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Abstract: Over the past few decades, there has been significant growth in latticing techniques, resulting in the development of various 

core shapes with different properties in this fabrication method. This paper utilizes the finite element method to investigate the strength of 

a curved beam subjected to three-point bending conditions. It focuses on the maximum stress distribution in the concept of frictional 

contact between elements of an elastic material and three rigids, aiming to provide a constitutive geometrical model that mitigates the 

effects of bending and shear stresses. Cellular structure objects offer a promising and excellent solution for this purpose. The study 

includes a comprehensive comparison between solid-made beams and different lattice structures made of titanium alloy. The lattice 

specimen is modeled, and Abaqus software is employed for the coupled analysis to study the static strength. Recognizing the importance 

of relative density on the flexural properties of lattice structures, the critical zones are thoroughly examined, and an optimized model is 

proposed based on the obtained plots. Finally, conclusions are drawn based on the results of the numerical simulations. Additionally, a 

recommended model with maximum resistance against axial and shear loads is suggested for use as UAV landing gear. 
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1. Introduction 
 

In the current international landscape, there are several 

manufacturing methods for producing lattice structures, 

among them three-dimensional printing (3D printing) has 

become the prevalent method for making these mechanical 

parts. According to ASTM, 3D printing refers to the 

fabrication process of creating a part from a 3D model by 

adding layers [1]. This technology is particularly 

advantageous for producing complex geometries, offering 

benefits such as cost-effectiveness, reduced manufacturing 

time, and the ability to produce lightweight components. 

Traditional manufacturing methods, such as hot or cold 

extrusion [2], weaving [3], hot clinching [4], laser cutting [5], 

water cutting, and assembly [6, 7], pose challenges when 

dealing with intricate designs. The use of additive 

manufacturing, especially in the production of lattice 

structures, has gained significant attention due to its potential 

for achieving high structural efficiency with minimal material 

usage, which is economically advantageous for low-volume 

production [8-10]. Lattice structures have found commercial 

applications in aerospace and other engineering fields. 

 

Over the past four decades, researchers have conducted 

studies on the behavior, mechanical characterization, and 

deformation of diverse lattice structures made from different 

materials, including metals [11-14] and composite [15]. The 

mechanical properties of lattice structures are influenced by 

factors such as the shape and size of the unit cell core and 

relative density. Numerous reports have studied the 

mechanical response of different lattice core geometries, 

including body-centered cubic (BCC), face-centered cubic 

(FCC), hexagonal closest packed (HCP), gyroid cellular (GC), 

rhombic dodecahedron (RD), and hollow spherical lattice cell 

[16-22]. Sypeck [23, 24] proposed various manufacturing 

methods for truss core sandwich structures, such as open-cell 

aluminum foam, foam-filled tubes, and metal textile 

laminates, to determine their stiffness and reliability under 

mechanical loads. Compression properties based on tensile 

tests have been established to evaluate the effect of 

compression on lattice structures [25]. Flexural properties, 

including flexural strength and flexural modulus, are adjusted 

by altering cell sizes and relative densities [26, 27]. Tian et al. 

[28] modified the porosity ratio and studied the linear and 

nonlinear behavior of the relationship between flexural 

strength and relative density of cellular structures using 3-

point bending tests. The loading direction on lattice core 

samples has been analyzed extensively by Doroszko et al. [29] 

and Zhang et al. [30] to understand its impact on the resistance 

of lightweight materials. Barton et al. [31] compared finite 

element and experimental surveys to examine the elastic and 

plastic properties of selective laser melted (SLM) cellular 

lattice structures in three different orientations under quasi-

static loading conditions. When considering latticing, the 

flexibility of the structures is a crucial parameter to be 

evaluated. Minimizing the bending effects on various 

structures may involve challenges such as revising the 

dimensions of the geometry and increasing the beam 

thickness, which directly influences the weight of the 

structure. Regular periodic structures, consisting of models 

made from stronger and more flexible materials with a low-

density core, are commonly used in the production of 

lightweight structures. Their mechanical characterization can 

be related to the lattice topology, and they can be 

manufactured using 3D printers, CNC Machining, or casting 

depending on the material type, geometry, etc. Zhang et al. 

[32] compared finite element numerical simulations with 

manufactured sandwich panels that have varying core angles 

to investigate their influence on structural integrity during 3-

point bending tests. The failure mechanisms of the models 

were measured to understand the bending effects on sandwich 

panels with different core angles. Some notable researchers 

have presented a comprehensive analysis of the mechanical 

response of lattice structures subjected to destructive testing. 

These studies provide insights into the failure mechanisms, 

strain ratios, and deformation behavior of these lattice 

members, contributing to the understanding and optimization 

of their performance in engineering applications [33].  
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This research focuses on investigating the flexural behavior of 

low-density hexagonal lattice structures under three-point 

bending test conditions. The objectives of this study are 

threefold: 

1) Analyzing the flexural strength parameters and 

identifying the most critical zones of solid ellipsoidal and 

trapezoid arch beams under a concentrated midpoint load. 

2) Exploring the use of cellular lattice core curved spars as 

a means to minimize the bending effects by leveraging 

their flexibility advantage. This includes studying the 

impact of reducing the density of the lattice structure and 

conducting simulation analyses on the stiffness of UAV 

landing gear. 

3) Identifying potential design modifications based on the 

current designs to meet the desired requirements. Since 

the specifications of the object are designed for use as 

UAV landing gear, in this case, stiffness significantly 

impacts landing time. Lattice structures, with their higher 

flexibility and lower weight, offer advantages over solid 

structures in terms of improved shock absorption and 

reduced landing time. 

 

2. Statement of the problem 
 

2.1 Methods and Materials 

 

Ti-6Al-4V, also known as Ti64, [34] is an α-β titanium alloy 

implemented in this simulation analysis which is highly 

valued in the industry due to its exceptional properties. To 

begin with, Ti-6Al-4V provides a favorable blend of 

remarkable strength and reduced weight, making it a prime 

choice for manufacturing lightweight parts that possess 

exceptional structural soundness. Additionally, this alloy 

showcases outstanding resistance against corrosion, rendering 

it suitable for deployment in challenging surroundings. 

Moreover, the aerospace industry necessitates materials that 

exhibit both lightness and robustness, and Ti-6Al-4V fulfills 

these criteria flawlessly. It allows for the creation of intricate 

and elaborate designs with exceptional accuracy, establishing 

it as a versatile material across diverse industries. Tables 1 and 

2 show mechanical properties and elemental composition 

predicted for the as-deigned parts respectively. 

 

Table 1: Mechanical Properties of Ti-6Al-4V. 
Tensile strength, Ultimate 980 MPa 

Yield stress, Re 920 MPa 

Elongation 14% 

Hardness Knoop 334 

Shear modulus 44 GPa 

Modulus of Elasticity 110 GPa 

Poisson’s ratio 0.342 

Density 4.43 g/𝑐𝑚3 

 

Table 2: Chemical composition of Ti6Al-4V. 
Elements Al V Fe C Ti 

Value 6.40 3.89 0.16 0.002 Balance 

 

The simulations incorporated the aforementioned material 

properties provided above, emphasizing high specific stiffness 

and strength. However, variations were observed in the 

design, cell numbers, and dimensions. The density was treated 

as a variable parameter, as indicated by equation 1, which 

illustrates the density ratio where: 

l - The density of a cell wall lattice.  

s  - The density of a cell wall solid. 

l -strut length  

t - the thickness of the strut 
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A low value of relative density indicates high porosity, 

meanwhile, a high value of that indicates low porosity. The 

equations below are employed to determine the stiffness of 

solid and lattice respectively. 
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The flexibility of a lattice structure compared to a solid 

structure can be mathematically explained by examining their 

respective stiffness properties. In a solid structure, the 

stiffness is primarily determined by its material properties and 

geometry. The stiffness (K) of a solid structure is proportional 

to its Young's modulus (E) and inversely proportional to its 

cross-sectional area (A). Therefore, a solid structure with a 

larger cross-sectional area will have higher stiffness and less 

flexibility. 

 

Generally, the above statements determine the stiffness of 

solid and lattice structures respectively, where E is Young's 

modulus of the material, A is the cross-sectional area of the 

lattice member and l is the length of the lattice member. On 

the other hand, a lattice structure is characterized by its 

intricate network of interconnected struts or beams, which 

introduces additional degrees of freedom and allows for more 

flexibility. The flexibility of a lattice structure can be 

quantified by its effective stiffness, which takes into account 

the geometry, material properties, and connectivity of the 

lattice. The effective stiffness of a lattice structure is typically 

lower than that of a solid structure with the same material, 

resulting in increased flexibility. 

 

2.2. Geometry of the models 

 

The analysis of an arched beam under three-point bending 

involves considering factors such as the beam's material 

properties, cross-sectional geometry, curvature, and loading 

conditions. Numerical methods like finite element analysis 

(FEA) or analytical calculations can be used to predict the 

beam's behavior and estimate its structural response under 

different loading scenarios. The three-point bending 

configuration is a common design used in landing gear 

systems to provide stability and ensure a safe touchdown and 

rollout of the drone. An arched beam under a three-point 

bending test condition is subjected to a bending force at two 

points, creating a bending moment along its length. The three-

point bending test is a commonly available way to evaluate 

the mechanical behavior and strength of beams or structural 

elements. In the test, the arched beam is supported at two 

points, typically at its ends, while a load is applied at the center 

point (Fig 1). This load creates a bending moment that causes 

the beam to deflect or bend. The behavior of the arched beam 
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under this bending condition can be analyzed to understand its 

structural response and properties. The curvature of the arched 

beam influences its mechanical behavior. The curvature 

affects the distribution of stresses and strains within the beam, 

resulting in different deformation patterns compared to a 

lattice beam. The arched shape can provide advantages such 

as increased load-carrying capacity, improved stiffness, and 

enhanced resistance to buckling or failure. During the three-

point bending test, various parameters can be measured, 

including the deflection or displacement of the beam, the 

applied load, and the resulting stress and strain distribution. 

These measurements help in assessing the beam's structural 

performance, such as its stiffness, strength, and ability to 

withstand bending loads. 

 

In the three-point bending configuration, the landing gear 

consists of three support points, typically located at the front 

and rear of the main body or fuselage of the UAV, and at the 

midpoint of the landing gear structure. This configuration 

allows for a stable and balanced support system during ground 

operations and prevents excessive tilting or tipping of the 

aircraft. During landing, the landing gear system is subjected 

to the forces and loads generated by the touchdown impact and 

the deceleration of the UAV. 

 
Figure 1: Trapezoid lattice model under 3-point bending test 

condition 

 

In Table 3 the geometry of unit cells and the whole structure 

dimension is given when the arch has a trapezoid shape. The 

table presented below depicts the mass differences among 

different product cases, where Case 1 represents a solid model 

while the remaining cases involve lattice models. The mass 

variations between the different product configurations 

indicate the impact of utilizing lattice structures instead of 

solid components (Table 4). The lattice designs offer the 

advantage of significantly reducing the overall mass of the 

product compared to the solid model. The decrease in weight 

can yield various advantages, including enhanced mobility, 

heightened effectiveness, and improved structural 

capabilities. 

 

Table 3: Trapezoid cell measurements 
Parameter a b l R2 R3 t 𝜑 

Dimensions [mm]  100 80 220 5 25 4 125 

 
Models c d e f w t2 𝜃 

Case2 1 1.67 0.58 0.58 1.15 0.8 120 

Case3 1.43 0.37 0.87 0.78 1.73 0.4 120 

 

 

 

 

Table 4: The difference between trapezoid models 
Variants Case 1 Case 2 Case 3 

Mass [Gram] 41.77 35.15 25.66 

Volume [Cubic millimeters] 9433.09 7937.67 5795.44 

Surface area [Square 

millimeters] 
7285.17 13067.15 17290.70 

 

Figure 2 highlights the potential weight savings achievable 

through the implementation of lattice structures in product 

design and manufacturing. 

 

 
Figure 2: Mass reduction between solid and lattice structure 

trapezoid models 

 

The detailed 3-point bending test boundary conditions have 

been exclusively applied to the ellipsoidal lattice model (Fig. 

3). This specific lattice configuration was chosen to 

investigate the mechanical behavior and performance under 

bending loads. The ellipsoidal lattice model offers unique 

geometric characteristics that make it suitable for this type of 

analysis. By subjecting the ellipsoidal lattice model to the 3-

point bending test, we can gain valuable insights into its 

deformation patterns, load distribution, and overall structural 

response. This focused approach allows for a comprehensive 

understanding of how the ellipsoidal lattice structure performs 

under bending conditions, aiding in the evaluation and 

optimization of its mechanical properties. 

 
Figure 3: Ellipsoidal lattice model under 3-point bending 

test condition 

 

The difference between the masses of the ellipsoid models is 

due to the unit cell variables (Table 5). 

