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Abstract: Considering the frame of Classical and Newtonian Mechanics, the SD hypothesis is a particular case where the magnitude of 

acceleration of a particle is twice the magnitude of velocity. Previously, considering the instantaneous motion of a particle moving in a 

straight line under constant acceleration, kinematic factors at a particular instant have been formulated and henceforth have been termed 

the SD factor of the particular particle. This means that at a time known as SD time, where the SD hypothesis is valid, the kinematic 

factors of the particle, such as acceleration, velocity, and position at the particular instant (displacement traversed), are all formulated 

concerning acceleration and time. Now, a theoretical approach is taken further to get into a deeper analysis and find out whether the SD 

hypothesis can be validated for a long interval or not. Also, the validation is done for uniform motion and constant acceleration. This 

approach will also conclude whether the hypothesis can be used for non-uniform motion or not. However, linear motion is still considered 

throughout this approach. 
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1. Introduction 
 

The SD Hypothesis has been dealing with a scenario where 

the magnitude of acceleration of a particle is twice the 

magnitude of velocity. The only constraint of this hypothesis 

is that any instantaneous kinematic factor of the particle, 

namely acceleration, velocity, and displacement, cannot be 

zero. Now, it needs to be verified whether it is valid for a long 

interval or not and whether it is valid for motion with variable 

acceleration or not. Throughout, the explanation and 

description will be bound to linear motion. Since this is a 

theoretical approach to validating this hypothesis in a 

particular condition of mechanics, statistical analysis will be 

used in order to support the observations and conclusions. 

This work will support linear motion, and hence every 

expression and formula that will be created here will be valid 

in theory. However, further works will come up that will show 

the validity of this hypothesis in any type of motion, which 

will help us to conclude it as a theory and further look into the 

calorific and thermodynamic aspects of using this theory. It is 

a point to be noted that all forces and other dynamic factors 

are still not considered throughout and will slowly get induced 

with further work. So, only kinematics will be catered to 

throughout. This particular theory is related to the analysis and 

study of whether one can achieve the condition where the 

magnitude of acceleration is twice the magnitude of velocity 

during accelerated motion. Thorough studies on the 

thermodynamic and calorimetric requirements that are needed 

by an engine to provide enough output in order to make the 

SD hypothesis a valid phenomenon will help in enhancing the 

automobile industry and space travel. Once this value can be 

attained through a more cost-effective approach, then designs 

can be restructured, and fuel conservation and sustainability 

can also be looked upon. 

 

2. Stability of the condition during an interval 

of time: A bigger picture 
 

Suppose we consider the fact that the magnitude of 

acceleration is twice the magnitude of velocity for a given  

 

interval of time. Now we need to find, in such a case, what the 

conditions of velocity, displacement, and time are. 

Acceleration is still a constant factor, as we are considering 

uniform linear motion with constant acceleration. Table 1 

shows the definitions of symbols that will be used throughout. 

Table 1: Declaration of common symbols 
Symbol Definition 

ti time at i-th instant 

𝑥⃗ Displacement vector 

𝑎⃗ Acceleration vector 

𝑣⃗ Velocity vector 

tSD Instantaneous SD time 

𝑣⃗𝑆𝐷 SD velocity 

𝑎⃗𝑆𝐷 SD acceleration 

|𝑛⃗⃗| Magnitude of any n-vector 

 

Any new variable that will be considered for the expressions, 

formulae, or equations will be declared during their first 

usage. Another convention that is followed here is that for a 

vector 𝑛⃗⃗, its derivative 
𝑑(𝑛⃗⃗)

𝑑𝑡
 is given by 𝑛̇⃗⃗, and for higher 

derivatives, the number of dot increases. However, when required, 

the traditional form of declaring derivatives, i.e., 
𝑑(𝑛⃗⃗)

𝑑𝑡
 will be used 

as well. 

 

2.1 Estimating SD time after a long interval of motion 

 

The most focused parameter in this case is time. The condition 

of time has been the mainstream estimation for the SD 

hypothesis since its beginning. For ease of consideration of 

the time interval where the SD hypothesis is considered valid, 

it is referred to as an event or interval of the SD phenomenon 

henceforth. Proceeding to the estimation of SD time in an 

interval of SD phenomena, we need to keep in mind that the 

following equation is the backbone of this hypothesis: 

 
|𝑎⃗|𝑆𝐷 = 2 ∙ |𝑣⃗|𝑆𝐷                                    (1)  
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Here, we are interested in what happens when a phenomenon 

is followed for a considerable amount of time. So, we start 

with analyzing the relations between displacement and 

velocity during the event. It is given by: 

