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Abstract: Skewness is a property defining the shape of a distribution, with various methods available for its measurement. A recent 

proposal by Gunver, Senocak, and Vehid, denoted as gGSV, utilizes the median as the axis of symmetry. The first objective of this article 

is to develop a script for point and interval estimation of gGSV using the R program. Bootstrap confidence intervals are computed using 

percentile and bias-corrected and accelerated percentile methods. The script also includes skewness evaluation through bootstrap 

probability and visual examination of distribution via a box plot and histogram. To illustrate, the script is applied to a random sample 

conforming to a logistic distribution. The second objective is to establish interpretive symmetry rules for gGSV, accomplished by 

generating bootstrap confidence intervals at 90%, 95%, and 99% from 34 population-samples of various sizes following a standard 

normal distribution. A third objective is to analyze the relationship of gGSV with quartile and percentile skewness coefficients, and 

jackknife acceleration. It is concluded that gGSV can be interchanged with the percentile skewness coefficient. Moreover, if variable X 

adheres to a normal distribution or satisfies the conditions of the central limit theorem, the sampling distribution of gGSV(x) converges to 

normality. 
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1. Introduction 
 

The shape of the distribution is described by measures of 

skewness, peakedness, tailedness, and kurtosis. Skewness 

measures whether the two parts of the cumulative 

distribution function, when divided by a (symmetry) axis 

defined by a measure of central tendency (arithmetic mean, 

median, mid-range, interquartile mean or mode), are equal 

or dissimilar. If the part of the scores to the left of the 

symmetry axis is longer than the other part, there is left-

tailed or negative skewness. Conversely, if the part of the 

scores to the right of the symmetry axis is longer than the 

other part, there is right-tailed or positive skewness. If both 

parts are equal, there is symmetry [1]. 

 

The measurement of skewness has traditionally been 

proposed for continuous random variables [2], which is the 

subject of the present article. However, it also applies to 

ordinal variables [3−4], and there is even an approach for 

measuring this property of the shape with variables 

measured on a nominal scale [5−6]. 

 

There are several approaches to the measurement of 

skewness [7−9]. One is the standardized distance between 

the mode and the arithmetic mean, (m − mo) / sd [10], or 

between the median and the arithmetic mean, (m − mdn) / sd 

[11]. Both measures take the arithmetic mean as their axis of 

symmetry. They are based on the relationship between the 

median and a single mode with the arithmetic mean. If there 

is symmetry, the three central tendency statistics coincide. If 

there is positive or right-tailed skewness, the arithmetic 

mean is greater than the median and mode. If there is 

negative or left-tailed skewness, the arithmetic mean is 

smaller than the median and mode [4]. A related proposal is 

Singh, Gewali, and Bativada's [12] area asymmetry or 

difference between the cumulative probability of the mean 

and the median. 

 

On the other hand, there are measures based on Pearson's 

standardized third central moment [11] and Fisher's 

standardized third cumulant [13]. These measures yield a 

value of zero when symmetry is present; they are positive 

when the right tail is greater than the left tail, and negative 

when the left tail exceeds the right tail. Moreover, the 

greater the disparity between the tails, the larger the absolute 

value of both coefficients. 

 

Furthermore, we have Bowley's quartile skewness 

coefficient [14], Hinkley's percentile skewness coefficient 

[15], Groeneveld and Meeden's integrated quantile skewness 

coefficient [16], and Altinay's coefficient of skewness [17]. 

This set of statistics uses the median as the axis of 

symmetry, dividing the difference between two shoulder or 

parts of the distribution: (right quantile − median) − (median 

− left quantile) by its maximum: right quantile − left 

quantile, resulting in values ranging from −1 to 1. These 

measures are interpreted similarly to the previously 

mentioned skewness measures. 

 

A similar approach is the measure developed by Eberl and 

Klar [18], which is based on expectiles instead of quantiles. 

The concept of expectile, or expected quantile, was 

introduced by Newey and Powell in 1987 within the context 

of least squares quantile regression, also known as 

asymmetric least squares regression [19]. The expectile of 

order p is denoted by ep, where p represents the cumulative 

probability value up to that point. It is obtained by 

minimizing the asymmetric quadratic loss function given in 

Equation 1 [20]. 

y = {𝑦𝑖}𝑖=1
𝑛 = {𝑦1 , 𝑦2, … 𝑦𝑛} ∈ Y 

min
𝑒𝑝 ∈ ℝ

𝑝 ∈ [0,1]

{∑ 𝑤𝑖(𝑦𝑖 − 𝑒𝑝)
2

𝑛 

𝑖=1

}  

𝑤𝑖 = {
1 − 𝑝 𝑦𝑖 < 𝑒𝑝

        𝑝 𝑦𝑖 ≥ 𝑒𝑝
 

(1) 

 

Linked to this third group are Kelley's [21−22] absolute 
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asymmetry index or distance between the mid-percentile 

range and the median, q0.5 − (q0.1 + q0.9) /2, and Kelley's 

dimensionless asymmetry index. The latter is derived by 

dividing the absolute index by the median, resulting in 1 − 

(q0.1 + q0.9) / q0.5. In these two indices, negative values 

correspond to right-tailed skewness, while positive values 

indicate left-tailed skewness, in contrast to the coefficients 

observed previously. 

 

Another proposal is Hogg's [23] adaptive and robust 

measure of skewness, which relies on the interquartile mean 

(mean truncated at 25%) and the 5% averages of the data at 

each end of the cumulative distribution function. This 

measure is derived from the ratio of the difference between 

the mean of the top 5% of the data and the interquartile 

mean (numerator) to the difference between the interquartile 

mean and the mean of the bottom 5% of the data. A value of 

1 indicates symmetry. The measure indicates greater 

asymmetry towards the left tail as it approaches 0, and 

greater asymmetry towards the right tail the further it 

deviates from 1. 

 

There is also Bickel's [24] robust asymmetry measure, which 

requires a single mode and adopts the mode as the axis of 

symmetry. It is defined as the complement of twice the value 

in the cumulative distribution function of the mode. The 

mode is estimated using an iterative procedure of half-

samples, and the cumulative probability of the mode is 

obtained through a quotient. The numerator of this quotient 

is the sum of the number of data points smaller than the 

mode and half the number of data points equal to the mode. 

The denominator is the sample size. Consequently, Bickel's 

coefficient of skewness is bounded between −1 and 1. 

 

2. Gunver-Senocak-Vehid measure of 

skewness 
 

Gunver, Senocak, and Vehid, professors at the Department 

of Biostatistics, Istanbul University, developed in 2018 a 

new robust measure of skewness for continuous variables, 

which can also be applied to ordinal variables [25]. These 

authors proposed to use the median as the axis of symmetry. 

 

The proposed asymmetry statistic is calculated as the 

quotient between two sums of differential scores with 

respect to the median. In the numerator, sample data smaller 

than the median are included, resulting in negative 

differences with respect to the median. In the denominator, 

sample data greater than or equal to the median are included, 

resulting in positive differences with respect to the median. 

