
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 3, March 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Variations and Emerging Trends in Software

Engineering

Elijah Ailen OMIJIE

ID: UD84270IN93488

Atlantic International University

Abstract: This article explores the multifaceted discipline of software engineering, emphasizing its crucial role in the development,

maintenance, and management of software systems that meet high standards of quality, reliability, and user satisfaction. By tracing the

evolution of software engineering from its roots in the 1960s to its current state, the article highlights the dynamic nature of software

development practices, methodologies, and the incorporation of emerging technologies such as AI, cloud computing, and cybersecurity

measures. Through an extensive analysis, it discusses the impact of software engineering components on modern industries and outlines

how variations in practices, including Agile, DevOps, and low - code - no - code platforms, are reshaping the landscape in response to

technological advancements and societal demands. Furthermore, the discussion extends to the exploration of software engineering trends

like sustainable development and the adoption of design patterns in new computing paradigms, showcasing the disciplines adaptability

and ongoing evolution. The article concludes by offering recommendations for best practices in software engineering to enhance

efficiency, security, and innovation in a rapidly evolving digital world.

Keywords: Software Engineering, Agile Methodologies, DevOps, Cybersecurity in Software, Cloud Computing, Artificial Intelligence

1. Introduction

Software engineering is an engineering discipline that

involves all aspects of development and maintaining a

software product in the same way engineering discipline such

as civil, mechanical, and electrical involve the design,

analysis, and construction of an artifact for some practical

purpose (Eric J. Braude, Michael E. Bernstein, 2016).

In the same dimension, the IEEE defines software

engineering as the application of a systematic, disciplined,

quantifiable approach to the development, operation, and

maintenance of software; that is the application of

engineering to software.

Software development is a highly intricate and constantly

evolving field that demands a thorough understanding of the

diverse practices employed in it. Effectively managing

uncertainties necessitates a deep comprehension of the

varying approaches utilized. Consequently, comprehensive

surveys and research studies are regularly conducted to

evaluate current practices, gauge their effectiveness, and

identify potential areas for improvement. In the pursuit of

accurate analysis, numerous factors are taken into

consideration, such as the qualifications of the software

development team, the proposed solutions, the level of

stakeholder involvement, and the potential financial impact.

This perpetual quest for advancement and continuous

improvement is pivotal in enhancing the effectiveness and

efficiency of software development processes (Baham &

Hirschheim, 2022).

The purpose of this topic is to briefly analyze the variations

in software engineering practices and the impact of each

methodology on the set standard. The objective of choosing

this topic is to evaluate the variations and emerging trends in

software engineering practices.

1.1 Evolution of Software Engineering

The evolution of software engineering started in the 1960s

and 1970s, when computer scientists looked to methods and

models from electrical and industrial engineering as well as

computer science to create "computer programming". As

software development expanded, the discipline of software

engineering was born, and methods needed to be revised.

Software engineering shifted towards considering user needs

and human - computer interaction, particularly in the 1980s

and 1990s. Over the last 20 years, the software engineering

community has developed tools and techniques for large -

scale production environments, and the last two decades have

seen a shift to methodologies that emphasize parallel and

distributed projects (Pang, C., 2016). The evolution of

software engineering continues today, with a focus on cloud -

based systems and platforms, and the popularity of APIs.

2. Description

 Software engineering is a comprehensive field that

encompasses various components essential for the

development, maintenance, and management of software

systems. These components are integral to the software

development lifecycle (SDLC) and ensure that software

products meet quality standards, are reliable, and fulfil user

requirements. The primary components of software

engineering include:

Software Development: This involves the actual coding or

programming of software. It's the process of translating

software design into executable software by writing code in

programming languages such as C#, Java, Python, C++, etc.

Software Design: Before coding begins, the software's

architecture and design are planned. This includes defining

the software's overall structure, components, interfaces, and

data flow. Design patterns and principles are applied to create

a robust and scalable architecture.

Paper ID: SR24323044809 DOI: https://dx.doi.org/10.21275/SR24323044809 1675

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 3, March 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Software Testing: Testing is crucial for identifying and fixing

bugs or defects in software. It involves executing the software

under controlled conditions to verify that it behaves as

expected. Testing can be manual or automated and includes

various types such as unit testing, integration testing, system

testing, and acceptance testing.

Software Maintenance: After the software is deployed, it

requires ongoing maintenance to correct faults, improve

performance, or adapt the software to a changed environment

or new requirements. This includes bug fixing, updating, and

adding new features.

Software Requirements Analysis: This is the process of

determining user expectations for a new or modified product.

Requirements analysis involves gathering requirements

through user interviews, surveys, observation, and analyzing

existing systems.

Software Configuration Management: This involves tracking

and controlling changes in the software. It includes version

control, build management, and change control, ensuring that

the software development process is organized and

documented.

Software Quality Assurance (SQA): SQA encompasses a set

of activities for ensuring quality in software engineering

processes and products. It includes the development and

implementation of standards and methodologies to ensure that

software meets or exceeds customer expectations.

Software Project Management: This component involves

planning, executing, monitoring, and controlling software

projects. It includes managing project scope, time, cost,

quality, human resources, communication, risk, and

procurement.

In the modern world, software engineering components are

more relevant than ever due to the increasing reliance on

software in various sectors, including healthcare, finance,

education, entertainment, and more. Here's how these

components relate to the modern world:

Rapid Development and Deployment: Agile methodologies

and DevOps practices have revolutionized software

development and deployment, enabling faster delivery of high

- quality software to meet the dynamic needs of businesses

and consumers (Rajoo Jha, 2023).

Cloud Computing and Microservices: The shift towards cloud

computing and microservices architecture has emphasized the

importance of scalable and flexible software design and

configuration management.

Artificial Intelligence and Machine Learning: The integration

of AI and ML into software products has highlighted the need

for sophisticated software design, development, and quality

assurance practices to build intelligent and adaptive systems

(Sienna Roberts, 2023).

Cybersecurity: With the increasing threat of cyber - attacks,

software quality assurance, testing, and maintenance have

become critical for ensuring the security and reliability of

software systems (Rajoo Jha, 2023).

User - Centric Design: The focus on user experience (UX) in

software design reflects the modern emphasis on creating

intuitive and engaging software that meets user expectations.

Global Collaboration: Modern software project management

tools and practices support global, distributed teams, enabling

collaboration across different geographies and time zones.

In conclusion, the components of software engineering are

integral to the development of reliable, efficient, and high -

quality software that powers the modern world. As

technology evolves, these components continue to adapt,

ensuring that software engineering practices meet the

challenges and opportunities of the digital age.

3. General Analysis

The variations and trends in software engineering can be

broadly categorized into tools and technologies, industry

sectors, and design patterns. Each of these categories reflects

a different aspect of the software engineering landscape, from

the practical tools used by developers to the theoretical

frameworks guiding design and implementation.

Tools and technologies have much to be desired. The

exploration of security procedures in secure software

engineering has highlighted the development of various new

technologies as critical solutions for software security. This

includes the identification of 55 Secure Software Engineering

(SSE) metrics, 68 SSE tools, and 33 SSE standards,

showcasing a significant trend towards enhancing the security

aspect of software products (Khan, R. A., Khan, S. U., &

Ilyas, M., 2022). Additionally, the quest for sustainability has

extended into software engineering, leading to the emergence

of tools, techniques, and trends aimed at mitigating the

environmental impact of software development and

operation. This includes energy - efficient programming

languages, eco - friendly software architectures, and

methodologies such as Green Software Engineering (GSE)

and Sustainable Software Development (SSD) (Atadoga, A.,

Umoga, U. J., Lottu, O. A., & Sodiya, E. O, 2024)

The software industry is not limited to traditional technology

sectors but extends to various other domains through the

concept of telework. The Tele Risk Project in Portugal, for

example, studied the practices and forms of teleworking in the

manufacturing sectors, including the software industry,

highlighting the adaptability and pervasiveness of software

engineering across different industry sectors. This trend

indicates the growing importance of software engineering

skills and practices beyond the conventional IT and

technology sectors.

