
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 3, March 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Operating Systems Platform Migration of Multi –

Threaded C++ Application from HPUX to RHEL

Siva Sathyanarayana Movva

Email: sivasathya[at]gmail.com

Abstract: Global Payments or Transactions happen in the form of messages for cash transfers, securities, metals, and various other

needs generating millions of data daily and totaling up to a billion in a year. Along with the central applications handling the msg

transfer end to end numerous other applications are needed to serve the purpose of reconciliation, business intelligence, tracking of

payments and other customer specific requirements. All these application have been developed on HPUX platform more than a decade

ago and have been migrated to RHEL driven by business needs/challenges and technology changes. The intent of this paper is to

provide the high - level approach, technical solution and constraints and provide standard LINUX Operating Systems that meet

established security baselines that are deployed by automation.

Keywords: payments, transactions, messages, HPUX, RHEL, application, multi - threading, platform

1. Introduction

Red Hat Enterprise Linux 7 was released in June 2014, and

has a full support life - cycle of 5 years and Maintenance

Support until 2024. Red Hat Enterprise Linux 8 was released

in May 2019. The first minor release (8.1) was available in

Nov 2019. End of full support of RHEL 8 is scheduled for

May 2024 and Maintenance Support 2029. Red Hat Linux

standard release cycle for a minor release is 6 months.

During this cycle the release is in full support and patches

are released on a continuous basis.

Once a new release is made available patches are no longer

applied to the previous releases.

Extended update support is available for an additional

subscription cost to back port critical patches to previous

minor releases for a maximum of 24 months from the initial

release date.

Application Changes done for compatibility on RHEL:

• Handling socklen_t which is different across platforms.

• Handling of issue with different approach permissions on

named unix sockets.

• Handling of semi standard MAXHOSTNAMELEN.

• Use of correct standard header files instead of overly

inclusive ones.

• Handling misuse of pre - processor line continuation in

C++ code.

• Eliminate references to X11 approach unused for years.

• Correct misuse of ## operator from C pre - processor to

just use constant string concatenation at compile time.

• RHEL support in Imakefiles.

• Reorder of code to remove warnings of no return when

throwing exceptions instead.

• Removal of use of NULL as a scalar 0. It is not an

integer type conceptually and should not be used as one.

• Fixed warnings related to 32/64 integers for formatting

printing.

• Added pre - processor symbols needed to get portability

functions exposed form glib/clib

• Handled code added by CM for HPUX what that is now

unsupported by CM leaving misinformation in objects.

• Provision of function mkdirp () that doesn’t exist on

Linux.

• Taking care of misuse of “char *” to point at constant

strings.

• Smarter handling of system dependant “snprintf” calls.

Use proper c++ constructors.

• Fixed badly defined function macros to be correctly

defined using do{}while (0) to allow safe use mixed with

conditionals and other C/C++ statements.

• RHEL does not have some signals we expected - >which

signals.

• Moved from #ifdef to #if defined () to allow multiple

definitions to trigger conditional compilation.

• Changed to the Posix preferred method of turning off

terminal echo.

• Fstat on HPUX is non standard. Had to use and external

call to stat –f.

• We need to perform an expilict, case insensitive check

for references to HP - UX and HPUX

• ps –w was ps –xx in Linux

• netstat option was different in HP as in Linux

• Another issue was in JNI. Library locations needed to be

fully qualified.

Some Issues encountered on RHEL:

• Found issues with hard coded paths in many scripts that

needed to be sourced in

• 1. Red - hat Linux doesn’t support the following system

library which is specific to HP - UX. sys/pstat. h - The

HP - UX pstat facility is an Application Programming

Interface (API) that returns detailed information about

many aspects of a running kernel.

• The SWITCH source files which would be using the

pstat APIs have to be updated with the Linux specific

API “/proc/<PID>/status”.

• The new API would return the process state code of a

running process. The following are the different process

state codes and the corresponding state description.

D - Uninterruptible sleep (usually IO)

R - Running or runnable (on run queue)

S - Interruptible sleep (waiting for an event to complete)

T - Stopped, either by a job control signal or because it is

being traced.

W - Paging (not valid since the 2.6. xx kernel)

X - Dead (should never be seen)

Paper ID: SR24322075030 DOI: https://dx.doi.org/10.21275/SR24322075030 1647

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 3, March 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Z - Defunct ("zombie") process terminated but not reaped by

its parent.

2. itoa () and ltoa () functions don’t work with GCC

compiler on Linux platform, so these have to be coded. The

following source code would use the following work -

around,

inline static const char* < itoa | ltoa > (< int | long> input)

{

std:: stringstream out;

std:: string str;

out << input;

str = out. str ();

return str. c_str ();

};

const string& - For a const string, begin () and end ()

methods return std:: string:: const_iterator. So it’s not

possible to type case it to a std:: string:: iterator.

The work - around would be to change the type definition of

"typedef string:: iterator iter; " as "typedef string::

const_iterator iter; "

1) endl is of unknown type - Explicitly add std:: before

anything in the std namespace if the source code doesn't

include the line using namespace std;

2) const char* - The GCC compiler doesn’t let the type

conversion from ‘const char*’ to ‘char*, but the other

way around is possible. So when ever this kind of build

error occurs, it’s required to change the declaration as

‘const char*’.