It is denoted by γGSV at the population level and gGSV at the 

sample level, similar to Fisher's measure. Please refer to 

Equation 2 for further details. 

x = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊆ X 

𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛) 

𝑚𝑑𝑛(x) =
𝑥

(⌈
𝑛
2

⌉)
+ 𝑥

(⌊
𝑛
2

⌋+1)

2
 

𝛾(x) = 𝑔𝐺𝑆𝑉(x) 

=
∑ (𝑥(𝑖) − 𝑚𝑑𝑛(x))

⌊𝑛/2⌋
𝑖=1

∑ (𝑥(𝑖) − 𝑚𝑑𝑛(x))𝑛
𝑖=⌊𝑛/2⌋+1

 

(2) 

 The quotient is always negative, since the numerator is 

negative and the denominator is positive. Its range extends 

over the interval (−∞, 0). When there is symmetry, as in the 

case of the normal distribution, its value is −1. When there is 

left-tailed skewness (left tail longer than the right tail), its 

value is less than −1. Since the numerator is larger than the 

denominator, the ratio tends to −∞. When there is 

asymmetry to the right tail (right tail longer than the left), its 

value is greater than −1. As the numerator is smaller than the 

denominator, the quotient tends to 0. In the situation of a 

constant random sample, the indeterminacy 0 / 0 appears and 

this can be resolved as −1, since it is the value that 

corresponds to a symmetric distribution, as is the case of the 

distribution of a constant. This distribution has only one 

peak and lacks (symmetrically) the two shoulders and the 

two tails. 

 

3. Objectives and justification of the study 
 

This methodological study aims to: 1) develop a script for 

the R program for point and interval estimation of skewness, 

using the γGSV coefficient; 2) provide interpretive symmetry 

rules for that coefficient, generating bootstrap confidence 

intervals at 90%, 95% and 99% from population-samples of 

various sizes with standard normal distribution; and 3) 

analyze the relationship of the gGSV coefficient with three 

other measures of skewness, namely, Bowley's Quartile 

Skewness Coefficient (QSC) [14], Hinkley's Percentile 

Skewness Coefficient (PSC) [15], and jackknife acceleration 

(a) [26]. 

 

This article focuses on the Gunver-Senocak-Vehid 

coefficient of skewness [25], as it is considered to be an 

interesting proposal to measure asymmetry, little known and 

underutilized. It is relevant in that it proposes to compare the 

two parts of the distribution defined by the median through a 

quotient, so it uses all the information of the distribution and 

utilizes as symmetry axis the most robust measure of central 

tendency that exists, which is unique and can be defined 

with any type of distribution [27]. The R program is utilized 

to facilitate the implementation of this asymmetry measure. 

R was selected due to its status as a freely available 

statistical tool, developed by the mathematical community, 

and regarded as one of the most comprehensive options 

existing [28]. 

 

4. Method 
 

For the first objective of point estimation of γGSV, the basic 

package of the R program [28] was used. Since the sampling 

distribution of the gGSV was unknown, the interval estimation 

approach of γGSV was performed through bootstrap utilizing 

the bias-corrected and accelerated (BCa) percentile and 

percentile (PERC) methods, with the assistance of the "boot" 

package [29]. Additionally, the script was enhanced by 

evaluating skewness using bootstrap probability under the 

null hypothesis of symmetry: H0: γGSV = −1 [30], and by 

visually inspecting the distribution through a box plot and a 

histogram with an overlaid density curve, generating high-

definition plots with the "ggplot2" package [31]. 

 

As an illustrative example, the script was applied to a 

random sample of 35 data points generated from a logistic 

distribution with parameters: μ = 0 and β = 200 × √2. To 
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provide context, the data represent the skill levels of 35 

chess players, quantified by the Rating Difference (RD). 

This quantitative variable spans from −800 to 800, is 

employed by the International Chess Federation, and adheres 

to a logistic distribution [32]. 

 

For the second objective of providing interpretive symmetry 

rules for gGSV, 34 population-samples of various sizes 

(ranging from 10 to 50 with increments of 5, from 60 to 100 

with increments of 10, from 150 to 1000 with increments of 

50, and from 1500 to 2000) were generated. These 

population-samples were perfectly symmetric, with a 

standard normal distribution. From each of these 34 

population-samples, 1000 draws with replacement were 

taken, and bootstrap confidence intervals were defined at 

90%, 95%, and 99% using the BCa percentile and PERC 

methods. Additionally, 95% confidence intervals were 

established using the normal or Gaussian (NORM) method 

for the 30 population-samples with sizes greater than or 

equal to 30 data points [29]. 

 

When one interval estimation method is more efficient than 

others, it tends to yield smaller width intervals [33−34]. To 

determine whether one of the three methods is more 

efficient, two approaches were taken. First, the average 

widths of the bootstrap confidence intervals obtained by the 

BCa percentile and PERC methods were compared using the 

Wilcoxon’s test [35]. Second, the difference among average 

widths of the 95% bootstrap confidence intervals obtained 

by the BCa percentile, PERC, and NORM methods were 

tested using the Friedman’s test [36−37]. Nonparametric 

tests were employed due to the violation of the normality 

assumption [38]. This assumption was assessed at the 

univariate level using the Shapiro-Wilk W-test [39] and at 

the bi- or multivariate level using Royston's H-test [40]. 

 

For the third objective of analyzing the relationship between 

gGSV and the quartile and percentile skewness coefficients, 

along with jackknife acceleration, the 34 bootstrap 

distributions of 1000 data points obtained from the 34 

normally distributed population-samples were utilized. The 

quantile coefficients of skewness were selected due to their 

higher affinity to gGSV in measuring asymmetry, thus serving 

as validity criteria alongside jackknife acceleration. The 

correlations among the four measures of skewness were 

calculated using Spearman's rank-order correlation 

coefficient, as the data did not meet the assumption of 

normality [38, 41]. This assumption was assessed at the 

univariate level using the Shapiro-Wilk W-test [39] and at 

the bivariate level using Royston's H-test [40]. Comparisons 

between correlations were conducted using the Meng-

Rosenthal-Rubin Z-test [42], with the Rosner-Glynn 

transformation [43] applied. Effect size was estimated using 

the statistic: d = z / √n, where z represents the Meng-

Rosenthal-Rubin standardized test statistic and n denotes the 

sample size. Values of the d statistic less than 0.2 were 

interpreted as indicating a trivial effect size, those between 

0.2 and 0.49 as small, between 0.5 and 0.79 as medium, and 

those greater than or equal to 0.8 as large [44]. 

 

 

5. Results 
 

5.1 Point and interval estimation of γGSV 

 

Since the sampling distribution of gGSV is unknown, the 

calculation of its standard error can be approached using the 

technique of repetitive sampling with replacement from the 

original sample (nonparametric bootstrap). Additionally, its 

confidence interval can be estimated using the percentile 

(PERC) and bias-corrected and accelerated (BCa) percentile 

methods. This is the approach followed in the script. In the 

case of small bias and acceleration (|bias| < 0.1 and |a| < 

0.025, respectively), both methods are suitable [26]. If bias 

and acceleration are not small, the BCa percentile method is 

preferable [30]. One thousand extractions with replacement 

from the original sample were utilized [29]. 

 

The script developed for the R program, which can be 

adapted to other data than those presented, is shown below. 

The aspects that could be changed for such adaptation were 

marked in blue. This script allows point and interval 

estimation at 90% and 95% confidence level of the γGSV 

coefficient. Prior to applying the bootstrap method, the script 

checks the randomness of the sample using the Wald-

Wolfowitz runs test, available in the “DescTools” package 

[45]. Furthermore, the estimation of γGSV was enhanced with 

two plots depicting the original sample of variable X: a box 

plot and a histogram with an overlaid density curve. The 

number of bins for the histogram is determined by the 

Freedman-Diaconis rule [46], while the densities for the 

curve are estimated using the Epanechnikov’s kernel 

function [47], with bandwidth established via the method of 

Sheather and Jones [48]. Given the significance of 

evaluating shape, visual inspection of the distribution is 

emphasized. 

 

In the script, the calculation of the skewness of the bootstrap 

sampling distribution of gGSV and the acceleration correction 

factor were also incorporated. Additionally, the R program 

automatically provides the bias and standard error of the 

bootstrap point estimate of γGSV, along with plots of the 

bootstrap sampling distribution of gGSV (including a 

histogram and a quantile-normal quantile-quantile plot). 