 

|𝑣⃗|𝑆𝐷 =
|𝑥|𝑆𝐷

𝑡𝑆𝐷∙(𝑡𝑆𝐷+1)
                                    (2)  

 

Usually, relating velocity and displacement in classical 

mechanics leads to another equation 

 

𝑣⃗𝑆𝐷 =
𝑑(𝑥𝑆𝐷)

𝑑𝑡
                                    (3) 

 

or,  

 

𝑣⃗𝑆𝐷 = 𝑥⃗𝑆𝐷
̇                                     (4)  

 

Using equation (3) for the velocity vector in equation (2), we 

arrive at equation (5), which is 

 
𝑑(|𝑥|𝑆𝐷)

𝑑𝑡𝑆𝐷
=

|𝑥|𝑆𝐷

𝑡𝑆𝐷∙(𝑡𝑆𝐷+1)
                                    (5)  

 

Further rearrangement of the equation is done so that the 

expressions of displacement are on one side and the 

expressions of time are on another side. Since we have 

estimations of instantaneous factors, we can consider infinite 

such instants taking place under a given interval and add them 

up to observe the condition of that particular interval. Clearly, 

we use calculus throughout in order to come up with our 

solution for such an evaluation. 

 

𝑑(|𝑥⃗|𝑆𝐷)

|𝑥⃗|𝑆𝐷
=

𝑑𝑡𝑆𝐷
𝑡𝑆𝐷 ∙ (𝑡𝑆𝐷 + 1)

 

 

For integrating, we consider that the displacement is from an 

instant (|𝑥⃗|𝑆𝐷)𝑖 to an instant (|𝑥⃗|𝑆𝐷)𝑓 and similarly, time 

interval is taken from ti and tf, where (|𝑥⃗|𝑆𝐷)𝑖 is the magnitude 

of displacement at ti and (|𝑥⃗|𝑆𝐷)𝑓 is the magnitude of 

displacement at tf. Hence, we proceed as 

 

∫
𝑑(|𝑥⃗|𝑆𝐷)

|𝑥⃗|𝑆𝐷

(|𝑥|𝑆𝐷)𝑓

(|𝑥|𝑆𝐷)𝑖

= ∫
𝑑𝑡𝑆𝐷

𝑡𝑆𝐷 ∙ (𝑡𝑆𝐷 + 1)

(𝑡𝑆𝐷)𝑓

(𝑡𝑆𝐷)𝑖

 

 

Using the formulae of integration, we get, 

 

ln|(|𝑥⃗|𝑆𝐷)𝑓| − ln|(|𝑥⃗|𝑆𝐷)𝑖| = (ln|(𝑡𝑆𝐷)𝑓| − ln|(𝑡𝑆𝐷)𝑓 +

1|) − (ln|(𝑡𝑆𝐷)𝑖| − ln|(𝑡𝑆𝐷)𝑖 + 1|)        (6) 

 

Using the division property of logarithm on equation (6), we 

get, 

 

ln |
(|𝑥|𝑆𝐷)𝑓

(|𝑥|𝑆𝐷)𝑖
| = (ln |

(𝑡𝑆𝐷)𝑓

(𝑡𝑆𝐷)𝑓+1
|) − (ln |

(𝑡𝑆𝐷)𝑖

(𝑡𝑆𝐷)𝑖+1
|)    (7) 

 

The equation can be simplified further in order to make a 

function where the final SD time can be established as a 

function of the final SD displacement, the initial SD time, and 

the initial SD displacement, or 

 

(𝑡𝑆𝐷)𝑓 = 𝑓((𝑡𝑆𝐷)𝑖 , (|𝑥⃗|𝑆𝐷)𝑖 , (|𝑥⃗|𝑆𝐷)𝑓) 

 

This creation of such a function land in equation (8), which 

can be obtained by further usage of the division law of 

logarithm in equation (7) and is given by: 

 

(𝑡𝑆𝐷)𝑓 = |
(𝑥𝑆𝐷)𝑓∙(𝑡𝑆𝐷)𝑖

(𝑥𝑆𝐷)𝑖(𝑡𝑆𝐷)𝑖+(𝑥𝑆𝐷)𝑖−(𝑥𝑆𝐷)𝑓(𝑡𝑆𝐷)𝑖
|      (8) 

 

Equation (8) can be further simplified to represent final SD 

time as a function of initial SD displacement and initial SD 

time. The form can be derived by bringing the equation of SD 

displacement at an instant as a function of constant 

acceleration and SD time. Further equations (9) and (10) will 

be concluded, and collectively, (8), (9) and (10) will provide 

the final SD time as a function of different parameters. 

