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1. Introduction 
 

Creation of computer programs capable of demonstrating 

intelligence is the main perusal of artificial intelligence. 

Traditionally, any piece of software that displays cognitive 

abilities such as perception, search, planning, and learning is 

considered part of artificial intelligence. Some examples of 

functionality produced by artificial intelligence software are: 

pages returned by a search engine, route produced by a GPS 

app, voice recognition and the synthetic voice of a smart-

assistant software, recommended products shown on e-

commerce sites, follow-me feature in drones, etc.  

 

Reinforcement learning is a subfield of artificial intelligence 

and machine learning that focuses on decision making. It is a 

type of machine learning where an agent learns to make 

decisions by performing actions and observing the rewards it 

receives. The goal is to maximize the cumulative reward 

over time. Basically, the agent learns to make decisions 

through trial and error. Agent’s behaviour is primarily 

shaped by reinforcement rather than free-will. Positive 

reinforcement is the strengthening of behaviour by the 

occurrence of some event (e.g., praise after some behaviour 

is performed), whereas negative reinforcement is the 

strengthening of behaviour by the removal or avoidance of 

some aversive event (e.g., opening and raising an umbrella 

over your head on a rainy day is reinforced by the cessation 

of rain falling on you). Behaviours that result in 

praise/pleasure tend to repeat, behaviours that result in 

punishment/pain tend to become extinct. In reinforcement 

learning, the agent and the environment interact with each 

other, and the agent's decisions influence the state of the 

environment and the subsequent reward it receives.  

 

The field of reinforcement learning has seen drastic growth 

in recent years, driven by advances in research, algorithms, 

computational resources, and applications. This is evident 

from the surge in number of patents filed in the subject in 

recent years as shown in Figure 1. The Lens reports that over 

84,000 patents records in reinforcement learning [1]. After 

an extensive research and exploration of supervised, 

unsupervised and semi-supervised machine learning 

algorithms, researchers across the numerous application 

domains of machine learning are now looking to implement 

reinforcement learning techniques as they promise a 

realization of more human-like intelligence in machines. 

Nevertheless, numerous open problems and challenges are 

faced while implementing reinforcement learning in real life 

use-cases.  

 

This paper presents a comprehensive body of knowledge 

about the complexities and challenges that researchers might 

face while developing reinforcement learning models as 

solutions for real-life problems. The paper is divided into six 

sections. The next section traces the history of development 

of reinforcement learning briefly.  The third section 

introduces the readers to the reinforcement learning 

framework. The fourth section discusses the background 

knowledge and a literature of various types of reinforcement 

learning algorithms. Fifth section elaborates on the 

challenges and hurdles in the path of practical reinforcement 

learning. The paper end with a conclusion and a set of 

recommendations.  

 

 
Figure 1: Number of patents published in the field of 

reinforcement learning in recent years 

 

2. Tracing the Development of Reinforcement 

Learning 
 

Reinforcement learning was originally inspired by 

behavioural psychology. The development of reinforcement 
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learning is believed to be the convergence of three 

significant paths of study [2]. The first path originated in 

psychology with Edward Thorndike's influential Law of 

Effect [3]. Thorndike advanced the notion of associating 

actions with positive or negative outcomes and examined 

how individuals learn through a process of trial and error. 

The Law of Effect is selectional, i.e., it involves trying 

alternatives and selecting the best by comparing their 

consequences. Also, Law of Effect is associative, i.e., the 

alternatives found by selection are associated with particular 

situations. Thus, the Law of Effect combines search and 

memory in an elementary form; search in the form of trying 

and selecting among many actions in every situation, and 

memory in the form of remembering what actions worked 

best, associating them with the situations in which they were 

best. This forms the basis of reinforcement learning.  

 

The second path of study is about the problem of optimal 

control and its solution using value functions and dynamic 

programming. The term ‘optimal policy’ was introduced by 

Bellman [4] to refer to the most advantageous sequence of 

decisions according to some preassigned criterion. Bellman 

argued that the classical approach to the mathematical 

problems of considering all feasible policies, computing the 

return from each feasible policy, and then maximizing the 

return over the set of all feasible policies is not feasible as it 

will result in an extremely high dimensional space even for a 

process with moderate number of stages. Quoting Bellman’s 

‘principle of optimality’, “An optimal policy has the 

property that whatever the initial state and initial decisions 

are, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the first 

decisions.” [4]. He advanced the idea of dynamic 

programming as that of viewing optimal policy as the one 

determining the decision required at each time in terms of 

the current state of the system. Dynamic programming led to 

the idea of Markovian Decision Processes, an essential 

component of the theory and algorithms of modern 

reinforcement learning. Reinforcement learning problems 

are closely related to optimal control problems. 

 

The third path of study is that of temporal difference 

learning. