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Abstract: Global Payments or Transactions happen in the form of messages for cash transfers, securities, metals, and various other 

needs generating millions of data daily and totaling up to a billion in a year. Along with the central applications handling the msg 

transfer end to end numerous other applications are needed to serve the purpose of reconciliation, business intelligence, tracking of 

payments and other customer specific requirements. All these application have been developed on HPUX platform more than a decade 

ago and have been migrated to RHEL driven by business needs/challenges and technology changes. The intent of this paper is to 

provide the high - level approach, technical solution and constraints and provide standard LINUX Operating Systems that meet 

established security baselines that are deployed by automation.  
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1. Introduction 
 

Red Hat Enterprise Linux 7 was released in June 2014, and 

has a full support life - cycle of 5 years and Maintenance 

Support until 2024. Red Hat Enterprise Linux 8 was released 

in May 2019. The first minor release (8.1) was available in 

Nov 2019. End of full support of RHEL 8 is scheduled for 

May 2024 and Maintenance Support 2029. Red Hat Linux 

standard release cycle for a minor release is 6 months. 

During this cycle the release is in full support and patches 

are released on a continuous basis.  

Once a new release is made available patches are no longer 

applied to the previous releases.  

Extended update support is available for an additional 

subscription cost to back port critical patches to previous 

minor releases for a maximum of 24 months from the initial 

release date.  

 

Application Changes done for compatibility on RHEL:  

• Handling socklen_t which is different across platforms.  

• Handling of issue with different approach permissions on 

named unix sockets.  

• Handling of semi standard MAXHOSTNAMELEN.  

• Use of correct standard header files instead of overly 

inclusive ones.  

• Handling misuse of pre - processor line continuation in 

C++ code.  

• Eliminate references to X11 approach unused for years.  

• Correct misuse of ## operator from C pre - processor to 

just use constant string concatenation at compile time.  

• RHEL support in Imakefiles.  

• Reorder of code to remove warnings of no return when 

throwing exceptions instead.  

• Removal of use of NULL as a scalar 0. It is not an 

integer type conceptually and should not be used as one.  

• Fixed warnings related to 32/64 integers for formatting 

printing.  

• Added pre - processor symbols needed to get portability 

functions exposed form glib/clib 

• Handled code added by CM for HPUX what that is now 

unsupported by CM leaving misinformation in objects.  

• Provision of function mkdirp () that doesn’t exist on 

Linux.  

• Taking care of misuse of “char *” to point at constant 

strings.  

• Smarter handling of system dependant “snprintf” calls. 

Use proper c++ constructors.  

• Fixed badly defined function macros to be correctly 

defined using do{}while (0) to allow safe use mixed with 

conditionals and other C/C++ statements.  

• RHEL does not have some signals we expected - >which 

signals.  

• Moved from #ifdef to #if defined () to allow multiple 

definitions to trigger conditional compilation.  

• Changed to the Posix preferred method of turning off 

terminal echo.  

• Fstat on HPUX is non standard. Had to use and external 

call to stat –f.  

• We need to perform an expilict, case insensitive check 

for references to HP - UX and HPUX  

• ps –w was ps –xx in Linux  

• netstat option was different in HP as in Linux  

• Another issue was in JNI. Library locations needed to be 

fully qualified.  

 

Some Issues encountered on RHEL:  

• Found issues with hard coded paths in many scripts that 

needed to be sourced in  

• 1. Red - hat Linux doesn’t support the following system 

library which is specific to HP - UX. sys/pstat. h - The 

HP - UX pstat facility is an Application Programming 

Interface (API) that returns detailed information about 

many aspects of a running kernel.  

• The SWITCH source files which would be using the 

pstat APIs have to be updated with the Linux specific 

API “/proc/<PID>/status”.  

• The new API would return the process state code of a 

running process. The following are the different process 

state codes and the corresponding state description.  

D - Uninterruptible sleep (usually IO)  

R - Running or runnable (on run queue)  

S - Interruptible sleep (waiting for an event to complete)  

T - Stopped, either by a job control signal or because it is 

being traced.  

W - Paging (not valid since the 2.6. xx kernel)  

X - Dead (should never be seen)  
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Z - Defunct ("zombie") process terminated but not reaped by 

its parent.  

 

2. itoa () and ltoa () functions don’t work with GCC 

compiler on Linux platform, so these have to be coded. The 

following source code would use the following work - 

around,  

  

inline static const char* < itoa | ltoa > (< int | long> input)  

{  

std:: stringstream out;  

std:: string str;  

out << input;  

str = out. str ();  

return str. c_str ();  

};  

 

const string& - For a const string, begin () and end () 

methods return std:: string:: const_iterator. So it’s not 

possible to type case it to a std:: string:: iterator.  

 

The work - around would be to change the type definition of 

"typedef string:: iterator iter; " as "typedef string:: 

const_iterator iter; "  

1) endl is of unknown type - Explicitly add std:: before 

anything in the std namespace if the source code doesn't 

include the line using namespace std;  

2) const char* - The GCC compiler doesn’t let the type 

conversion from ‘const char*’ to ‘char*, but the other 

way around is possible. So when ever this kind of build 

error occurs, it’s required to change the declaration as 

‘const char*’.  

3) strlen () - The strlen () function on a NULL pointer will 

crash the application, so the code has to be explicitly 

check for NULL pointer before calling strlen ().  

 

Patching and upgrades wrt RHEL 

New content view versions will be generated quarterly to 

enable patching. A minor release content view will subscribe 

to extended update service to prolong the ability to patch 

without upgrading to the next minor release. Access to 

additional repos is not supported in EUS mode. Additional 

repos include JBOSS, RHDS, EPEL, and extras 

 

Platform owners will have an option to upgrade to the next 

minor release at any point in the life - cycle.  

 

Red Hat does not recommend upgrading between major 

releases and recommended consulting services if this is 

required. Linux Platform Squad will not support upgrading 

between Major releases.  

 

Linux Platform squad does not plan to release new images 

for non - EUS minor releases in RHEL 8 (8.3, 8.5, 8.7). 

Upgrades to even numbered minor versions is possible.  

 

2. Conclusion 
 

1) New satellite infrastructure will enable periodic content 

updates to provide patches to current releases.  

2) Content views are defined in satellite and specification 

of the version of RPMs to be installed done.  

3) Creation of VM playbook installation and configuration 

of the operating systems done.  

4) Reusable playbook installation and configures the 

extended platform.  

5) Extend Platform components are installed with an 

ansible playbook and the associated content view.  

6) Platform releases have specific extend component 

versions as configured in the Software content view.  

7) If new extended platform components are required a 

content view update will have to be performed.  
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