Moving on to the conclusion of equation (9) by replacing the 

final SD displacement with its expression of acceleration and 

the final SD time, we get: 

 

(𝑡𝑆𝐷)𝑓 = |√
2(𝑥𝑆𝐷)𝑖−2(𝑥𝑆𝐷)𝑖(𝑡𝑆𝐷)𝑖+𝑎(𝑡𝑆𝐷)𝑖

𝑎∙(𝑡𝑆𝐷)𝑖
|       (9) 

 

Now, in order to obtain a particular equation of time that can 

help in analyzing the magnitude of the final SD time in terms 

of the initial SD time, In order to achieve the same, the term 

representing initial SD displacement can be replaced with the 

expression that provides its value in terms of constant 

acceleration and SD time. This leads to a neater version of the 

SD time equation, which is 

 

(𝑡𝑆𝐷)𝑓 = |√2 + (𝑡𝑆𝐷)𝑖
2
|         (10) 

 

Plotting the functions on graphs help in analyzing the plots 

and particular points that may need to be excluded from 

consideration. Firstly, equation (8) is a function with three 

variables and, ideally, is plotted in a 4-dimensional projection. 

However, by fixing any parameter, it turns into a 3-

dimensional projection, and furthermore, by fixing two 

parameters, it becomes a 2-dimensional projection. The plots 

and explanations are provided further. 

 

 
Figure 1: 4-Dimensional projection of final SD time as per 

equation (8) 

Table 2: Axis specifications for Figure 1 

Axis Representation (variable it caters) 

X Initial SD time ((𝑡𝑆𝐷)𝑖) 

Y Initial SD displacement ((|𝑥⃗|𝑆𝐷)𝑖) 

Z Final SD displacement ((|𝑥⃗|𝑆𝐷)𝑓) 

W Final SD time ((𝑡𝑆𝐷)𝑓) 
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The graph setup has the following specifications: 

• Radius: 5 units 

• Subdivisions: 10 

• Coordinates: 1 

• Grid: 1 

• Perspective: 1 

• Hyperplanes: 1 

• Significant figures: 4 

• 3D perspective customization: 

o 𝜃𝑋𝑌 = 1.42𝑟𝑎𝑑 

o 𝜃𝑌𝑍 = 0𝑟𝑎𝑑 

o 𝜃𝑋𝑍 = 0.155𝑟𝑎𝑑 

• 4D perspective customization: 

o 𝜃𝑋𝑊 = 1.366𝑟𝑎𝑑 

o 𝜃𝑌𝑊 = −0.29𝑟𝑎𝑑 

o 𝜃𝑍𝑊 = 0𝑟𝑎𝑑 

 

Figure 1 is a dynamic and most generalized view of equation 

(8). However, if we fix any parameter, in this case, the initial 

SD time, then we can treat it as a constant, and the rest of the 

equation can be plotted in 3-dimensional space. 

 

 
Figure 2: 3-dimensional projection of final SD time as per 

equation (8) 

Table 3: Axis specifications for Figure 2 

Axis Representation (variable it caters) 

X Final SD displacement ((|𝑥⃗⃗⃗|𝑆𝐷)𝑓) 

Y Initial SD displacement ((|𝑥⃗|𝑆𝐷)𝑖) 

Z Final SD time ((𝑡𝑆𝐷)𝑓) 

 

Figure 2 has been plotted by keeping the fixed value of initial 

SD time as 0.4 seconds. 

 

Further, if we try to provide a two-dimensional projection of 

the final SD time, we need to fix one more parameter. So, if 

this case is considered such that all the initial parameters, 

namely, initial SD time and initial SD displacement, are fixed 

and treated as constant values, then a 2-dimensional projection 

can be concluded. 

 

 
Figure 3: 2-dimensional projection of final SD time as per 

equation (8) 

Table 4: Axis specifications for Figure 3 

Axis Representation (variable it caters) 

X Final SD displacement ((|𝑥⃗⃗⃗|𝑆𝐷)𝑓) 

Y Final SD time ((𝑡𝑆𝐷)𝑓) 

 

For the plotting of Figure 3, the initial SD displacement is 

considered to be -3.2 units, and the initial SD time is taken as 

2.2 seconds. 

 

Now, further considering equation (9) and its plotting, the 

generalized plot comes under a 3-dimensional space and is 

provided further. 

 

 
Figure 4: 3-dimensional projection of final SD time as per 

equation (9) 

Table 5: Axis specifications for Figure 4 

Axis Representation (variable it caters) 

X Initial SD time ((𝑡𝑆𝐷)𝑖) 
Y Initial SD displacement ((|𝑥⃗|𝑆𝐷)𝑖) 

Z Final SD time ((𝑡𝑆𝐷)𝑓) 

 

For plotting of Figure 4, the value of constant acceleration is 

taken to be 0.4 units per second square. Fixing the initial SD 

displacement provides the two-dimensional projection of final 

SD time in terms of initial SD time. 
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Figure 5: 2-dimensional projection of final SD time as per 

equation (9) 

Table 6: Axis specifications for Figure 5 
Axis Representation (variable it caters) 

X Initial SD time ((𝑡𝑆𝐷)𝑖) 

Y Final SD time ((𝑡𝑆𝐷)𝑓) 

 

For the plotting of Figure 5, the constant specification is given 

below: 

• Acceleration: 0.4 units per second square 

• Initial SD displacement: 3.2 units 

 

The last and the simplest form of relation between initial and 

final SD time is established in equation (10)  where a simple 

2-D graph is plotted. 

 

 
Figure 6: 2-dimensional projection of final SD time as per 

equation (10) 

Table 7: Axis specifications for Figure 6 
Axis Representation (variable it caters) 

X Initial SD time ((𝑡𝑆𝐷)𝑖) 

Y Final SD time ((𝑡𝑆𝐷)𝑓) 

 

Briefing about the condition of time during the SD 

phenomenon: time can be expressed in three different forms 

by varying the independent and dependent variables in the 

equation. Each equation shows the effect of each variable on 

time by manipulating their magnitudes. Mostly, the equations 

are established by relating initial and final SD displacements, 

SD time, and, in some cases, taking constant acceleration into 

consideration. One can conclude or observe in the equations 

and graphs that time is decreasing with an increase in velocity. 

Although mathematically this can be said to be a valid point, 

considering a physical setup, it can be seen that SD time 

proceeds as velocity decreases. This is a reason why in most 

of the comparisons with displacement, especially clearly 

visible in Figure 3, as displacement is increasing, time is 

approaching a constant value, or as time is increasing, 

displacement is approaching a constant value. Further 

conclusions and observations will be pointed out and 

discussed after analyzing the condition of SD displacement 

and SD velocity further. 

 

2.2 Estimating SD displacement after a long interval of 

time 

 

After analyzing the condition of time, it is a concern for the 

pattern of change in displacement of the particle during an SD 

event. At the instantaneous level, the SD displacement is 

given by a quadratic equation of time. Now, an observation is 

needed to observe and judge how the displacement varies over 

the duration of the event. So, expanding a particular instant to 

a bigger interval by integrating several instants can help us 

develop our desired expression. As the instantaneous 

displacement expression stands, 

 

|𝑥⃗|𝑆𝐷 =
𝑎 ∙ (𝑡𝑆𝐷 + 𝑡𝑆𝐷

2 )

2
 

 

Using the basic condition of SD hypothesis, the formula is 

rewritten in terms of velocity as 

 

|𝑥⃗|𝑆𝐷 = |𝑣⃗|𝑆𝐷 ∙ (𝑡𝑆𝐷 + 𝑡𝑆𝐷
2 ) 

 

In terms of derivatives, it is written as, 

 

|𝑥⃗|𝑆𝐷 = (|𝑥⃗|𝑆𝐷)
̇ ∙ (𝑡𝑆𝐷 + 𝑡𝑆𝐷

2 ) 
Or, 

|𝑥⃗|𝑆𝐷 =
𝑑(|𝑥⃗|𝑆𝐷)

𝑑𝑡𝑆𝐷
∙ (𝑡𝑆𝐷 + 𝑡𝑆𝐷

2 ) 

 

Rearranging the terms to keep similar quantities on same side, 

 
𝑑(|𝑥|𝑆𝐷)

|𝑥|𝑆𝐷
=

𝑑𝑡𝑆𝐷

(𝑡𝑆𝐷+𝑡𝑆𝐷
2 )

            (11) 

 

Considering that the displacement of a particle is studied 

between two instants, its initial SD displacement and final SD 

displacement take place between two instants. Hence, 

integrating both sides of equation (11), 

 

∫
𝑑(|𝑥⃗|𝑆𝐷)

|𝑥⃗|𝑆𝐷

(|𝑥|𝑆𝐷)𝑓

(|𝑥|𝑆𝐷)𝑖

= ∫
𝑑𝑡𝑆𝐷

(𝑡𝑆𝐷 + 𝑡𝑆𝐷
2 )

(𝑡𝑆𝐷)𝑓

(𝑡𝑆𝐷)𝑖

 

 

Simplifying further gives, 

 

ln |
(|𝑥⃗|𝑆𝐷)𝑓
(|𝑥⃗|𝑆𝐷)𝑖

| = (ln |
(𝑡𝑆𝐷)𝑓

(𝑡𝑆𝐷)𝑓 + 1
|) − (ln |

(𝑡𝑆𝐷)𝑖
(𝑡𝑆𝐷)𝑖 + 1

|) 

 

This is a repeating part where we have arrived again at 

equation (7). Further, using the division law of logarithm on 

RHS and using cross multiplication, final SD displacement 
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can be derived as a function of initial SD displacement, final 

SD time, and initial SD time as: 

 

(|𝑥⃗|𝑆𝐷)𝑓 = (|𝑥⃗|𝑆𝐷)𝑖 ∙
(𝑡𝑆𝐷)𝑓∙((𝑡𝑆𝐷)𝑖+1)

(𝑡𝑆𝐷)𝑖∙((𝑡𝑆𝐷)𝑓+1)
      (12) 

 

Using the value of (𝑡𝑆𝐷)𝑓 from equation (10) in equation (12), 

 

(|𝑥⃗|𝑆𝐷)𝑓 = (|𝑥⃗|𝑆𝐷)𝑖 ∙
(√2+(𝑡𝑆𝐷)𝑖

2
)∙((𝑡𝑆𝐷)𝑖+1)

(𝑡𝑆𝐷)𝑖∙(√2+(𝑡𝑆𝐷)𝑖
2
+1)

      (13) 

 

Simplifying this derives the equation for final SD 

displacement after a given interval of time, which is, 

 

(|𝑥⃗|𝑆𝐷)𝑓 =
(|𝑥|𝑆𝐷)𝑖∙(𝑡𝑆𝐷)𝑖∙(√2+(𝑡𝑆𝐷)𝑖

2
)+(|𝑥|𝑆𝐷)𝑖∙(√2+(𝑡𝑆𝐷)𝑖

2
)

(𝑡𝑆𝐷)𝑖∙√2+(𝑡𝑆𝐷)𝑖
2
+(𝑡𝑆𝐷)𝑖

   (14) 

 

Ideally, for displacement, a 3 dimensional and 2 dimensional 

can help us determine its behavior throughout the event. 

 

 
Figure 7: 3-dimensional plot of final SD displacement in 

terms of initial SD displacement and initial SD time 

Table 8: Axis specifications for Figure 7 

Axis Representation (variable it caters) 

X Initial SD time ((𝑡𝑆𝐷)𝑓) 

Y Initial SD displacement ((|𝑥⃗|𝑆𝐷)𝑖) 

Z Final SD displacement ((|𝑥⃗|𝑆𝐷)𝑓) 

 

Figure 7 illustrates the most generalized condition of final 

SD displacement, where every parameter is varying. 

However, further, we can either fix initial SD displacement 

or initial SD time in order to see the variation with one 

variable. 

 

 
Figure 8: 2-dimensional plot of final SD displacement vs  

initial SD time 

Table 9: Axis specifications for Figure 8 

Axis Representation (variable it caters) 

X Initial SD time ((𝑡𝑆𝐷)𝑖) 

Y Final SD displacement ((|𝑥⃗|𝑆𝐷)𝑓) 

 

For the constant value of initial SD displacement, the value 

was chosen to be 1.4 units. 

 

Finally, for SD displacement, a plot for relating initial and 

final SD displacement is shown below 

 

 
Figure 9: 2-dimensional plot of final SD displacement vs 

initial SD displacement 

Table 10: Axis specifications for Figure 9 

Axis Representation (variable it caters) 

X Initial SD displacement ((|𝑥⃗|𝑆𝐷)𝑖) 

Y Final SD displacement ((|𝑥⃗|𝑆𝐷)𝑓) 

The value chosen for initial SD time was 1.4 seconds for 

Figure 9. 

 

As it can be seen from this section, the final SD displacement 

shows a linear relationship with the initial SD displacement. 

However, displacement is seen to decrease when time is 

proceeding. Further, this leads to curiosity about exploring the 

derived quantity from displacement and time, i.e., velocity. 

The condition of SD velocity will help us see how we can 

manipulate SD velocity as per SD displacement and SD time. 

 

2.3 Estimating SD velocity after a long interval of time 

 

After thoroughly analyzing different cases for SD time and SD 

displacement, it is time for SD velocity to be formulated 

during a particular interval. 
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In order to approach SD velocity, the first equation of the SD 

hypothesis needs to be considered. That means the following 

equation will be used: 

 
|𝑎⃗| = 2 ∙ |𝑣⃗|𝑆𝐷 

 

Writing accelerations in terms of velocity, 

 

𝑑(|𝑣⃗|𝑆𝐷)

𝑑𝑡𝑆𝐷
= 2 ∙ |𝑣⃗|𝑆𝐷 

 

Rearranging like terms on same side, it becomes, 

 
𝑑(|𝑣⃗⃗|𝑆𝐷)

|𝑣⃗⃗|𝑆𝐷
= 2 ∙ 𝑑𝑡𝑆𝐷       (15) 

 

In this event, it is considered that in the time interval, the 

initial velocity at the starting time was, whereas the final SD 

velocity is. Hence, considering these as the limits and 

integrating equation (15), it is 

 

∫
𝑑(|𝑣⃗|𝑆𝐷)

|𝑣⃗|𝑆𝐷

(|𝑣⃗⃗|𝑆𝐷)𝑓

(|𝑣⃗⃗|𝑆𝐷)𝑖

= ∫ 2 ∙ 𝑑𝑡𝑆𝐷

(𝑡𝑆𝐷)𝑓

(𝑡𝑆𝐷)𝑖

 

 

As a result of integration, the following equation arrives, 

 

ln |
(|𝑣⃗|𝑆𝐷)𝑓
(|𝑣⃗|𝑆𝐷)𝑖

| = 2 ∙ ((𝑡𝑆𝐷)𝑓 − (𝑡𝑆𝐷)𝑖) 

 

Transferring from logarithmic form to exponential form, 

 

(|𝑣⃗|𝑆𝐷)𝑓 = (|𝑣⃗|𝑆𝐷)𝑖 ∙ 𝑒
2((𝑡𝑆𝐷)𝑓−(𝑡𝑆𝐷)𝑖) 

 

Using the form, 

 

(𝑡𝑆𝐷)𝑓 − (𝑡𝑆𝐷)𝑖 = ∆𝑡𝑆𝐷 

 

The final equation for final SD velocity is 

 

(|𝑣⃗|𝑆𝐷)𝑓 = (|𝑣⃗|𝑆𝐷)𝑖 ∙ 𝑒
2(∆𝑡𝑆𝐷)     (16) 

 

This can also be written in terms of initial SD velocity and 

initial SD time by using the expression of final SD time from 

equation (10). That way, the equation becomes, 

 

(|𝑣⃗|𝑆𝐷)𝑓 = (|𝑣⃗|𝑆𝐷)𝑖 ∙ 𝑒
2((√2+(𝑡𝑆𝐷)𝑖

2
)−(𝑡𝑆𝐷)𝑖)

 

 

However, equation (16) is used generally for graphing 

purpose for easier estimation. 

 

Analysis of the variation of velocity in a chosen interval of 

time graphically can be done in two forms: one being the 

three-dimensional plot and the other being the two-

dimensional plot. In other words, the three-dimensional 

scenario will help in understanding the general overview, 

while taking a proper interval into consideration, one can 

relate the initial and final SD velocity in a better way. 

 

 
Figure 10: 3-dimensional plot for final SD velocity in terms 

of SD time and initial SD velocity 

Table 11: Axis specifications for Figure 10 

Axis Representation (variable it caters) 

X Change in SD time (∆𝑡𝑆𝐷) 

Y Initial SD velocity ((|𝑣⃗|𝑆𝐷)𝑖) 

Z Final SD velocity ((|𝑣⃗|𝑆𝐷)𝑓) 

 

Fixing the time interval, following is the relation between 

initial SD velocity and final SD velocity. 

 

 
Figure 11: 2-dimensional plot between final SD velocity and 

initial SD velocity 

Table 12: Axis specifications for Figure 11 

Axis Representation (variable it caters) 

X Initial SD velocity ((|𝑣⃗|𝑆𝐷)𝑖) 

Y Final SD velocity ((|𝑣⃗|𝑆𝐷)𝑓) 

 

The constant time interval was taken to be 0.4 seconds for 

Figure 11 plot. 

 

Through all the figures and expressions so far, one can 

conclude that when acceleration is constant, the validation of 

the SD hypothesis throughout an event remains when the 

particle is constantly decelerating. However, by analyzing the 

initial and final components of the parameters, it can be seen 

that they have a linear relationship with a positive slope. All 

this is a consideration of the case when there is no external 
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force acting on it. However, further work will be coming up 

in the future that will determine its feasibility when an external 

force helps in making the motion an accelerating motion. 

Further study can be done in order to confirm the energy and 

cost requirements for the physical setup of such an 

experiment, which will definitely help in the upbringing of 

several engineering mechanisms. 

 

3. Scene of Varying Acceleration: Non-

Uniform Motion 
 

Concluding the conditions of uniform linear motion, it could 

be seen that in uniform motion, this phenomenon can only be 

validated if and only if velocity is decreasing, and hence the 

acceleration is negative acceleration. Now the question that 

comes to mind is: What happens when acceleration varies? 

For this, a further deep dive is needed where the magnitude-

related concept is heavily influenced by vectors and their 

components. For the discussion of this section, two quantities, 

namely displacement and time, will be considered. 

Displacement will be considered a three-dimensional vector, 

as a three-dimensional perspective is considered a frame of 

reference. Also, the components are considered as a function 

of time. For this particular explanation, a simple experimental 

situation is used, and further attempts are made to generalize 

it. 

 

For a case-based explanation, let displacement be denoted by 

the usual reference 𝑥⃗ and is defined by: 

 

𝑥⃗ = 𝐴𝑡3(𝑖̂) + 𝐵𝑡2(𝑗̂) + 𝐶𝑡(𝑘̂) 

 

Here, 𝑖̂, 𝑗̂ and 𝑘̂ are Hamilton quaternions. A, B and C are 

arbitrary variables. Further differentiating displacement 

vector in terms of time, we get, 

 

(𝑥⃗)̇ = 3𝐴𝑡2(𝑖̂) + 2𝐵𝑡(𝑗̂) + 𝐶(𝑘̂)      (17) 

 

From equation (4), it is known that, 

 

(𝑥⃗)̇ = 𝑣⃗ 

 

Using this in equation (17), velocity achieved is of the form, 

 

𝑣⃗ = 3𝐴𝑡2(𝑖̂) + 2𝐵𝑡(𝑗̂) + 𝐶(𝑘̂) 

 

Further differentiating equation (17) in terms of time factor 

‘t’, it becomes, 

 

(𝑥⃗)̈ = 6𝐴𝑡(𝑖̂) + 2𝐵(𝑗̂) 
Or, 

 

(𝑣⃗)̇ = 6𝐴𝑡(𝑖̂) + 2𝐵(𝑗̂)          (18) 

 

From Elementary Mechanics, it is equated that, 

 

(𝑥⃗)̈ = (𝑣⃗)̇ = 𝑎⃗ 

 

Hence, equation (18) can be re-written as, 

 

𝑎⃗ = 6𝐴𝑡(𝑖̂) + 2𝐵(𝑗̂) 

From this portion of the events, concept of SD acceleration 

comes into scenario. Basically, since all the parameters are a 

function of time, the definition of SD acceleration is the 

acceleration at SD time. Hence, 

 

𝑎⃗𝑆𝐷 = 6𝐴𝑡𝑆𝐷(𝑖̂) + 2𝐵(𝑗̂) 
 

Considering SD event to be valid, the condition of SD time 

can be estimated in terms of the arbitrary variables A,B and C. 

Using the condition of SD hypothesis, 

 
|𝑎⃗|𝑆𝐷 = 2 ∙ |𝑣⃗|𝑆𝐷 

 

Expanding using expressions of SD velocity and SD 

acceleration in non-uniform motion, 

 

√36(𝐴𝑡𝑆𝐷)
2 + 4𝐵2 = 2 ∙ √9𝐴2𝑡𝑆𝐷

4 + 4𝐵2𝑡𝑆𝐷
2 + 𝐶2 

 

Squaring both sides of the above equation and taking all time 

related terms to one side, keeping the other terms on the other 

side, the equation becomes, 

 

 

36𝐴2𝑡𝑆𝐷
4 − (36𝐴2 − 16𝐵2)𝑡𝑆𝐷

2 = (2𝐶2 − 4𝐵2) 
 

Substituting 𝑡𝑆𝐷
2  with 𝜏𝑆𝐷, the above equation transforms to 

 

36𝐴2𝜏𝑆𝐷
2 − (36𝐴2 − 16𝐵2)𝜏𝑆𝐷 = (2𝐶2 − 4𝐵2) 

 

Or, 

 

36𝐴2𝜏𝑆𝐷
2 − (36𝐴2 − 16𝐵2)𝜏𝑆𝐷 − (2𝐶2 − 4𝐵2) = 0  (19) 

 

Equation (19) is a quadratic equation, and hence its roots can 

be found by using the formula for roots of a quadratic 

equation. This gives, 

 

𝜏𝑆𝐷 =
−(−(36𝐴2−16𝐵2))±√(−(36𝐴2−16𝐵2))

2
−4∙(36𝐴2)∙(−(2𝐶2−4𝐵2))