3) strlen () - The strlen () function on a NULL pointer will

crash the application, so the code has to be explicitly

check for NULL pointer before calling strlen ().

Patching and upgrades wrt RHEL

New content view versions will be generated quarterly to

enable patching. A minor release content view will subscribe

to extended update service to prolong the ability to patch

without upgrading to the next minor release. Access to

additional repos is not supported in EUS mode. Additional

repos include JBOSS, RHDS, EPEL, and extras

Platform owners will have an option to upgrade to the next

minor release at any point in the life - cycle.

Red Hat does not recommend upgrading between major

releases and recommended consulting services if this is

required. Linux Platform Squad will not support upgrading

between Major releases.

Linux Platform squad does not plan to release new images

for non - EUS minor releases in RHEL 8 (8.3, 8.5, 8.7).

Upgrades to even numbered minor versions is possible.

2. Conclusion

1) New satellite infrastructure will enable periodic content

updates to provide patches to current releases.

2) Content views are defined in satellite and specification

of the version of RPMs to be installed done.

3) Creation of VM playbook installation and configuration

of the operating systems done.

4) Reusable playbook installation and configures the

extended platform.

5) Extend Platform components are installed with an

ansible playbook and the associated content view.

6) Platform releases have specific extend component

versions as configured in the Software content view.

7) If new extended platform components are required a

content view update will have to be performed.

References

[1] Berg, Formal Methods of Program Verification and

Specification, Prentice Hall, 1982.

[2] B. W. Boehm, "A Spiral Model of Software

Development and Enhancement", IEEE Computer,

pp.61 - 72, May 1988.

[3] G. Booch, Object - Oriented Design with

Applications, Benjamin Cummings, 1991.

[4] S. Adve and K. Gharachorloo. Shared memory

consistency models: a tutorial. IEEE Computer, 29

(12): 66–76, Dec.1996.

[5] B. L. O. Andersen. Program Analysis and

Specialization for the C Programming Language. PhD

thesis, DIKU, University of Copenhagen, May 1994.

[6] S. R. Ladd, Turbo C++ Techniques and Applications,

M T Books, 1990.

[7] S. B. Lippman, C+ + Primer, Addison Wesley, 1991.

[8] P. J. Lukas, The C+ + Programmers Handbook,

Prentice Hall, 1992.

[9] B. Meyer, Object - Oriented Software Construction,

Prentice Hall, 1988.

[10] A. Aiken and D. Gay. Barrier inference. In

Proceedings of the 25th Annual ACM Symposium on

the Principles of Programming Languages, Paris,

France, Jan.1998. ACM

[11] R. R. Seban, A Temporal Logic for Proofs of

Correctness of Distributed Protocols, March 1993.

[12] R. R. Seban, An Introduction to Object - Oriented

Design with C++, December 1992.

[13] I. Sommerville, Software Engineering, Addison

Wesley, 1992.

[14] B. Stroustrup, The C++ Programming Language,

Addison Wesley, 1989.

[15] R. H. Thayer, "System and Software Requirements

Engineering", IEEE Tutorial, 1990.

[16] Callahan, K. Kennedy, and J. Subhlok. Analysis of

event synchronization in a parallel programming tool.

In Proceedings of the 2nd ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming, Seattle, WA, Mar.1990.

[17] D. Chase, M. Wegman, and F. Zadek. Analysis of

pointers and structures. In Proceedings of the

SIGPLAN ’90 Conference on Program Language

Design and Implementation, pages 296–310, White

Plains, NY, June 1990. ACM, New York.

[18] Curtis Anderson: xFS Attribute Manager Design.

Technical Report, Silicon Graphics, October 1993.

https: //oss. sgi.

com/projects/xfs/design_docs/xfsdocs93_pdf/attribute

s. pdf

Paper ID: SR24322075030 DOI: https://dx.doi.org/10.21275/SR24322075030 1648

https://www.ijsr.net/
https://oss.sgi.com/projects/xfs/design_docs/xfsdocs93_pdf/attributes.pdf
https://oss.sgi.com/projects/xfs/design_docs/xfsdocs93_pdf/attributes.pdf
https://oss.sgi.com/projects/xfs/design_docs/xfsdocs93_pdf/attributes.pdf

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 3, March 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[19] Austin Common Standards Revision Group. https:

//www.opengroup. org/austin/

[20] Steve Best, Dave Kleikamp: How the Journaled File

System handles the on - disk layout. IBM

developerWorks, May 2000. https: //www - 124. ibm.

com/developerworks/oss/jfs/

[21] B. Callaghan, B. Pawlowski, and P. Staubach: NFS

Version 3 Protocol Specification. Technical Report

RFC 1813, Network Working Group, June 1995.