Another enhancement included was the computation of the 

bootstrap probability for the null hypothesis of symmetry 

(H0: γGSV = −1). This probability is twice the minimum of 

two ratios: the ratio of the number of gGSV estimates less than 

−1 in the 1000 bootstrap samples to the total number of 

draws (# [gGSV < −1] / 1000), and the ratio of the number of 

gGSV estimates greater than −1 in the 1000 bootstrap samples 

to the total number of draws (# [gGSV > −1] / 1000). If the 

probability value is less than or equal to the significance 

level (alpha <- 0.05), the null hypothesis of symmetry in a 

two-tailed test is upheld; if it is greater, it is rejected. 

 The results were rounded to three decimal places to 

enhance readability, except for the jackknife acceleration 

value, which necessitates more decimal places. 

 

# Data vector definition 

x <- c(-154, 9, -599, 242, 520, 228, -186, -264, -118, 625, -

190, -408, 134, -54, 656, -337, 619, -188, -422, -373, 367, 

90, 220, -248, -787, 276, 761, 536, -693, 453, 234, -83, 249, 

150, 27) 

# Histogram with overlaid density curve 

library(ggplot2) 
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n <- length(x) 

h <- 2 * IQR(x) / (n^(1/3)) 

density <- density(x, kernel = "epanechnikov", bw = "SJ") 

histogram <- ggplot(data = data.frame(x = x), aes(x = x)) +  

geom_histogram(aes(y = ..density..), binwidth = h, fill = 

"darkolivegreen2", color = "black") +  

geom_line(data = data.frame(x = density$x, y = density$y), 

aes(x = x, y = y), color = "black", size = 1.5) + 

labs(x = "X = Rating difference", y = "Density") + 

theme(panel.background = element_rect(fill = "white"), 

axis.text.x.bottom = element_text(size = 8), axis.text.y = 

element_text(size = 8), axis.title.x = element_text(size = 9), 

axis.title.y = element_text(size = 9), axis.line = 

element_line(color = "black")) + scale_y_continuous(labels 

= scales::label_number(accuracy = 0.0001)) 

jpeg("histogram.jpeg", width = 800, height = 600, units = 

"px", res = 300) 

print(histogram) 

dev.off() 

histogram 

 

# Box plot 

boxplot <- ggplot(data = data.frame(x = x), aes(x = "", y = 

x)) + 

geom_boxplot(fill = "darkolivegreen2", color = "black") + 

labs(x = NULL, y = "Rating difference") + 

theme_minimal() + 

theme(panel.background = element_rect(fill = "white"), 

axis.line = element_line(colour = "black"), 

axis.title.x = element_text(size = 9), 

axis.text.x = element_text(size = 8)) + 

scale_x_discrete(position = "top") + 

coord_flip() 

jpeg("box_plot.jpeg", width = 800, height = 600, units = 

"px", res = 300) 

print(boxplot) 

dev.off() 

boxplot 

 

# Point estimate of the Gunver-Senocak-Vehid measure of 

skewness 

mdn <- median(x) 

pdm <- x - mdn 

g_GSV <- sum(pdm[pdm < 0]) / sum(pdm[pdm >= 0]) 

g_GSV <- ifelse(is.nan(g_GSV), -1, g_GSV) 

cat("Sample size: n =", n, "\n") 

cat("Median: mdn(x) =", mdn, "\n") 

cat("Gunver-Senocak-Vehid measure of skewness: 

g_GSV(x) =", round(g_GSV, 3), "\n") 

 

# Testing the randomness of the sample by means of the 

Wald-Wolfowitz runs test 

library(DescTools) 

RunsTest(x, alternative = "two.sided", exact = TRUE) 

 

# Interval estimation of the Gunver-Senocak-Vehid measure 

of skewness 

library(boot) 

set.seed(123) 

b <- boot(x, function(x, i) { 

pdm <- x[i] - median(x[i]) 

g <- sum(pdm[pdm < 0]) / sum(pdm[pdm >= 0]) 

g <- ifelse(is.nan(g), -1, g) 

return(g) 

}, R = 1000) 

print(b) 

plot(b) 

boot.ci(b, conf = c(0.90, 0.95), type = c("perc", "bca")) 

boot_g_GSV <- mean(b$t) 

cat("Bootstrap estimate of gamma_GSV(X): m(bootstrap 

distribution) =", round(boot_g_GSV, 3), "\n") 

 

# Skewness in the bootstrap sampling distribution of gGSV 

mdn_boot <- median(b$t) 

pdm_boot <- b$t - mdn_boot 

g_GSV_boot <- sum(pdm_boot[pdm_boot < 0]) / 

sum(pdm_boot[pdm_boot >= 0]) 

g_GSV_boot <- ifelse(is.nan(g_GSV_boot), -1, 

g_GSV_boot) 

cat("Skewness in the bootstrap sampling distribution of 

g_GSV(x): g_GSV(bootstrap distribution) =", 

round(g_GSV_boot, 3), "\n") 

 

# Skew correction factor (acceleration) using jackknife 

estimation 

g_jackknife <- numeric(n) 

for (i in 1:n) { 

muestra_jackknife <- x[-i] 

pdm <- muestra_jackknife - median(muestra_jackknife) 

g_jackknife[i] <- sum(pdm[pdm < 0]) / sum(pdm[pdm >= 

0]) 

} 

media_g_jackknife <- sum(g_jackknife) / n 

acel <- sum((media_g_jackknife - g_jackknife)^3) / (6 * 

sum((media_g_jackknife - g_jackknife)^2)^(3/2)) 

cat("Skew correction factor (acceleration): a =", round(acel, 

6), "\n") 

p_boot_izq <- sum(b$t < -1) / length(b$t) 

p_boot_der <- sum(b$t > -1) / length(b$t) 

p_boot <- 2 * min(p_boot_izq, p_boot_der) 

alpha <- 0.05 

cat("Two-tailed bootstrap probability for the null hypothesis 

of symmetry: p-value =", round(p_boot, 3), "\n") 

if (p_boot >= alpha) { 

cat("Since the p-value (", round(p_boot, 3), ") is greater than 

or equal to alpha (", alpha, "), the null hypothesis of 

symmetry is not rejected in a two-tailed test.\n") 

} else { 

cat("Since the p-value (", round(p_boot, 3), ") is less than 

alpha (", alpha, "), the null hypothesis of symmetry is 

rejected in a two-tailed test.\n") 

} 

 

# Creation of the JPEG file to save bootstrap graphics 

conf_intervals <- boot.ci(b, conf = c(0.90, 0.95), type = 

c("perc", "bca")) 

jpeg("bootstrap_plots.jpeg", width = 800, height = 600, 

quality = 100) 

par(mfrow = c(1, 2)) 

plot(b) 

plot(conf_intervals) 

dev.off() 

 

The script can be run online via https://rdrr.io/snippets/, but 

it produces low-resolution graphics when exported. 

Alternatively, users can run the script using either the R 
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program [28] or RStudio [49] with the 'DescTools', 'boot', 

and 'ggplot2' packages installed on their personal computer. 

In the latter scenario, three high-definition *.jpeg files 

containing four plots are saved in the Documents directory: 

the box plot (Figure 1), the histogram with the overlaid 

density curve (Figure 2), and two plots representing the 

bootstrap sampling distribution of gGSV (Figure 3). The 

results of executing the script are summarized in Table 1, 

which includes the outputs of the ordinary nonparametric 

bootstrap analysis presented by R in two tables. 

• Sample size: n = 35  

• Median: mdn(x) = 27 

• Gunver-Senocak-Vehid measure of skewness: 

gGSV(x) = -0.941 

• runs = 19, n0 = 18, n1 = 17, p-value = 0.862. 

Table 1: Point estimate and bootstrap confidence intervals of Gunver-Senocak-Vehid coefficient of skewness 

gGSV 

Bootstrap 

estimation 

Bootstrap confidence interval 

90% 95% 

bias se PERC BCa PERC BCa 

-0.941 -0.195 0.523 (-2.143, -0.486) (-1.821, -0.411) (-2.332, -0.421) (-2.065, -0.375) 

Note. gGSV = Gunver-Senocak-Vehid coefficient of skewness of the original sample, bias and se = standard 

error of bootstrap estimate, bootstrap confidence interval (drawing 1000 samples for repetitive sampling 

with replacement from original sample): PERC = percentile method and BCa = bias-corrected and 

accelerated percentile method. 

 

• Bootstrap estimate of gammaGSV(X): 

m(bootstrap distribution) = −1.136. 

• Skewness in the bootstrap sampling distribution of 

gGSV(x): gGSV(bootstrap distribution) = −1.603. 

• Skew correction factor (acceleration): a = 0.000441 

• Two-tailed bootstrap probability for the null hypothesis 

of symmetry: p-value = 0.904. 

• Since the p-value (0.904) is greater than or equal to 

alpha (0.05), the null hypothesis of symmetry is not 

rejected in a two-tailed test. 

  
Figure 1: Box plot depicting the chess skill, measured by the 

rating difference, in a random sample of 35 chess players 

  
Figure 2: Histogram (uniform width of bins defined by the 

Freedman-Diaconis rule) with an overlaid density curve 

(using Epanechnikov’s kernel with Sheather-Jones 

bandwidth), depicting chess skill as measured by the rating 

difference in a random sample of 35 chess players 

 

 In the sample of 35 data points outlined in the script, the 

median value is 27. The Gunver-Senocak-Vehid coefficient 

of skewness is −0.941, indicating a proximity to the 

symmetry value of −1. Both the box plot (Figure 1) and 

histogram (Figure 2) depict symmetry in the data 

distribution. Furthermore, the density curve clearly shows 

the logistic distribution underlying the dataset. 

 

The sample can be considered random or as a sequence of 

independent data since the null hypothesis of randomness is 

not rejected by the Wald-Wolfowitz runs test in a two-tailed 

test with a significance level of 5%, using the median as the 

cut-off criterion and calculating the exact probability. In case 

n0 (values less than the median) and n1 (values greater than 

the median) are greater than 20, the asymptotic normal 

approximation (exact = FALSE) can be chosen. 

Consequently, we have a random sample, larger than 30 data 

points, and assume it to be representative of the population 

(generated from the theoretical model of the population 

distribution). 

 

The value of the acceleration is tiny (|a| = 0.0004 < 0.025), 

but the bias of the bootstrap estimate in absolute value is 

larger than 0.1 (|biasbootstrap| = 0.195), which is not a small 

value. The skewness of the bootstrap distribution, measured 

by the gGSV coefficient, is away from −1 with a value of 

−1.603, suggesting left-tailed skewness. Precisely, the 

density plot of the bootstrap distribution (left plot in Figure 

3) shows some asymmetry with the left tail longer than the 

right. The normal quantile-quantile plot (right in Figure 3) 

evidences departure from normality with a concave profile 

that is typical of left-tailed skewness [50]. Therefore, the 

bias-corrected and accelerated (BCa) percentile method is 

more suitable than the percentile (PERC) method to obtain 

the bootstrap confidence interval for the dataset. In addition, 

the bootstrap confidence interval widths (at 90% and 95%) 

obtained using the BCa percentile method are smaller than 

those obtained using the PERC method with this data. 

 

Consistent with what the graphs depicting the Rating 

Difference scores in the sample of 35 participants reveal, the 

90% and 95% bootstrap confidence intervals obtained by 

both methods include −1, thereby supporting the symmetry 

hypothesis. See Table 1. 

 

The bootstrap probability for the null hypothesis of 

symmetry is greater than the significance level (H0: γGSV = 

−1; p2-tailed = 0.904 > α = 0.05), so the hypothesis of 
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symmetry is not rejected in a two-tailed test with a 

significance level of 5%, even 10%. Consequently, it can be 

inferred that the distribution from which the sample was 

drawn exhibits symmetry. This conclusion is correct (true), 

since the dataset was generated from a logistic distribution. 

  
Figure 3: Bootstrap sampling distribution of gGSV. 

The histogram is shown on the left, and the normal quantile-quantile plot is displayed on the right 

 

5.2 Reference bootstrap confidence intervals of 

symmetry for gGSV modeled from population-

samples following a standard normal distribution 

 

The range of the 34 population-samples generated was 

bounded to the closed interval, comprised between Φ−1(p = 

0.001) or the quantile of order 0.001 of a standard normal 

distribution (z0.001 ≈ −3.090) and Φ−1(p = 0.999) = z0.999 ≈ 

3.090. Samples were generated using the probit function with 

orders in an arithmetic sequence to ensure perfect symmetry 

and centering at 0. In each population-sample, the first datum 

was: x(1) = Φ−1(p = 0.001) ≈ −3.090. The incremental 

constant of the order of the quantile in each of the 34 

sequences was obtained by dividing 0.998 (0.999 − 0.001) by 

the sample size decreased by one unit (n − 1). Adding the 

constant c to 0.001 and obtaining the quantile in that order 

with the probit function yielded the second datum for each 

sample: x(2) = Φ−1(p = 0.001 + c). Adding the constant c to 

the order of the second datum and obtaining the quantile in 

that order resulted in the third datum: x(3) = Φ−1(p = 0.001 + 2 

× c). Thus, the arithmetic sequence was continued in quantile 

order until the nth sample datum was reached (Φ−1(p = 0.001 

+ (n−1) × c) = z0.999 ≈ 3.090). From these 34 population-

samples by resampling with replacement and fixing a seed 

(123), 1000 samples, called bootstrap samples, were 

randomly drawn. We proceeded in this way to generate 

perfectly reproducible confidence intervals. For each 

bootstrap sample, the gGSV statistic was calculated, yielding 

the bootstrap sampling distribution of gGSV or bootstrap 

distribution. 

 For each bootstrap distribution of 1000 data, the bootstrap 

bias or difference between its mean (bootstrap estimate of 

γGSV) (Equation 3) and the point estimate of γGSV in the 

original sample of size n (Equation 4) was calculated. By 

inspecting Table 2, a value of 0.05 can be considered to 

represent a slight bias for small samples (30 to 100), 0.01 for 

medium samples (100 to 900), and 0.001 for large samples 

(greater than 1000). 

𝛾𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = 𝐸({𝛾𝑖}𝑖=1
𝐵 ) 

=
∑ 𝛾𝑖

𝐵
𝑖=1

𝐵
=

∑ 𝛾𝑖
1000
𝑖=1

1000
 

(3) 

 

𝑏𝑖𝑎𝑠(𝛾𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝) = 𝐸({𝛾𝑖}𝑖=1
𝐵 ) − 𝛾 

= 𝛾𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 − 𝑔𝐺𝑆𝑉 
(4) 

 

 The bootstrap standard error was also calculated, which is 

obtained through the sample standard deviation of gGSV in the 

bootstrap distribution of 1000 data (Equation 5). See Table 2. 

𝑠𝑒𝑏𝑜𝑜𝑠𝑡𝑟𝑎𝑝 = 𝑠𝐵−1({𝛾𝑖}𝑖=1
𝐵 ) 

= √∑ (𝛾𝑖 − 𝛾𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝)
2𝐵

𝑖=1

𝐵 − 1
 

= √∑ (𝛾𝑖 − 𝛾𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝)
21000

𝑖=1

999
 

(5) 
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In addition, the jackknife acceleration or skewness was 

calculated (Table 2). From the population-sample of size n, n 

samples were generated by eliminating one element in each 

population-sample, the gGSV statistic was calculated in each 

of these n jackknife samples of size n - 1 and Equation 6 was 

applied to obtain the acceleration, denoted by a. Refer to 

Table 3 for details. This was supplemented with the 

skewness of the bootstrap distribution estimated by the 

Gunver-Senocak-Vehid coefficient, as well as the quartile 

and percentile skewness coefficients. 

𝛾𝑗𝑎𝑐𝑘𝑘𝑛𝑖𝑓𝑒 = 𝐸 ({𝛾(−𝑖)}
𝑖=1

𝑛
) =

∑ 𝛾(−𝑖)
𝑛
𝑖=1

𝑛
 

𝑎 =
1

6
×

∑ (𝛾𝑗𝑎𝑐𝑘𝑘𝑛𝑖𝑓𝑒 − 𝛾(−𝑖))
3𝑛

𝑖=1

[∑ (𝛾𝑗𝑎𝑐𝑘𝑘𝑛𝑖𝑓𝑒 − 𝛾(−𝑖))
2𝑛

𝑖=1 ]
3/2

 
(6) 

 

Confidence intervals were obtained using two methods: the 

bias-corrected and accelerated (BCa) percentile method, 

presented in Table 2, and the percentile (PERC) method, 

outlined in Table 3. Both methods fall under the category of 

nonparametric techniques [26]. Additionally, Table 3 

includes the 95% confidence interval obtained through the 

normal or Gaussian (NORM) method, which is a parametric 

approach [26]. It is applied to population-samples of 30 or 

more data, which have low indices of estimation bias and 

distributional skewness. 

 

Applying these reference tables to the provided example, the 

skewness value of the sample x falls within the reference 

intervals of symmetry for 90% confidence level (two-tailed 

10% significance level) and 95% (two-tailed 5% significance 

level) obtained by the BCa percentil, PERC, and normal 

methods. In the bootstrap distribution of 1000 data derived 

from the population-sample of 35 normally distributed data 

in the interval [z0.001, z0.999], the values of estimation bias and 

distributional skewness are small (|bias| = |0.052| < 0.1, |a| = 

0.004 < 0.025), so the PERC method, even the normal 

method are adequate. Consequently, the previously reached 

conclusion of symmetry holds. However, the bootstrap 

distribution (b) does exhibit left-tailed skewness (gGSV = 

−1.617), as its skewness value falls outside the reference 

confidence intervals at 90% obtained by the three methods, 

and at 95% by the PERC and BCa percentile methods. 

CI at 95% for n = 35 

• gGVS(x) = −0.941 ∈ and gGVS(b) = −1.603 ∉ (−1.948, 

−0.505) by BCa percentile method, width = upper limit – 

lower limit: w = UL − LL = −0.505 + 1.948 = 1.443. 

• gGVS(x) = −0.941 ∈ and gGVS(b) = −1.603 ∉ (−1.938, 

−0.502) by PERC method, w = UL − LL = 1.436. 

• gGVS(x) = −0.941 ∈ and gGVS(b) = −1.603 ∉ (−1.684, 

−0.212) by NORM method, w = UL − LL = 1.472. 

CI at 90% for n = 35 

• gGVS(x) = −0.941 ∈ and gGVS(b) = −1.603 ∉ (−1.777, 

−0.564) by BCa percentile method, w = UL − LL = 1.213. 

• gGVS(x) = −0.941 ∈ and gGVS(b) = −1.603 ∉ (−1.766, 

−0.549) by PERC method, w = UL − LL = 1.217. 

• gGVS(x) = −0.941 and gGVS(b) = −1.603 ∈ (−1.566, 

−0.331) by NORM method, w = UL −LL = 1.235. 

 

Table 2: Bias, standard error, acceleration, and reference bootstrap confidence intervals of symmetry obtained by the BCa 

percentile method 

n 
Bootstrap estimation BCa bootstrap confidence interval 

bias se a 90% 95% 99% 

10 -0.226 0.988 0.03550 (-2.648, -0.328) (-3.161, -0.257) (-5.598, -0.119) 

15 -0.195 0.769 0.02206 (-2.604, -0.429) (-3.209, -0.345) (-4.803, -0.249) 

20 -0.111 0.524 0.01159 (-2.212, -0.498) (-2.474, -0.430) (-3.172, -0.302) 

25 -0.091 0.474 0.00846 (-1.861, -0.482) (-2.124, -0.439) (-2.983, -0.326) 

30 -0.079 0.390 0.00532 (-1.778, -0.563) (-1.979, -0.503) (-2.623, -0.416) 

35 -0.052 0.375 0.00426 (-1.777, -0.564) (-1.948, -0.505) (-2.916, -0.415) 

40 -0.051 0.329 0.00301 (-1.665, -0.607) (-1.857, -0.533) (-2.291, -0.447) 

45 -0.046 0.310 0.00254 (-1.614, -0.608) (-1.758, -0.550) (-2.068, -0.432) 

50 -0.037 0.298 0.00194 (-1.573, -0.643) (-1.695, -0.582) (-2.265, -0.495) 

60 -0.021 0.252 0.00136 (-1.485, -0.678) (-1.639, -0.615) (-1.893, -0.488) 

70 -0.027 0.235 0.00101 (-1.480, -0.689) (-1.579, -0.648) (-1.766, -0.560) 

80 -0.028 0.221 0.00078 (-1.373, -0.677) (-1.473, -0.623) (-1.711, -0.559) 

90 -0.012 0.205 0.00063 (-1.392, -0.711) (-1.487, -0.667) (-1.631, -0.590) 

100 -0.011 0.193 0.00052 (-1.352, -0.736) (-1.474, -0.696) (-1.629, -0.616) 

150 -0.014 0.162 0.00025 (-1.288, -0.766) (-1.337, -0.725) (-1.521, -0.650) 

200 -0.009 0.133 0.00015 (-1.230, -0.810) (-1.289, -0.773) (-1.438, -0.713) 

250 -0.011 0.120 0.00011 (-1.201, -0.823) (-1.264, -0.783) (-1.403, -0.709) 

300 -0.005 0.112 0.00008 (-1.200, -0.836) (-1.250, -0.805) (-1.354, -0.733) 

350 -0.004 0.104 0.00006 (-1.215, -0.856) (-1.250, -0.828) (-1.309, -0.779) 

400 -0.002 0.096 0.00005 (-1.173, -0.855) (-1.209, -0.835) (-1.282, -0.788) 

450 -0.003 0.091 0.00004 (-1.153, -0.860) (-1.186, -0.831) (-1.285, -0.788) 

500 -0.001 0.086 0.00004 (-1.150, -0.869) (-1.179, -0.847) (-1.255, -0.812) 

550 -0.003 0.084 0.00003 (-1.157, -0.882) (-1.189, -0.859) (-1.247, -0.815) 

600 -0.003 0.078 0.00003 (-1.141, -0.887) (-1.165, -0.863) (-1.222, -0.821) 

650 -0.007 0.076 0.00002 (-1.129, -0.886) (-1.156, -0.867) (-1.220, -0.822) 

700 -0.006 0.073 0.00002 (-1.126, -0.881) (-1.146, -0.854) (-1.191, -0.815) 