2∙(36𝐴2)
  

 

This can be simplified to, 

 

𝜏𝑆𝐷 =
(36𝐴2−16𝐵2)±√(6𝐴)4+(4𝐵)4+(12𝐴𝐶)2−(96𝐴𝐵)2

72𝐴2
  

 

Substituting the term of 𝜏𝑆𝐷 with the real term, 

 

𝑡𝑆𝐷
2 =

(36𝐴2−16𝐵2)±√(6𝐴)4+(4𝐵)4+(12𝐴𝐶)2−(96𝐴𝐵)2

72𝐴2
  

 

Hence, the equation of SD time for non-uniform motion 

comes up to, 

𝑡𝑆𝐷 = √(36𝐴2−16𝐵2)±√(6𝐴)4+(4𝐵)4+(12𝐴𝐶)2−(96𝐴𝐵)2

72𝐴2
  

 

Plotting 𝑡𝑆𝐷 as a function of three arbitrary variables, the 

following 4-dimensional plot is obtained: 
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Figure 12: 4-dimensional plot for SD time in non-uniform 

motion 

Table 13: Axis specifications for Figure 12 

Axis Representation (variable it caters) 

X A 

Y B 

Z C 

W 𝑡𝑆𝐷 

 

Generalizing three-dimensional motion and validating the SD 

hypothesis on it, all the vector equations are as a function of 

time henceforth. Further, a relationship between arbitrary 

variables and the functions will be attained and concluded 

accordingly. 

 

Starting with displacement vector, 

 

𝑥⃗ = 𝐴(𝑓(𝑡))(𝑖̂) + 𝐵(𝑔(𝑡))(𝑗̂) + 𝐶(ℎ(𝑡))(𝑘̂) 

 

Where f, g and h are three distinct functions of time. 

Accordingly, velocity and acceleration vectors are written as, 

 

𝑣⃗ = 𝐴(𝑓(𝑡))̇ (𝑖̂) + 𝐵(𝑔(𝑡))̇ (𝑗̂) + 𝐶(ℎ(𝑡))̇ (𝑘̂) 

 

𝑎⃗ = 𝐴(𝑓(𝑡))̈ (𝑖̂) + 𝐵(𝑔(𝑡))̈ (𝑗̂) + 𝐶(ℎ(𝑡))̈ (𝑘̂) 

 

At SD time, 

 
|𝑎⃗|𝑆𝐷 = 2 ∙ |𝑣⃗|𝑆𝐷 

Or, 

 

√(𝐴(𝑓(𝑡𝑆𝐷))
̈ )

2

+(𝐵(𝑔(𝑡𝑆𝐷))
̈ )

2

+ (𝐶(ℎ(𝑡𝑆𝐷))
̈ )

2

 

= 2 ∙ √(𝐴(𝑓(𝑡𝑆𝐷))̇ )
2
+ (𝐵(𝑔(𝑡𝑆𝐷))̇ )

2
+ (𝐶(ℎ(𝑡𝑆𝐷))̇ )

2
  

 

This can be simplified and written as, 

 

𝐴2 ((𝑓(𝑡𝑆𝐷))
̈ 2

− 4(𝑓(𝑡𝑆𝐷))
̇ 2

) + 𝐵2 ((𝑔(𝑡𝑆𝐷))
̈ 2

− 4(𝑔(𝑡𝑆𝐷))̇ 2) +

𝐶2 ((ℎ(𝑡𝑆𝐷))
̈ 2

− 4(ℎ(𝑡𝑆𝐷))̇ 2) = 0       (20) 

 

Equation (20) can be used to find the SD time for non-uniform 

motion for any three given time functions. For non-uniform 

motion, SD time is the main factor of concern for estimation, 

and others can be vectorially estimated using conventional 

methods. However, the existence of the SD hypothesis in non-

uniform motion is confirmed by equation (20). 

 

4. Conclusion 

 
Throughout the several ways of finding SD time and 

validating the SD hypothesis in several conditions of uniform 

and non-uniform motion, it can be concluded that the SD 

hypothesis in an inertial frame can only occur when the 

velocity is decreasing or the particle is approaching the rest 

phase. However, the application of force varies the scenario 

and can create an SD event during positive acceleration. 

However, the energy requirements and concerns on 

thermodynamic, mechanical, and calorimetric angles need 

thorough research in order to conclude whether the creation of 

an SD event is feasible for a mechanism or not. Further works 

are expected to come up for the same, and once its feasibility 

is validated, experimental and further industrial arrangements 

can be made in order to prove this as a physically existing 

phenomenon. As of yet, this can be validated as a theory. 
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