Design patterns play a crucial role in addressing specific

problems and improving the efficiency of software

development, especially in emerging areas like the Internet of

Things (IoT) and Edge computing. A study investigating the

application of the Singleton design pattern in an IoT

environment demonstrated its effectiveness in reducing

Paper ID: SR24323044809 DOI: https://dx.doi.org/10.21275/SR24323044809 1676

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 3, March 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

processor, memory, power, and battery usage of Edge devices

(Urze, P., Moniz, A. B., & Barroso, S. G., 2005).

Furthermore, a multivocal literature review identified 15

software - engineering design patterns for machine learning

applications, suggesting opportunities to increase their

adoption in practice. This trend underscores the importance of

design patterns in optimizing software engineering practices

for new technological paradigms.

4. Actualization

Variations in software engineering are closely tied to the

modern world as they reflect the evolving needs and

challenges of software development in various industries.

These variations can be seen in the adoption of different

development methodologies, the use of emerging tools and

technologies, and the response to new societal demands and

technological advancements. This can be viewed in different

dimensions such as development methodologies, tools and

technologies, security first approach, microservices

architecture, low - code/no - code development, and

continuous learning and adaptation.

4.1 Development Methodologies

In the modern world, software development methodologies

have shifted significantly from traditional, linear approaches

like the Waterfall model to more iterative and flexible

methods. Agile methodologies, such as Scrum and Kanban,

have become prevalent because they allow teams to respond

swiftly to changing requirements and deliver value in shorter

development cycles. The rise of DevOps culture, which

integrates development and operations, further exemplifies

the move towards methodologies that promote faster, more

reliable, and efficient delivery of software products (Rajoo,

2023).

4.2 Tools and Technologies

The tools and technologies used in software engineering have

also evolved. The integration of Artificial Intelligence (AI)

and Machine Learning (ML) into software development is

becoming more common, enabling the creation of intelligent

and predictive applications. Cloud computing has become a

staple, with cloud - native solutions being adopted for better

scalability and collaboration among distributed teams.

Additionally, the use of containerization and orchestration

tools like Docker and Kubernetes has simplified deployment

and management, contributing to the modern software

development landscape (Natallia Sakovich, 2024).

4.3 Security First Approach

With the increasing prevalence of cyber threats, a security -

first approach has become a key aspect of modern software

engineering. Integrating security measures from the early

stages of development is essential to protect sensitive data and

infrastructure. This has led to the emergence of DevSecOps,

which integrates security throughout the entire software

development lifecycle.

4.4 Microservices Architecture

The modern world has seen a shift towards microservices

architecture, where large applications are divided into

smaller, independent services that can be developed,

deployed, and scaled independently. This architectural style

enhances agility, scalability, and maintainability, which are

crucial for complex software systems in today's fast - paced

environment.

4.5 Low - Code/No - Code Development

Another trend in the modern software engineering world is

the adoption of low - code/no - code (LCNC) development

platforms. These platforms enable individuals with limited or

no software development skills to create applications,

democratizing software development and accelerating digital

transformation.

4.6 Continuous Learning and Adaptation

Software engineers in the modern world must continuously

update their skills and knowledge to keep pace with the rapid

development of new technologies and methodologies. This

includes understanding new programming languages,

frameworks, and development tools that enable the creation

of sophisticated and efficient software applications.

5. Discussions

In this session, it is important to outline some of the software

engineering methodologies and briefly elaborate the pros and

cos associated with them.

a) Agile methodology: Some of the pros are that of

flexibility and adaptability. Agile is highly adaptable to

changes, which is beneficial for projects where requirements

evolve. Customer satisfaction is also one of the advantages of

Agile methodology because Agile emphasizes customer

collaboration and prioritizes customer needs, leading to

higher customer satisfaction. Another pro of Agile practice is

early and continuous delivery because Agile allows for the

early release of usable parts of the software, providing value

to customers sooner. Improved quality by continuous testing

and feedback loops in Agile can lead to higher quality

products with fewer defects. Another pro is increased

collaboration because in practice, Agile promotes teamwork

and collaboration, which can lead to more innovative

solutions (Fireteanu, V., 2020).

Looking at the cons of Agile methodology, it is less

predictable due to its iterative nature, Agile can be less

predictable in terms of timelines and budget. Another con of

Agile methodology is that it has documentation challenges.

Agile projects may suffer from inadequate documentation

because of the focus on working software over

comprehensive documentation. Scope Creep is another issue.

The flexibility of Agile can lead to scope creep if not managed

properly, with stakeholders adding more features over time.

Resource Intensiveness adds to the cons. Agile requires

significant time and commitment from all team members,

which can be demanding.

Paper ID: SR24323044809 DOI: https://dx.doi.org/10.21275/SR24323044809 1677

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 3, March 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

At the local level, Agile can help local businesses adapt

quickly to market changes and customer feedback, providing

a competitive edge. On a national scale, Agile can contribute

to the overall innovation and agility of industries, fostering a

culture of continuous improvement. On the international

level, Agile facilitates collaboration across borders, enabling

multinational teams to work effectively despite geographical

and cultural differences (Mohsienuddin, S., & Mohammad,

2020).

b) Waterfall Methodology: What comes to mind first when

discussing the advantages of waterfall methodology is the

clear structure. Waterfall methodology emphasizes thorough

documentation, which can be beneficial for future

maintenance and knowledge transfer. Another pro is that

Waterfall offers more predictability in terms of timelines and

budget, as the scope and requirements are defined early.

Suitability for Simple Projects. It works well for projects with

clear, stable requirements and where changes are unlikely.

Ex - raying the cons of waterfall methodology, the following

are identified: Inflexibility - Waterfall is less adaptable to

changes, which can be problematic if project requirements

evolve; Late Testing - Testing occurs late in the project

lifecycle, which can lead to the discovery of issues at a stage

where they are costly to fix; Limited Customer Involvement -

There is less customer involvement throughout the project,

which can lead to a final product that does not meet customer

needs (Mohsienuddin, S., & Mohammad, 2020).

On the local level, Waterfall can be effective for local

businesses with well - defined projects and where change is

minimal. At the national space, Waterfall can support

industries with a need for rigorous documentation and

compliance, such as aerospace or healthcare. Internationally,

the Waterfall model's lack of flexibility can be a drawback

when coordinating with diverse teams and adapting to global

market dynamics.

• DevOps – Some of the associated pros of DevOps are

efficiency and speed. DevOps practices can lead to faster

development and deployment of software. DevOps also

Improved Collaboration in that It breaks down silos

between development and operations teams, fostering

better communication and collaboration. DevOps brings

about continuous improvement - it encourages

continuous integration and delivery, leading to ongoing

improvement of products.

• DevOps has integration challenges, it requires a high

level of integration between teams, which can be difficult

to achieve, especially in larger organizations. DevOps is

associated with increased risks - the high degree of

automation in DevOps can lead to errors if not properly

configured. Cost - if not implemented correctly, DevOps

can be costly due to the investment in automation and

infrastructure.

• DevOps can help local companies to rapidly respond to

market demands and improve their IT operations.

Nationally, DevOps can drive digital transformation and

competitiveness across industries. On an international

level, DevOps supports global collaboration and the

seamless integration of multinational development and

operations teams (Hasan, A., 2020).

6. General Recommendations

Software engineering best practices are guidelines and

methodologies that streamline processes, reduce risks, and

improve the quality of software products. These practices

encompass planning, collaboration, quality assurance,

security considerations, deployment, ongoing improvement,

and more. By following best practices, teams can make

informed decisions, improve collaboration, minimize errors,

and ultimately deliver software that meets (and surpasses)

customer expectations (Jones, 2009).

Below are some of the suggested software engineering

methodologies with recommendation notes.

• Agile and Iterative Development - Agile methodologies,

such as Scrum and Kanban, have revolutionized the

software development industry by emphasizing iterative

development, frequent feedback, and collaboration. Agile

promotes cross - functional teams, adaptive planning, and

continuous evaluations, enabling faster feedback and

adaptability to changing requirements. This leads to teams

delivering software in shorter cycles, improved customer

satisfaction, and constant learning.

• Emphasis on Security - The importance of security in

software development has grown exponentially due to the

rise in cyber threats and data breaches. Implementing

secure coding practices, vulnerability assessments,

conducting regular security audits, and ensuring secure

data handling are all essential to protect sensitive

information and maintain user trust.