750 -0.004 0.068 0.00002 (-1.129, -0.899) (-1.143, -0.887) (-1.196, -0.858 

800 -0.003 0.067 0.00002 (-1.111, -0.890) (-1.142, -0.872) (-1.214, -0.847) 

850 -0.004 0.065 0.00002 (-1.110, -0.895) (-1.130, -0.874) (-1.175, -0.830) 
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900 <0.001 0.062 0.00001 (-1.101, -0.897) (-1.122, -0.879) (-1.183, -0.860) 

950 -0.001 0.064 0.00001 (-1.109, -0.902) (-1.136, -0.887) (-1.210, -0.841) 

1000 -0.003 0.060 0.00001 (-1.098, -0.906) (-1.119, -0.892) (-1.119, -0.892) 

1500 <-.001 0.050 0.00001 (-1.088, -0.926) (-1.102, -0.911) (-1.139, -0.868) 

2000 <-.001 0.043 0 (-1.076, -0.931) (-1.087, -0.920) (-1.118, -0.900) 

m    0.651 0.796 1.185 

m*     0.586  

Note. n = sample size of the generating population-sample; bootstrap distribution consists of 1000 samples drawn by repetitive 

resampling with replacement, using a seed (123), from the a perfectly symmetric generating population-sample with n normally 

distributed data in the interval [z0.001, z0.999] with equispaced quantile orders (0. 998 / (n - 1)); bias = difference between the estimate 

in the original sample and the bootstrap estimate; se =bootstrap standard error; a = jackknife acceleration; bootstrap confidence 

intervals at 90%, 95%, and 99% calculated using the bias-corrected and accelerated (BCa) percentile method m = average width of 

the bootstrap confidence intervals in the 34 population-samples, and m*= average width of the bootstrap confidence intervals in the 

30 population-samples with sizes n ≥ 30. For all bootstrap distributions, the value of gGSV was -1. 

 

Table 3: Skewness of bootstrap distribution, and reference bootstrap confidence intervals obtained by percentile and normal 

methods 

n 
Skewness PERC Normal 

gGSV QSC PSC 90% 95% 99% 95% 

10 -2.208 -0.177 -0.437 (-2.869, -0.350) (-3.428, -0.268) (-5.895, -0.154)  

15 -2.440 -0.257 -0.437 (-2.587, -0.427) (-3.210, -0.345) (-4.906, -0.251)  

20 -1.977 -0.274 -0.336 (-2.147, -0.479) (-2.457, -0.420) (-2.963, -0.298)  

25 -1.558 -0.097 -0.219 (-2.020, -0.497) (-2.167, -0.448) (-3.091, -0.331)  

30 -1.617 -0.148 -0.242 (-1.804, -0.575) (-1.992, -0.510) (-2.630, -0.422) (-1.685, -0.158) 

35 -1.560 -0.116 -0.194 (-1.766, -0.549) (-1.938, -0.502) (-2.890, -0.401) (-1.684, -0.212) 

40 -1.580 -0.161 -0.226 (-1.648, -0.604) (-1.845, -0.528) (-2.285, -0.442) (-1.594, -0.304) 

45 -1.431 -0.097 -0.196 (-1.618, -0.610) (-1.762, -0.550) (-2.069, -0.434) (-1.563, -0.346) 

50 -1.447 -0.110 -0.194 (-1.566, -0.640) (-1.679, -0.580) (-2.189, -0.486) (-1.547, -0.379) 

60 -1.289 -0.027 -0.112 (-1.483, -0.670) (-1.630, -0.608) (-1.892, -0.477) (-1.472, -0.486) 

70 -1.348 -0.097 -0.136 (-1.468, -0.687) (-1.575, -0.647) (-1.751, -0.560) (-1.433, -0.514) 

80 -1.170 -0.006 -0.088 (-1.421, -0.702) (-1.508, -0.641) (-1.756, -0.573) (-1.404, -0.540) 

90 -1.227 -0.038 -0.091 (-1.379, -0.707) (-1.484, -0.668) (-1.608, -0.582) (-1.390, -0.587) 

100 -1.256 -0.082 -0.092 (-1.337, -0.732) (-1.464, -0.680) (-1.628, -0.614) (-1.367, -0.611) 

150 -1.213 -0.019 -0.121 (-1.295, -0.769) (-1.372, -0.731) (-1.531, -0.651) (-1.303, -0.668) 

200 -1.210 -0.061 -0.074 (-1.229, -0.807) (-1.288, -0.772) (-1.432, -0.712) (-1.252, -0.731) 

250 -1.126 -0.012 -0.034 (-1.211, -0.828) (-1.277, -0.791) (-1.411, -0.714) (-1.225, -0.754) 

300 -1.135 -0.011 -0.077 (-1.199, -0.835) (-1.250, -0.803) (-1.349, -0.732) (-1.215, -0.774) 

350 -1.283 -0.106 -0.103 (-1.185, -0.839) (-1.234, -0.819) (-1.307, -0.763) (-1.120, -0.792) 

400 -1.146 -0.045 -0.059 (-1.169, -0.850) (-1.206, -0.832) (-1.263, -0.786) (-1.186, -0.809) 

450 -1.067 0.017 -0.057 (-1.153, -0.860) (-1.187, -0.831) (-1.288, -0.789) (-1.175, -0.820) 

500 -1.098 -0.023 -0.028 (-1.146, -0.867) (-1.173, -0.845) (-1.254, -0.812) (-1.168, -0.830) 

550 -1.318 -0.157 -0.146 (-1.148, -0.872) (-1.181, -0.846) (-1.231, -0.800) (-1.161, -0.833) 

600 -1.177 -0.065 -0.071 (-1.135, -0.882) (-1.162, -0.858) (-1.222, -0.813) (-1.151, -0.844) 

650 -1.102 0.025 -0.065 (-1.142, -0.891) (-1.168, -0.872) (-1.227, -0.827) (-1.168, -0.872) 

700 -1.058 0.020 -0.053 (-1.136, -0.891) (-1.158, -0.868) (-1.198, -0.824) (-1.137, -0.850) 

750 -1.209 -0.073 -0.121 (-1.126, -0.898) (-1.143, -0.882) (-1.193, -0.858) (-1.130, -0.863) 

800 -1.076 -0.005 0.012 (-1.116, -0.892) (-1.156, -0.875) (-1.216, -0.848) (-1.129, -0.865) 

850 -1.039 0.003 -0.022 (-1.118, -0.902) (-1.135, -0.881) (-1.186, -0.837) (-1.123, -0.868) 

900 -0.995 -0.013 0.026 (-1.101, -0.896) (-1.122, -0.879) (-1.183, -0.860) (-1.121, -0.880) 

950 -1.107 -0.067 -0.045 (-1.107, -0.901) (-1.130, -0.882) (-1.204, -0.839) (-1.125, -0.873) 

1000 -1.048 -0.019 -0.021 (-1.103, -0.912) (-1.121, -0.894) (-1.164, -0.866) (-1.114, -0.880) 

1500 -1.101 -0.025 -0.055 (-1.087, -0.925) (-1.101, -0.908) (-1.140, -0.866) (-1.097, -0.902) 

2000 -1.051 -0.011 -0.017 (-1.075, -0.931) (-1.088, -0.918) (-1.118, -0.898) (-1.084, -0.915) 

m    0.659 0.806 1.193  

m*     0.588  0.585 

Note. n = sample size of the generating population-sample; bootstrap distribution consists of 1000 samples drawn by repetitive 

resampling with replacement, using a seed (123), from the a perfectly symmetric generating population-sample with n normally 

distributed data in the interval [z0.001, z0.999] with equispaced quantile orders (0. 998 / (n - 1)); QSC =Bowley’s quartile 

skewness coefficient; PSC = percentile skewness coefficient; PERC = bootstrap confidence intervals at 90%, 95%, and 99% 

calculated using the percentile (PERC) method; Normal = 95% bootstrap confidence interval obtained by the normal or 

Gaussian method; m = average width of the bootstrap confidence intervals in the 34 population-samples, and m*= average 

width of the bootstrap confidence intervals in the 30 population-samples with sizes n ≥ 30. 

 

 

Although the average width of the bootstrap confidence 

intervals obtained by the BCa percentile method was the 

shortest, the differences in width were not statistically 

significant when making central tendency comparisons 
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between the two methods (BCa versus PERC) for 90%, 95%, 

and 99% confidence intervals (Table 4), or among the three 

methods for the 95% confidence interval (Table 5). 

 

The distributions of bootstrap confidence interval widths 

deviated from normality at the univariate level (PERC_90: 

zW = 0.791, pright-tailed < 0.001; BCa_90: zW = 0.797, pright-tailed 

< 0.001; PERC_95: zW = 0.778, pright-tailed < 0.001; BCa_95: 

zW = 0.785, pright-tailed < 0.001; PERC_99: zW = 0.724, pright-

tailed < 0.001; BCa_99: zW = 0.740, pright-tailed < 0.001) and 

bivariate (PERC_90 and BCa_90: h = 18.545, pright-tailed < 

0.001; PERC_95 and BCa_95: h = 19.543, pright-tailed < 0.001; 

PERC_99 and BCA_99: h = 23.831, pright-tailed < 0.001) in 

comparisons with 34 pairs of data, as well as at the univariate 

level (Normal_95: zW = 0.832, pright-tailed < 0.001; BCa_95: zW 

= 0.839, pright-tailed < 0.001; PERC_95: zW = 0.842, pright-tailed < 

0.001) and multivariate (h = 13.038, pright-tailed < 0.001) in 

comparisons with 30 data terns. 

 

Table 4: Comparison of the average width of bootstrap confidence intervals between the PERC and BCa percentile methods 
Level Method n m mdn T p1-tailed p2-tailed |rrb| 

0.90 PERC 34 0.659 0.374 253 0.335 0.670 0.088 

 BCa  0.651 0.371     

0.95 PERC 34 0.806 0.467 199 0.249 0.497 0.144 

 BCa  0.796 0.463     

0.99 PERC 34 1.193 0.657 249 0.290 0.580 0.112 

 BCa  1.185 0.658     

Note. Level = confidence level of the interval estimate; method for defining bootstrap confidence intervals: BCa = bias-corrected and 

accelerated percentile and PERC = percentile; n = number of paired data, m = arithmetic mean, and mdn = median of the width of 

bootstrap confidence intervals; T = Wilcoxon’s test statistic for paired samples, p1-tailed = exact probability at one tail, and p2-tailed = 

exact probability at two tails; |rrb|= the absolute value of the rank-biserial correlation coefficient as a measure of effect size. 

Table 5: Comparison of the average width of 95% bootstrap confidence intervals by method 

Method  

for defining CI 
RM 

Conover-Iman test Friedman’s test Effect size 

t p2-tailed F df1 df2 pright-tailed w 

Normal 1.967   0.165 2 58 0.848 0.006 
BcA 1.950        

PERC 2.083        
NORM - BcA 0.017 0.066 0.948      

NORM - PERC 0.117 0.461 0.646      
BcA - PERC 0.133 0.527 0.600      

Note. Method for defining bootstrap confidence intervals (CI): BCa = bias-corrected and accelerated percentile, PERC = percentile, 

and NORM = normal or Gaussian. MR = mean rank of confidence interval width (three first rows) or of the difference between 

bootstrap confidence interval widths (last three rows), t = Conover-Iman test statistic for a posteriori comparisons by matched pairs of 

data [36], p2-tailed = two-tailed probability in a Student's t distribution with (k-1) × (n-1) degrees of freedom, where k is the number of 

methods and n is the number of bootstrap confidence interval width pairs, F = test statistic of the Friedman’s test as modified by Iman 

and Davenport [37], df1 = k -1 = degrees of freedom 1, whose value corresponds to the number of methods minus 1, df2 = (k-1) × (n-1) 

= degrees of freedom 2, whose value corresponds to the product of the number of methods minus 1 and the number of bootstrap 

confidence interval width pairs minus 1, pright-tailed = right-tailed probability in a Snedecor-Fisher F distribution with df1 and df2 

degrees of freedom, w = Kendall's coefficient of concordance as a measure of effect size. 

 

5.3 Comparison of gGSV with QSC, PSC, and a 

 

The distribution of none of the four skewness measures 

conformed to normality by Shapiro-Wilk W-test (gGSV: w = 

0.763, pright-tail < 0.001, QSC: w = 0.884, pright-tail = 0.002, 

PSC; w = 0.886, pright-tail = 0.002, jackknife a: w = 0. 502, 

pright-tail < 0.001) and their bivariate distributions also moved 

away from normality by Royston's H-test (gGSV and QSC: h = 

22.277, pright-tail < 0.001; gGSV and PSC: h = 18.801, pright-tail < 

0.001; QSC and PSC: h = 16. 377, pright-tail < 0.001; jackknife 

a and gGSV: h = 26.300, pright-tail < 0.001; jackknife a and 

QSC: h = 37.844, pright-tail < 0.001; jackknife a and PSC: h = 

24.698, pright-tail < 0.001); hence correlations were calculated 

by Spearman's rank-order correlation coefficient [41] and 

comparisons were run by the Meng-Rosenthal-Rubin Z-test 

[42], applying the Rosner-Glynn transformation to convert 

Spearman’s rank-order correlation coefficients to Pearson’s 

product-moment correlation coefficients [43]. See Table 6. 

 

 

The Gunver-Senocak-Vehid coefficient of skewness (gGSV) 

exhibited a significantly higher correlation (z = 3.549, p1-tailed 

< 0.001) with the percentile skewness coefficient (rS = 0.965) 

than with the quartile skewness coefficient (rS = 0.881). The 

effect size for the coefficient type (QSC versus PSC) on the 

strength of association with gGSV was medium (d = 0.609 < 

0.8). The correlation between the Gunver-Senocak-Vehid 

coefficient of skewness and jackknife acceleration (rS = 

−0.896) was also significantly stronger in absolute value (z = 

−3.959, p1-tailed < 0.001) than the correlation between the 

quartile skewness coefficient and jackknife acceleration (rS = 

−0.667). The effect size for the coefficient type (gGSV versus 

QSC) on the strength of association with acceleration was 

also medium (d = 0.679 < 0.8). However, the difference in 

correlation between the Gunver-Senocak-Vehid coefficient 

of skewness and jackknife acceleration (rS = −0.896) 

compared to the correlation between the percentile skewness 

coefficient and jackknife acceleration (rS = −0.868) was not 

statistically significant (z = −0.579, p1-tailed < 0.281), with the 

effect size being trivial (d = 0.099 < 0.1). Refer to Table 6. 

