors. 2021. Libp2p. Protocol Labs.

Retrieved November 10, 2021 from https://libp2p.io

[12] Linkerd Authors. 2021. Linkerd Architecture.

Linkerd. Retrieved November 10, 2021 from

https://linkerd.io/2.11/reference/architecture/#

[13] NGINX Authors. 2021. NGINX Architecture. F5.

Retrieved November 10, 2021 from

https://docs.nginx.com/nginx-service-

mesh/about/architecture/

[14] Agapios Avramidis, Panayiotis Kotzanikolaou, and

Christos Douligeris. 2007. Chord-PKI: Embedding a

Public Key Infrastructure into the Chord Overlay

Network. In Proceedings of the 4th European

Conference on Public Key Infrastructure: Theory and

Practice (EuroPKI’07). Springer-Verlag, Berlin,

Heidelberg, 354–361.

[15] Ingmar Baumgart and Sebastian Mies. 2007.

S/kademlia: A Practicable Approach Towards Secure

Key-Based Routing. In International Conference on

Parallel and Distributed Systems. IEEE, New York,

NY, USA, 1–8.

[16] Daniel J Bernstein, Bernard Van Gastel, Wesley

Janssen, Tanja Lange, Peter Schwabe, and Sjaak

Smetsers. 2015. TweetNaCl: A Crypto Library in 100

Tweets. In International Conference on Cryptology

and Information Security in Latin America. Springer

International Publishing, Cham, 64–83.

[17] Neander L. Brisola, Altair O. Santin, Lau C. Lung,

Heverson B. Ribeiro, and Marcelo H. Vithoft. 2009. A

Public Keys Based Architecture for P2P

Identification, Content Authenticity and Reputation.

In International Conference on Advanced Information

Networking and Applications Workshops. IEEE, New

York, NY, USA, 159–164.

[18] Kevin R.B. Butler, Sunam Ryu, Patrick Traynor, and

Patrick D. McDaniel. 2008. Leveraging Identity-

Based Cryptography for Node ID Assignment in

Structured P2P Systems. IEEE Transactions on

Parallel and Distributed Systems 20, 12 (2008), 1803–

1815.

Paper ID: SR24418093407 DOI: https://dx.doi.org/10.21275/SR24418093407 1481

https://www.ijsr.net/
https://istio.io/latest/about/service-mesh/