[22] Andreas Dilger: [RFC] new design for EA on - disk

format. Mailing list communication, July 10, 2002.

https: //acl. bestbits. at/pipermail/acl - devel/2002 -

July/001077. html

[23] Marius Aamodt Eriksen: Mapping Between NFSv4

and Posix Draft ACLs. Internet Draft, October 2002.

https: //www.citi. umich. edu/u/marius/draft - eriksen

- nfsv4 - acl - 01. txt

[24] Andreas Grünbacher: Known Problems and Bugs in

the Linux EA and ACL implementations. March 20,

2003. https: //acl. bestbits. at/problems. html

[25] Andreas Grünbacher: Preserving ACLs and EAs in

editors and file managers. February 18, 2003. https:

//www.suse. de/~agruen/ea - acl - copy/ for a

description.

[26] Hewlett - Packard: acl (2): Set a file's Access Control

List (ACL) information. HP - UX Reference. https:

//docs. hp. com/

[27] Hewlett - Packard: acl (4): Access control list.

Compaq Tru64 Reference Pages. https: //www.hp.

com/

[28] IEEE Std 1003.1 - 2001 (Open Group Technical

Standard, Issue 6), Standard for Information

Technology - - Portable Operating System Interface

(POSIX) 2001. ISBN 0 - 7381 - 3010 - 9. https:

//www.ieee. org/

[29] IEEE 1003.1e and 1003.2c: Draft Standard for

Information Technology - - Portable Operating

System Interface (POSIX) - - Part 1: System

Application Program Interface (API) and Part 2: Shell

and Utilities, draft 17 (withdrawn). October 1997.

https: //wt. xpilot. org/publications/posix.1e/

[30] Jim Mauro: Controlling permissions with ACLs.

Describes internals of UFS's shadow inode concept.

SunWorld Online, June 1998.

[31] Microsoft Platform SDK: Access Control Lists. https:

//msdn. microsoft. com/

[32] Mark Lowes: Proftpd: A User's Guide March 31,

2003. https: //proftpd. linux. co. uk/

[33] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,

C. Beame, M. Eisler, D. Noveck: NFS version 4

Protocol. Technical Report RFC 3010, Network

Working Group, December 2000.

[34] Silicon Graphics: acl (4): Access Control Lists. Irix

manual pages. https: //techpubs. sgi. com/

[35] J. Spadavecchia, E. Zadok: Enhancing NFS Cross -

Administrative Domain Access. Proceedings of the

Annual USENIX Technical Conference, FreeNIX

Track, Pages 181 - 194. Monterey, CA, June 2002.

[36] W. Richard Stevens: Advanced Programming in the

UNIX (R) Environment. Addison - Wesley, June

1991 (ISBN 0 - 2015 - 6317 - 7).

[37] Storage Networking Industry Association: Common

Internet File System Technical Reference. Technical

Proposal, March 2002. https: //www.snia.

org/tech_activities/CIFS/

[38] Sun Microsystems: acl (2): Get or set a file's Access

Control List. Solaris 8 Reference Manual Collection.

https: //docs. sun. com/

[39] Sun Microsystems: NFS: Network file system

protocol specification. Technical Report RFC 1094,

Network Working Group, March 1989.

[40] Robert N. M. Watson: acl (3): Introduction to the

POSIX.1e ACL security API. FreeBSD Library

Functions Manual. https: //www.FreeBSD. org/

[41] Robert N. M. Watson: TrustedBSD: Adding Trusted

Operating System Features to FreeBSD. USENIX

Technical Conference, Boston, MA, June 28, 2001.

https: //www.trustedbsd. org/docs. html

[42] Robert N. M. Watson: Introducing Supporting

Infrastructure for Trusted Operating System Support

in FreeBSD. BSDCon 2000, Monterey, CA,

September 8, 2000. https: //www.trustedbsd.

org/docs. html

[43] Robert N. M. Watson: Personal communication.

March 28, 2003.

Paper ID: SR24322075030 DOI: https://dx.doi.org/10.21275/SR24322075030 1649

https://www.ijsr.net/
https://www.opengroup.org/austin/
https://www.opengroup.org/austin/
https://www-124.ibm.com/developerworks/oss/jfs/
https://www-124.ibm.com/developerworks/oss/jfs/
https://acl.bestbits.at/pipermail/acl-devel/2002-July/001077.html
https://acl.bestbits.at/pipermail/acl-devel/2002-July/001077.html
https://www.citi.umich.edu/u/marius/draft-eriksen-nfsv4-acl-01.txt
https://www.citi.umich.edu/u/marius/draft-eriksen-nfsv4-acl-01.txt
https://acl.bestbits.at/problems.html
https://www.suse.de/~agruen/ea-acl-copy/
https://www.suse.de/~agruen/ea-acl-copy/
https://docs.hp.com/
https://docs.hp.com/
https://www.hp.com/
https://www.hp.com/
https://www.ieee.org/
https://www.ieee.org/
https://wt.xpilot.org/publications/posix.1e/
https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://proftpd.linux.co.uk/
https://techpubs.sgi.com/
https://www.snia.org/tech_activities/CIFS/
https://www.snia.org/tech_activities/CIFS/
https://docs.sun.com/
https://www.freebsd.org/
https://www.trustedbsd.org/docs.html
https://www.trustedbsd.org/docs.html
https://www.trustedbsd.org/docs.html