 

Table 5: The difference between ellipsoidal models 
Variants Case 1 Case 2 Case 3 

Mass [Gram] 38.24 32.75 27.34 

Volume [Cubic millimeters] 8635.21 7395.99 6174.19 

Surface area [Square millimeters] 7020.03 12867.57 15326.53 
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Figure 4: Mass reduction between solid and lattice 

structure ellipsoidal models 

 

The mass reduction between a solid structure and a lattice 

structure can be significant, depending on the specific design 

and material used (Fig 4). Lattice structures are characterized 

by their intricate network of interconnected beams or struts, 

which create a lightweight and open framework. In contrast, 

solid structures are composed of continuous material 

throughout, resulting in a higher overall mass. The lattice 

structure's open design inherently reduces the overall density 

of the structure. This is because the volume of material used 

in a lattice structure is significantly less compared to a solid 

structure of the same size. As a result, the mass of the lattice 

structure is substantially lower. In this study three cases are 

analyzed, case 1 is a solid arched beam, and the second and 

third cases are both lattices but in different cell numbers and 

cell sizes. The figures depict the disparity among the samples. 

 

2.3. FE models 

 

Finite Element (FE) simulation serves as a valuable asset in 

measuring the stress distribution, plastic occurrence, and the 

critical zones that lead to structural failure. Within the realm 

of stress distribution, FE simulation facilitates the 

visualization and measurement of stress concentrations, 

pinpointing vulnerable regions that are susceptible to failure. 

This process deepens comprehension of structural behavior 

and fosters the development of more resilient engineering 

solutions. In essence, FE simulation plays a pivotal role in the 

analysis of stress distribution and failure mechanisms, 

ultimately contributing to the creation of safer and more 

effective designs. 

 

Table 6: The element numbers of each model 
Case 1 Case 2 Case 3 

8212 elements 20356 elements 20334 elements 

Trapezoid models 

 
Case 1 Case 2 Case 3 

8360 elements 20188 elements 20428 elements 

Ellipsoidal models 

 

Here the complex geometry has been divided into a series of 

smaller elements. A finer mesh with smaller element sizes can 

provide more accurate results by capturing localized stress 

concentrations and complex geometries. However, this can 

also increase the computational cost and time required for the 

simulation. The element numbers are provided in Table 6. 

CPS4R which is a 4-node reduced integration bilinear plane 

stress element type in Abaqus is used. Additionally, in this 

simulation in which the structure is subjected to a large load 

and in the case where the material undergoes significant 

deformation, nonlinear analysis is considered which allows 

for a more accurate representation of the behavior of the 

structure under load. 

 

2.4 Boundary condition 

 

In the numerical simulation of a lattice arched beam under 3-

point bending, specific boundary conditions are applied to 

accurately model the behavior of the structure. The lattice-

arched beam is typically supported at two points on one side, 

acting as fixed or clamped supports, while the third point 

applies a concentrated force at the midpoint of the opposite 

side. For this simulation, a concentrated force with a 

magnitude of 80KN is applied at the midpoint. The fixed or 

clamped supports at the two points restrain the beam from any 

translational or rotational movement, providing stability 

during the bending test. These boundary conditions effectively 

limit the degrees of freedom of the beam and allow for 

controlled bending deformation when the concentrated force 

is applied. 

 

The concentrated force applied at the midpoint induces a 

moment that leads to the bending deformation of the lattice-

arched beam. Through the numerical simulation, the 

displacements and stress distribution throughout the structure 

can be determined, providing insights into the mechanical 

response and deformation patterns. By carefully specifying 

the boundary conditions and applying the concentrated force 

at the midpoint in the numerical simulation, it is possible to 

study the structural behavior, stress distribution, and failure 

mechanisms of lattice-arched beams under 3-point bending. 

This simulation approach helps in understanding the 

performance and optimizing the design of such beams in 

various engineering applications. This problem is a 

combination of segment-to-segment interaction between 

elements of a deformable body and three rigids and self-

contact through lattice cells by themselves. The penalty 

method has been used to realize the interaction between 

bodies, and the frictional coefficient is taken as 0.3. The 

loading is continued till the occurrence of plastic deformation. 

In this FEA damaged element deletion technique is used to 

remove the elements that have been excessively damaged 

during the analysis. By removing damaged elements, the 

accuracy and efficiency of the analysis can be improved, 

allowing for more reliable and efficient simulation results. 

 

3. Presentation of results 
 

In a 3-point bending test, a comparison between a solid and 

lattice cellular core arched beam can reveal distinct force-

displacement relationships. When a solid beam is subjected to 

the test, it exhibits a relatively linear relationship between the 

applied force and resulting displacement until it reaches its 

yield point. Beyond the yield point, the solid beam undergoes 

plastic deformation, leading to a significant increase in 

displacement for a relatively small increase in force. On the 

other hand, a lattice cellular core arched beam demonstrates a 

more complex force-displacement relationship. Initially, it 

behaves similarly to the solid beam, with a linear relationship 

between force and displacement. However, as the force 

increases, the lattice structure undergoes a combination of 

elastic deformation and localized failure of lattice members. 