• DevOps Integration - DevOps and DevSecOps represent a

new software development approach that integrates

security throughout the entire IT lifecycle. This integration

is crucial for implementing security without slowing down

development or delaying deployments. Fixing security

issues earlier is much quicker and more cost - effective

than fixing issues in the production stage.

• Test Automation - Automated testing, deployment, and

monitoring tools allow teams to accelerate the

development timeline, reduce human errors, and achieve

higher - quality software.

• Cloud Computing and Services - Leveraging cloud

infrastructure and services, development teams can reduce

costs, scale resources at will, and streamline collaboration.

Cloud computing also allows for more efficient

deployment and maintenance of applications.

• Microservices Architecture - The adoption of

microservices architecture allows for the development of

scalable and flexible applications. By breaking down an

application into smaller, independent services, teams can

develop, deploy, and maintain each service separately,

improving overall system resilience and agility.

7. Conclusion

In conclusion, the components of software engineering are

integral to the development of reliable, efficient, and high -

quality software that powers the modern world. As

technology evolves, these components continue to adapt,

ensuring that software engineering practices meet the

challenges and opportunities of the digital age.

Paper ID: SR24323044809 DOI: https://dx.doi.org/10.21275/SR24323044809 1678

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 3, March 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The variations and trends in software engineering reflect a

field that is constantly adapting to new challenges,

technologies, and industry needs. From the development of

secure and sustainable software to the application of design

patterns in new computing environments, software

engineering continues to evolve, offering solutions that are

critical to the advancement of technology and its application

across various sectors.

These emerging trends across Agile, DevOps, AI in SE,

Blockchain, and IoT are collectively pushing the boundaries

of what's possible in software engineering. They emphasize

the importance of adaptability, efficiency, and collaboration

in meeting the evolving demands of the digital world.

References

[1] Atadoga, A., Umoga, U. J., Lottu, O. A., & Sodiya, E.

O. (2024). Tools, techniques, and trends in sustainable

software engineering: A critical review of current

practices and future directions. World Journal of

Advanced Engineering Technology and Sciences.

[2] Baham, C. & Hirschheim, R. (2022). Issues, challenges,

and a proposed theoretical core of agile software

development research. Information Systems Journal.

[3] Eric, J. B., Michael, E. B. (20216). Software

Engineering: Modern Approaches, Second Edition,

Waveland.

[4] Hasan, A. (2020). A Review Paper on DevOps

Methodology.

[5] Khan, R. A., Khan, S. U., & Ilyas, M. (2022). Exploring

Security Procedures in Secure Software Engineering: A

Systematic Mapping Study. Proceedings of the 26th

International Conference on Evaluation and Assessment

in Software Engineering.

[6] Jones, C. (2009). Software Engineering Best Practices.

[7] Mohsienuddin, S., & Mohammad (2020). DevOps

automation and Agile methodology.

[8] Fireteanu, V. (2020). Agile Methodology Advantages

when delivering Internet of Things projects.2020 12th

International Conference on Electronics, Computers

and Artificial Intelligence (ECAI), 1 - 5.

[9] Natallia Sakovich, 2024. Software Development Trends

of 2024, https: //www.sam - solutions.

com/blog/software - development - trends/

[10] Pang, C. (2016). Evolution of Software Engineering.

[11] Rajoo Jha, 2023, Modern Software Development:

Trends and Best Practices | Modern Software

Development Vs. Traditional Software Development.

https: //www.linkedin. com/pulse/modern - software -

development - trends - best - practices - vs - traditional

- jha/

[12] Urze, P., Moniz, A. B., & Barroso, S. G. (2005).

Practices and trends of telework in the Portuguese

industry: the results of surveys in the textile, metal and

software sectors.

Paper ID: SR24323044809 DOI: https://dx.doi.org/10.21275/SR24323044809 1679

https://www.ijsr.net/
https://www.sam-solutions.com/blog/software-development-trends/
https://www.sam-solutions.com/blog/software-development-trends/
https://www.linkedin.com/pulse/modern-software-development-trends-best-practices-vs-traditional-jha/
https://www.linkedin.com/pulse/modern-software-development-trends-best-practices-vs-traditional-jha/
https://www.linkedin.com/pulse/modern-software-development-trends-best-practices-vs-traditional-jha/

