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Abstract: This research explores the application of deep learning and machine vision in detecting plant leaf diseases in agricultural 

settings, specifically focusing on datasets from farm villages. By combining real farm village data with synthetic data generated by 

Generative Adversarial Networks (GANs), three advanced convolutional neural network (CNN) models VGG16, ResNet50, and 

InceptionNet V3 are utilized through transfer learning. Transfer learning enhances model performance by fine-tuning pre-trained 

networks. The study evaluates the models systematically using metrics such as accuracy, precision, recall, and F1 score. The findings 

demonstrate the effectiveness of the methodology, with ResNet50 achieving the highest performance at 83.23%. This research 

contributes to the advancement of precision agriculture, offering promising implications for sustainable farming practices and 

optimizing crop yields. 
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1. Introduction  
 

In modern agriculture, timely and precise detection of plant 

diseases is essential for maintaining crop health and 

maximizing yields. Plant leaf diseases represent a significant 

threat to global food security, highlighting the need for 

innovative approaches to early detection and management. 

This research tackles these challenges by investigating the 

integration of deep learning and machine vision technologies 

for automating the identification of plant leaf diseases, 

particularly in the complex setting of agricultural 

communities, including farm villages. By employing 

advanced convolutional neural network (CNN) architectures 

such as VGG16, ResNet50, and InceptionNet V3 with 

transfer learning, the study aims to improve the accuracy and 

efficiency of disease identification. Traditional methods 

reliant on manual inspection by agronomists are subjective 

and limited in scalability, underscoring the importance of 

adopting deep learning and machine vision techniques for 

automated, rapid, and accurate diagnosis. 

  

The study acknowledges the intricate nature of farm village 

environments, which involve various crop types, 

environmental elements, and farming techniques, 

necessitating an adaptable and robust approach. Transfer 

learning is utilized to customize pre-trained models to the 

specific characteristics of farm village datasets, mitigating 

the shortage of labeled data tailored to these environments. 

Furthermore, the research introduces the application of 

Generative Adversarial Networks (GANs) to produce 

synthetic data, supplementing the training dataset and 

improving the models' ability to generalize in real-world 

agricultural scenarios. Its objective is to advance the 

comprehension of plant leaf disease detection in rural 

communities by developing, testing, and evaluating deep 

learning models that contribute to precision agriculture. 

Through the assessment of ResNet50, InceptionNet V3, and 

VGG16 in the context of farm villages, leveraging transfer 

learning and GAN-generated data, the study aims to offer 

valuable insights into tackling the unique challenges 

associated with identifying agricultural diseases and 

promoting sustainable farming practices. 

2. Literature Review  
 

In Pranesh Kulkarni et al.'s investigation titled "Plant 

Disease Detection Using Image Processing and Machine 

Learning," although they achieved an impressive accuracy 

of 93%, it's essential to recognize limitations such as 

difficulties in extrapolating results to novel datasets and 

coping with diverse environmental conditions [1]. The 

effectiveness of the model could be affected by the evolving 

nature of plant diseases and the computational requirements 

in extensive agricultural operations. Moreover, depending 

solely on image-based detection might neglect other 

significant factors such as weather patterns or variations in 

soil composition. 

 

Yan Guo and colleagues' study titled "Plant Disease 

Identification Based on Deep Learning Algorithm in Smart 

Farming," presents a mathematical model that utilizes deep 

learning to enhance the efficiency of plant disease detection 

in smart farming applications [2]. While achieving an 

accuracy of 83.57% and proving effective against specific 

diseases, Yan Guo et al.'s research highlights challenges 

associated with the iterative nature of the Chan–Vese 

algorithm. This suggests the need for potential 

enhancements to expedite identification processes in future 

research endeavors. 

 

Andrew J. et al. research on "Deep Learning-Based Leaf 

Disease Detection in Crops Using Images for Agricultural 

Applications" underscores the pivotal importance of the 

agricultural sector. The study delves into the utilization of 

CNN-based pre-trained models for detecting leaf diseases in 

crops [3]. DenseNet-121 achieves an outstanding 

classification accuracy of 99.81%, showcasing the 

substantial potential of deep learning in improving the early 

diagnosis of plant diseases. Future research endeavors will 

focus on tackling challenges related to real-time data 

collection and the development of a multi-object deep 

learning model.        
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Sharada P. Mohanty et al. research on deep learning-based 

plant disease detection attains a notable accuracy rate of 

99.35% [4]. Nevertheless, the study faces limitations such as 

decreased accuracy when tested under diverse conditions 

and challenges in accurately classifying single leaves against 

homogeneous backgrounds. Ongoing research endeavors 

seek to mitigate these drawbacks to enable practical real-

world applications in agriculture. 

 

Riyao Chen and colleagues' study introduces CACPNET as 

a promising model for plant disease identification, 

demonstrating high accuracy. However, the study 

acknowledges limitations in the attention mechanism and 

highlights the trade-off between accuracy and the demands 

of real-time deployment [5]. Despite its limitations, 

CACPNET exhibits notable advantages, particularly its 

potential for lightweight deployment in precision 

agriculture. 

       

Kowshik B and colleagues' literature survey on "Plant 

Disease Detection Using Deep Learning" emphasizes the 

importance of agriculture and highlights the potential of 

deep learning techniques to enhance accuracy in disease 

detection [6]. While emphasizing the positive effects on 

early disease detection, the review acknowledges the 

necessity for further research to address existing gaps in 

disease detection transparency. Additionally, it proposes 

future expansions to incorporate additional features such as 

pesticide price lists and market information. However, 

specific drawbacks or limitations are not explicitly outlined 

in the review. 

 

In summary, these studies collectively contribute to the 

progression of plant disease detection through the utilization 

of deep learning and machine vision techniques. While 

demonstrating impressive accuracies and potential 

applications, each study acknowledges specific limitations. 

This underscores the ongoing necessity for research and 

enhancement in the crucial domain of precision agriculture. 

 

3. Materials and methods 
 

a) Data Acquisition  

The study utilizes the PlantVillage dataset, which comprises 

19,458 meticulously selected photos aimed at enhancing 

plant disease identification through computer vision and deep 

learning. To enhance dataset diversity, data augmentation 

techniques and a Generative Adversarial Network (GAN) 

model contribute an additional 9,973 augmented photos. In 

total, the dataset comprises 29,928 photos categorized into 20 

different classifications representing various plant health and 

disease categories. This dataset offers a comprehensive 

depiction of plant conditions and covers a variety of crops, 

including blueberries, apples, cherries, corn, grapes, potatoes, 

peppers, and strawberries. 

 

b) Data Preparation 

In this phase, the dataset containing 29,928 leaf images is 

split into training and testing sets with a ratio of 65% for 

training and 35% for testing. The training set consists of 

19,458 plant leaf images categorized into 20 classes, 

representing diverse plant species and health or disease 

conditions. This dataset is strategically divided, with 85% 

(16,545 images) allocated for training and 15% (2,911 

images) for validation, ensuring robust model development 

and evaluation.The testing set comprises a subset of 9,973 

images distributed across the same 20 classes, with each class 

representing a specific category of plant health or disease. 

The distribution of images per class is as follows: 

 

Table I: Dataset Details 

No. Class Names 
Images 

count 

0 Blueberry___healthy 2002 

1 Apple___Cedar_apple_rust 777 

2 Apple___healthy 2146 

3 Cherry_(including_sour)___healthy 1363 

4 Cherry_(including_sour)___Powdery_mildew 1564 

5 
Corn_(maize)___Cercospora_leaf_spot 

Gray_leaf_spot 
1015 

6 Corn_(maize)___Common_rust_ 1707 

7 Corn_(maize)___healthy 1662 

8 Corn_(maize)___Northern_Leaf_Blight 1485 

9 Grape___Black_rot 1681 

10 Grape___Esca_(Black_Measles) 1884 

11 Grape___healthy 916 

12 Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 1577 

13 Pepper,_bell___Bacterial_spot 1487 

14 Pepper,_bell___healthy 1976 

15 Potato___Early_blight 1476 

16 Potato___healthy 552 

17 Potato___Late_blight 1496 

18 Strawberry___healthy 956 

19 Strawberry___Leaf_scorch 1609 

 

c) Image preprocessing and Data Augmentation 

In the model training process, a batch size of 64 images per 

iteration is specified to efficiently process and optimize the 

deep learning model. Two distinct image data generators are 

defined: one for training and validation (train_generator) and 

another for testing (test_generator). The training and 

validation data generator incorporates various 

transformations, including a rotation range of 90 degrees, 

varied brightness between 0.1 and 0.7, horizontal and vertical 

shifts within a range of 0.5, as well as horizontal and vertical 

flips. A validation split of 15% is employed to allocate a 

portion of the training data for validation purposes. The 

VGG16 preprocessing function is applied to enhance data 

compatibility. Using flow_from_directory, batches of 

training and validation data are created from the original and 

augmented datasets, specified by the directories 

train_data_dir and test_data_dir. The class_subset, containing 

the list of class names, is retrieved from the original dataset. 

For testing data, the test_generator employs the VGG16 

preprocessing function, pulls batches from the augmented 

dataset directory, and resizes images to (299, 299). With a 

batch size of 1, images are processed independently to ensure 

consistent evaluation without data scrambling, while 

reproducibility is maintained through the use of a seed. These 

generators collectively contribute to the model's ability to 

generalize effectively and recognize diverse patterns, thereby 

enhancing its performance across different datasets. 

 

4. Experimental Procedure  
 

The development of a deep learning model for image 

classification involves a carefully orchestrated series of steps 
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to ensure robust performance and interpretability. Beginning 

with loading and partitioning the dataset into test, validation, 

and training sets, diversity is introduced through data 

augmentation techniques applied specifically to the training 

set. Efficient batch processing is facilitated by a data loader, 

optimizing the training process by providing the model with 

batches of augmented data. Following this, essential image 

preparation steps such as pixel value normalization and 

scaling are performed to standardize input data, ensuring 

consistency and aiding in model convergence. 

 

Utilizing transfer learning, pre-trained models like VGG16, 

ResNet50, or InceptionV3 serve as the foundation of the 

architecture, with the feature extraction phase initiated by 

removing the classification head of the pre-trained model. 

The model is then fine-tuned for task-specific classification 

by adding a custom classification head. Following this, the 

entire model is compiled, specifying the optimizer, loss 

function, and metrics for training. The training strategy 

involves initially freezing convolutional layers, gradually 

unfreezing them, and monitoring performance on the 

validation set. Techniques such as early stopping and 

learning rate schedules are implemented to optimize the 

training process and prevent overfitting. Following model 

training, fine-tuning strategies are explored to develop a 

versatile model suitable for deployment in inference or 

storage. Detailed insights into hyperparameter selections, 

such as learning rates and batch sizes, are crucial for 

understanding the model's sensitivity. Additionally, the 

integration of regularization techniques, such as dropout 

rates or weight decay, not only helps mitigate overfitting but 

also enhances model interpretability.  

       

 
Figure I: Proposed Architecture 

 

The systematic approach outlined ensures the adaptability of 

image classification models to diverse datasets and task 

requirements, promoting transparency and reproducibility, 

which are essential for guiding practitioners, particularly in 

the domain of plant disease detection. Transparency in 

model configuration not only enhances the reproducibility of 

the study but also provides valuable guidance for 

practitioners seeking to implement or extend similar 

approaches in this field. With a focus on adaptability, this 

systematic methodology addresses the nuanced challenges 

posed by different datasets and specific classification tasks 

in image analysis. It serves as a reliable reference for 

practitioners in the complex field of plant disease detection, 

facilitating the effective implementation or extension of 

similar approaches. 

 

The commitment to transparency in model configuration 

enhances the reliability of results and promotes a 

standardized approach for future research and applications in 

image classification, especially within the context of 

agricultural and plant health monitoring. 

 
a) The ResNet50 Transfer Learning model 

The model architecture employs the ResNet50 convolutional 

neural network, which has been pre-trained on ImageNet, for 

plant disease detection. The top layers of ResNet50 are 

excluded, repurposing the network as a feature extractor. A 

Global Average Pooling layer is utilized to condense 

features, followed by a Dense layer with Softmax activation 

for multi-class classification. The base weights of ResNet50 

remain non-trainable, leveraging the prior knowledge gained 

from ImageNet to enhance performance. Stochastic Gradient 

Descent optimizes the model with carefully adjusted 

parameters. 

 

For multi-class classification, categorical crossentropy 

serves as the loss function, along with relevant evaluation 

metrics. Training is performed iteratively using generators, 

and critical callbacks are implemented to ensure optimal 

model weights and early termination if necessary. The 

resulting preserved model provides a robust solution for 

accurate image categorization. 

 

 
                 Figure II: The ResNet50 Transfer Learning Model  

 

b) The VggNet16 Transfer Learning model 

The model architecture for plant disease classification is 

constructed based on the VGG16 convolutional neural 

network, leveraging transfer learning with pre-trained 

weights from ImageNet. The adapted model incorporates a 

custom classification head and offers fine-tuning options for  

selective training.The classification head comprises two 

densely connected layers, a dropout layer, and a softmax 

output layer.The model is compiled with categorical 

crossentropy loss, an optimizer (initially 'rmsprop'), and the 

accuracy metric. Early stopping and learning rate 

adjustments are implemented to enhance training 

convergence. 
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Figure III: The VggNat16 Transfer Learning Model 

 

c) The InceptionNet V3 Transfer Learning model 

Leveraging the InceptionV3 architecture with pre-trained 

weights from ImageNet, a plant disease identification model 

is developed. Customizable fine-tuning, which specifies 

trainable layers, aims to strike a balance between adapting to 

plant disease datasets and leveraging pre-trained knowledge. 

The model comprises global average pooling, a densely 

connected layer, and a dropout layer to address overfitting 

concerns.The output layer utilizes softmax activation to 

classify outputs into probability distributions across plant 

disease classes. Assembled with the Adam optimizer, 

categorical crossentropy loss, and accuracy metric, the 

model is configured for training. 

 

 
Figure IV: The  InceptionNet V3 Transfer Learning Model 

 

5. Results and Conclusion 
 

The experimental results reveal distinct performance 

characteristics among the evaluated pre-trained models 

utilizing transfer learning for image classification. ResNet50 

emerged as the most impressive performer, achieving the 

highest accuracy of 83.23%. This finding aligns with the 

general trend observed in the literature, which underscores 

the efficacy of deeper architectures, particularly those 

incorporating residual learning, for enhancing feature  

representation and classification accuracy. Furthermore, the 

accuracy of the VGG16 model notably improved to 79.27% 

after fine-tuning. This outcome underscores the flexibility of 

VGG16 when task-specific modifications are applied, 

corroborating previous studies advocating for fine-tuning as 

an effective approach for enhancing trained models. 

 

InceptionV3 demonstrated competitive performance both 

with and without fine-tuning. With an accuracy of 76.43%, 

the untuned InceptionV3 showed a trade-off between 

computing efficiency and accuracy. The refined InceptionV3 

further indicated its adaptability by achieving an accuracy of 

74.82%, striking a balance between model complexity and 

performance. 

 

These findings provide practical guidance for practitioners 

on selecting a model based on the requirements of a given 

task and available computational resources. ResNet50 is 

well-suited for scenarios where high accuracy is paramount, 

while VGG16 offers flexibility for task-specific 

optimization due to its fine-tuning capabilities. In terms of 

efficiency, InceptionV3 emerges as a reasonable choice due 

to its well-balanced performance. 

 

Overall, this comprehensive research contributes valuable 

insights to the broader field of pre-trained models, enabling 

practitioners to make informed decisions tailored to their 

specific image classification applications.The comparison 

study on transfer learning-based pre-trained models for plant 

disease detection—ResNet50, VGG16, and InceptionV3—

revealed distinct performance characteristics. ResNet50 

emerged as the top performer with an accuracy of 83.23%, 

showcasing the effectiveness of deep residual learning. 

VGG16 demonstrated its flexibility through fine-tuning, 

resulting in a notable accuracy boost to 79.27%. 

InceptionV3, both with and without fine-tuning, 

demonstrated a balance between computing efficiency and 

accuracy, achieving accuracies of 76.43% and 74.82%, 

respectively. 

      

These findings provide valuable guidance to practitioners in 

selecting models based on task demands and available 

computational resources. The research contributes 

significant insights to the field, informing decisions for 

practical image classification applications. Additionally, it 

suggests future directions for enhancing model flexibility, 

fine-tuning strategies, and generalization skills. 

 
Figure V: Accuracy and loss plot diagram of ResNet50 
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Table 2: Accuracy and loss result of ResNet50 model 
Parameter name Accuracy (%) Loss 

Training 88.28 0.3898 

Validation 88.44 0.3409 

Test 83.23 -------- 

 

 
Figure VI: Confusion Matrix of ResNet50 

 
Figure VII: VggNet16 Training and Validation Accuracy 

and Loss over Epochs 

 

Table 3: Accuracy and loss result of VggNet16 model 
Parameter name Accuracy (%) Loss 

Training 79.92 64.67 

Validation 81.56 55.14 

Test 79.27 - 

 

 
Figure VIII: VggNet16 Confusion Matrix 

 
Figure IX: InceptionNet V3 Training and Validation 

Accuracy and Loss over Epochs 

 

Table 4: Accuracy and loss result of InceptionNet V3 model 
Parameter name Accuracy (%) Loss 

Training 73.12 0.7790 

Validation 88.13 0.3089 

Test 76.43 --------- 

 

 
Figure X: InceptionNet V3 Confusion Matrix 

 

6. Limitation and Future Scope 
 

The systematic approach outlined for developing adaptable 

image classification models in the realm of plant disease 

detection provides a comprehensive framework. However, 

it's essential to acknowledge certain limitations and outline 

future directions for continued improvement. 

 

Limitations include potential biases within the training data, 

which may hinder the model's ability to generalize 

effectively to unseen environmental conditions or emerging 

plant diseases. Additionally, the computational demands of 

training deep learning models, especially those with intricate 

architectures, may pose accessibility challenges for 

researchers with limited computational resources. 

Furthermore, the interpretability of deep learning models 

remains a challenge due to their inherent complexity. 

        

Looking ahead, future directions involve exploring multi-

modal fusion techniques to incorporate data from enhancing 

the diverse sources such as spectral and textual information, 

model's robustness across varied agricultural scenarios. 

Refining transfer learning strategies, particularly through 
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domain adaptation tailored to agricultural contexts, is crucial 

for improving model performance. 

 

The prospect of real-time deployment in agricultural 

settings, while considering computational constraints, is a 

critical area for practical implementation. Future work 

should focus on integrating explainable AI techniques to 

enhance model interpretability and conducting longitudinal 

studies to assess model performance over time in dynamic 

agricultural environments. 

 

Addressing privacy and ethical considerations, collaborating 

closely with domain experts, benchmarking across different 

crops for broader applicability, and promoting open-source 

initiatives are also essential for advancing the field. 

Additionally, the integration of edge computing capabilities 

holds promise for enabling on-device processing, reducing 

dependency on centralized infrastructure, and facilitating 

real-time decision-making in the field. 

 

Collectively, these efforts aim to refine and extend deep 

learning models in plant disease detection, addressing 

technical challenges while ensuring ethical and responsible 

deployment in agricultural settings. 
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