This results in a nonlinear force-displacement curve 
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influenced by its unique structural characteristics, such as the 

lattice geometry, cell size, and material properties. The force-

displacement relationship provides valuable insights into the 

load-bearing capacity, stiffness, and failure mechanism of 

both solid and lattice cellular core arched beams under 3-point 

bending conditions. 

 

In Figure 5 the Force-Displacement curve represents the 

mechanical response of the selected structure to the applied 

load. In case 1 which is the solid model the peak force on the 

curve represents the material's ultimate strength, while the 

area under the curve represents the energy absorbed by the 

material during deformation. The post-peak behavior of the 

curve provides information about the material's ductility, or its 

ability to deform plastically without fracturing. But in case 2 

at the specifically applied load, there is no permanent 

deformation or fracturing effect on the lattice. In case, 3 cells 

before reaching the tensile strength have failed because of 

their thin thickness. 

 
Figure 5: Force-displacement relationship in trapezoid 

models 

 

By analyzing the principal stress distribution, (Fig. 6) critical 

regions where the maximum principal stress occurs are 

identified. These regions are susceptible to failure, such as 

crack initiation or propagation during the bending process. 

Moreover, the availability of both maximum and minimum 

principal stress values provides us with the means to evaluate 

the structural response and make well-informed choices to 

guarantee the dependability and integrity of the system and 

performance of the component or optimize the cell numbers, 

and their thickness. 

 

 
Figure 6: Principal stress distribution 

 

Under the applied load, the solid model (case 1) due to its 

limited flexibility undergoes deformation, resulting in plastic 

deformation in certain regions. This highlights one of the 

advantages of lattice structures over solid models, as lattices 

offer higher flexibility, allowing them to absorb and distribute 

loads more effectively without undergoing excessive plastic 

deformation. This enhanced flexibility of lattice structures 

contributes to their improved resilience and resistance to 

failure under varying loading conditions. In the simulation, 

(Fig. 7) the occurrence of structural failure in case 3 before 

reaching the plastic limit can be observed in specific critical 

zones. These areas are characterized by high-stress 

concentrations or inadequate load-bearing capacity, 

highlighting the need for further analysis and reinforcement to 

ensure the overall integrity and durability of the lattice 

structure. 

 

 
Figure 7: Von Mises stress distribution 

 

Due to the application of a large magnitude of force, the model 

has undergone significant plastic deformation. The 

deformation observed in the model indicates (Fig. 8) that the 

material has exceeded its elastic limit and entered the plastic 

range. 

 
Figure 8: Plastic deformation occurred on the critical 

elements of the trapezoid model 

 

The distribution of damage in the utilized specimens provides 

valuable insights into the behavior of the material under the 

detailed loading condition. As depicted in Fig 9, in the third 

case, the leg of the lattice cells has experienced a fracture, 

indicating the occurrence of structural failure in those regions. 

The fracture of the cell legs is a significant observation as it 

suggests that the applied load has exceeded the material's 

strength or the structural design's limitations. This type of 

damage can lead to a loss of load-carrying capacity and a 

decrease in the overall structural performance. Understanding 

the specific locations where the fracture occurred provides 

valuable insights for further analysis and optimization of the 

lattice structure, aiming to enhance its strength and durability. 
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Figure 9: Damage distribution in the utilized specimens 

 

In the second type, three ellipsoidal arched beams are modeled 

and again the force-displacement curve (Fig. 10) is illustrated, 

in case 1 it indicates that the structure is exhibiting a greater 

resistance to deformation, but above 80KN, plastic 

deformation has occurred, and then because of large 

deformation the linear relationship has been replaced by 

entirely curve line. If the force-displacement curve is higher, 

it indicates that the structure or material is exhibiting a greater 

resistance to deformation. This can be attributed to factors 

such as increased stiffness, higher strength, or improved 

structural integrity. A higher force-displacement curve 

suggests that the structure can withstand larger forces or 

deformations before reaching failure or yielding. It may 

indicate a more robust or durable material or a stronger 

structural design. However, it is important to analyze the 

specific context and requirements of the application to 

determine whether a higher force-displacement curve is 

desirable or if it signifies excessive rigidity or potential issues 

such as brittleness. 

 
Figure 10: Force-displacement relationship in ellipsoidal 

models 

 

The flexibility of an ellipsoidal lattice curved beam compared 

to a trapezoidal lattice curved beam can be attributed to their 

respective geometric shapes and distributions of stress. In an 

ellipsoidal lattice curved beam, the curved shape allows for a 

more uniform distribution of material along the length and 

cross-section of the beam. This shape provides a balanced 

distribution of stress and strain during deformation, resulting 

in increased flexibility and resistance to deformation. The 

changing cross-sectional shape and uneven material 

distribution can lead to localized stress concentrations and less 

flexible behavior. The abrupt changes in geometry and 

material distribution can result in higher stress concentrations, 

making the trapezoidal lattice curved beam less flexible 

compared to the ellipsoidal lattice curved beam. The principal 

stress distribution, illustrated in Fig. 11, cases 1, and 2 failed 

because of different reasons. In 1st case which is a solid 

curved beam the maximum principal stress is extensively 

higher than the yield point, and in case 2 the beam has the 

highest thickness, this assumed geometry of cells can result in 

less flexibility as there are fewer interconnected elements to 

accommodate deformation. In contrast, a thinner lattice with a 

higher number of smaller cells allows for more freedom of 

movement and increased flexibility likewise case 3. 

 
Figure 11: Principal stress distribution 

 

A thicker lattice generally exhibits lower flexibility compared 

to a thinner lattice due to the differences in stiffness and 

deformation characteristics 

 
Figure 12: Von Mises stress distribution 

 

Optimization plays a crucial role in the design of lattice 

structures to achieve the most effective model in terms of 

stiffness, weight, and flexibility features to find an optimal 

balance between these factors to meet the desired performance 

requirements (Fig. 12). Firstly, the stiffness of the lattice is a 

key consideration in many applications. A highly stiff lattice 

structure can provide excellent load-bearing capabilities and 

resist deformations under applied forces. This is particularly 

important in engineering designs where rigidity and stability 

are paramount. By optimizing the lattice topology, cell shape, 

and material distribution, designers can enhance the overall 

stiffness of the structure. Secondly, weight reduction is a 

significant advantage of lattice structures compared to solid 

counterparts. By strategically removing material in non-

critical areas and utilizing lightweight materials, the weight of 

the lattice can be minimized without compromising its 

strength. This weight optimization is particularly beneficial in 

industries where weight savings lead to improved energy 

efficiency, reduced costs, or enhanced mobility. Lastly, 

flexibility is another crucial aspect to consider in a lattice 

design. While stiffness is desirable in certain applications, 

flexibility allows for adaptive responses to dynamic loading 

conditions or deformations. By carefully designing the lattice 

geometry and cell connections, it is possible to introduce 

controlled flexibility while maintaining structural integrity. 
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This flexibility can improve the lattice's ability to absorb 

energy, withstand vibrations, or accommodate shape changes, 

making it suitable for applications where adaptability and 

resilience are key. 

 

 
Figure 13: Plastic deformation occurred on the critical 

elements of ellipsoidal models 

 

Plastic deformation in both cases 1 and 2 are illustrated in Fig 

13. 

 

4. Conclusions 
 

(1) The flexibility of a lattice structure arises from its unique 

design and arrangement, allowing for greater deformation and 

bending in comparison to a solid structure. The ellipsoidal 

lattice beam, with its smooth and continuous curvature, 

facilitates better load distribution, minimizing stress 

concentrations and promoting flexibility. Conversely, a 

trapezoidal lattice curved beam exhibits non-uniform material 

distribution along its length and cross-section. The geometry 

of the lattice structure can be optimized to enhance its 

performance under various loading conditions. In a 3-point 

bending test, the lattice structure evenly distributes the load 

throughout its structure, resulting in reduced stress 

concentrations. The comparison of studied cases reveals that 

as the stiffness of a structure increases, its flexibility 

decreases, and vice versa. 

 

(2) When designing lattice structures, it is important to find a 

balance between leg thickness and flexibility. Thick legs can 

limit flexibility and lead to plastic deformation under loads, 

while thin legs may be prone to cracking. Achieving an 

optimal leg thickness is crucial for ensuring both structural 

integrity and performance. 

 

(3) The selection between lattice and solid structures can 

significantly impact landing time. Lattice structures, with their 

higher flexibility, tend to provide better shock absorption and 

reduce landing time compared to stiffer solid structures that 

may struggle to absorb impact forces. 
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