 

Table 6: Comparison of overlapping correlations in one-sample 

Coefficients Spearman Transformed r Meng et al. Effect size 
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1 2 3 rS(1, 2) rS(1, 3) r(1, 2) r(1, 3) r(2, 3) z p1-tailed d Interpretation 

gGSV QSC PSC 0.881 0.965 0.834 0.957 0.770 3.549 <.001 0.609 medium 

a gGSV QSC -0.896 -0.667 -0.883 -0.654 0.834 -3.959 <.001 0.679 medium 

a gGSV PSC -0.896 -0.868 -0.883 -0.869 0.957 -0.579 0.281 0.099 trivial 

Note. gGSV = Gunver-Senocak-Vehid coefficient of skewness, QSC = quartile skewness coefficient, PSC = percentile skewness 

coefficient, a = jackknife acceleration, rS = Spearman rank-order correlation coefficient, r = Rosner-Glynn transformation to 

convert a Spearman rank-order correlation coefficient to a Pearson product-moment correlation coefficient [43], z = Meng-

Rosenthal-Rubin z-test statistic for comparing overlapping correlations from the same sample [42], p = one-tailed probability 

value, Effect size: d = z / √n. Interpretation of d statistic: < 0.2 trivial, [0.20, 0.5) small, [0.5, 0.8) medium, and ≥ 0.8 large effect 

size [44]. 

 

6. Discussion 
 

With respect to the first objective of the study, the script 

developed for the R program allows for the calculation of 

the gGSV statistic and the obtaining of confidence intervals at 

90% and 95%, with the possibility of adjusting the 

significance level. For instance, to require a 99% confidence 

interval, the following can be added: conf = c(0.90, 0.95, 

0.99). The script also facilitates the testing of the 

randomness of the sample, a prerequisite assumption for 

bootstrap techniques when applied to statistics [26], and 

provides information on bootstrap estimation bias and 

acceleration, or skewness in the bootstrap distribution, to 

guide the choice of method. When the bias and skewness are 

minimal, both the BCa percentile and PERC methods are 

valid, producing very similar confidence intervals. It is noted 

that the BCa percentile method tends to yield slightly 

narrower intervals than the PERC method, though this 

difference is not statistically significant nor consistent across 

all sample sizes, as observed with the reference confidence 

intervals generated. However, when bias and skewness are 

substantial (|bias| > 0.1 and |a| > 0.025 with mean samples), 

the BCa percentile method is recommended over PERC 

[51]. The script can also include the calculation of the 

confidence interval by the normal or Gaussian method (type 

= c("perc", "bca", "norm")). This method necessitates a 

sample of at least 30 data points, symmetry, and a bell-

shaped normal distribution in the histogram of the bootstrap 

distribution. 

 

Additionally, the script enables us to assess skewness using 

the box plot, which offers a visual approximation of 

symmetry, and with the histogram using the Freedman-

Diaconis rule, allowing us to determine an optimal bin width 

without assuming normality [46]. By adding a density curve 

to the histogram, calculated with Epanechnikov’s kernel 

function [47] and the Sheather-Jones bandwidth [48], a very 

accurate estimate of the underlying distribution is achieved, 

which is particularly relevant at the inferential level [52]. 

 Another inferential addition to the script is the calculation 

of the bootstrap probability for the null hypothesis of 

symmetry. This probability tends to be conservative towards 

the null hypothesis, so the significance level can be adjusted 

to 0.1, especially for samples smaller than 100 [53]. To this 

end, it is changed to: alpha <- 0.1. 

 

With respect to the second objective of providing suggestive 

symmetry rules for gGSV, bootstrap confidence intervals were 

generated at 90%, 95%, and 99%, which are the widths 

commonly considered, by the nonparametric methods BCa 

and PERC, chosen for the script as they are the most 

recommended [30]. These were generated from 34 non-

random population-samples but defined from the probit 

function or quantile function of the normal distribution with 

an arithmetic sequence in the quantile orders, between 0.001 

for the minimum sample value and 0.999 for the maximum 

sample value. Thus, perfectly symmetric and normally 

distributed population data were obtained, so that the 

(population) gGSV statistic always resulted in −1. One seed 

(123) was used for random resampling, which makes the 

reference intervals perfectly reproducible. We opted for 

1000 draws, as in the script, to minimize standard errors 

[26]. Additionally, 95% confidence intervals were generated 

by a parametric (normal) method for samples of at least 30 

data. Since it is less recommended, only the most 

conventional width is reported. 

 

With samples of 30 or more data, the bootstrap estimation 

bias and skewness of the bootstrap distribution are small, so 

all three methods for obtaining reference confidence 

intervals are valid. It should be noted that the sampling 

distribution of gGSV(x) converges to a normal distribution if 

the variable X follows a normal distribution, implying that 

this distributional convergence is also going to occur when 

the conditions of the central limit theorem are satisfied, 

namely, that the distribution of the variable has a finite mean 

and variance and that the random sample is large in size 

[54]. These reference intervals suggestive of symmetry are 

complementary to the interval obtained from the sample data 

by BCa or PERC methods and visual inspection of the plots. 

The reference intervals only go up to 2000 data. Since 

random samples of more than 2000 data are very precise in 

their estimates, no symmetry-suggestive norms were 

considered necessary from a standard normal distribution 

model for such sizes. 

 

With respect to the third objective, concerning the 

relationship of gGSV with three skewness criteria, namely, the 

quartile and percentile skewness coefficients, and jackknife 

acceleration, the correlations were high, greater than 0.88. 

The highest association was with the percentile skewness 

coefficient, with a shared variance of 93.2%. This 

correlation was significantly higher than the correlations of 

gGSV with the quartile skewness coefficient and jackknife 

acceleration. The effect size of the coefficient type on the 

strength of association was medium, indicating that the 

findings have potential practical applications or are worth 

considering [55]. 

 

The percentile skewness coefficient, by defining the two 

parts of the distribution with a very wide range and using the 

median as the axis of symmetry, closely resembles the 

proposal of Gunver et al. [25]. Even the correlation of gGSV 

and PSC with jackknife acceleration is statistically 

equivalent. Consequently, it is a valid measure of 

asymmetry, interchangeable with the percentile coefficient. 

Paper ID: SR24410070514 DOI: https://dx.doi.org/10.21275/SR24410070514 946 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 4, April 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

It is probably also the case with respect to Altinay's measure 

of asymmetry [17], which uses the median as the axis of 

symmetry. It should be recalled that this author proposes the 

arithmetic mean and mode as other options for the axis of 

symmetry, although he finally recommends the median. 

 

7. Conclusions 
 

This article provides a practical and fairly comprehensive 

script for assessing symmetry with the Gunver-Senocak-

Vehid coefficient of skewness, as well as suggestive 

interpretive rules for symmetry modeled after the normal 

distribution, which allow us to appreciate the behavior of 

this measure. The sampling distribution of the gGSV 

coefficient converges to a normal distribution if the variable 

follows a normal distribution, or when the conditions of the 

central limit theorem are satisfied, that is, when the variable 

follows a distribution of finite mean and variance and the 

sample size is large. The gGSV coefficient is interchangeable 

with the percentile skewness coefficient and has a high 

strength of association with the quartile skewness coefficient 

and the jackknife acceleration. 

 

8. Future Scope 
 

The use of the script is recommended for measuring 

asymmetry with random samples of at least 30 data and 

obtaining the confidence interval with the BCa method, 

either at 90% (n ≤ 100) or 95% (in general) from the 

practical scope of this work. Considering the distributional 

convergence of gGSV, it is suggested to use the delta method 

to obtain an asymptotic standard error and to be able to 

define a Wald-type asymptotic confidence interval [56]. 

 

The relationship of gGSV [25] can be studied with Altinay's 

coefficient of skewness [17], Groeneveld and Meeden's 

integrated quantile skewness coefficient [16], Hogg's 

adaptive and robust measure of skewness [23], as well as 

asymmetry measures based on the standardized third central 

moment [11] or the standardized third cumulant [13]. 

Expectations are for high correlations (> 0.80) and very high 

(> 0.90) with the first two measures of skewness due to their 

greater affinity. It is also useful to analyze and discuss the 

nuances of unshared variation. 
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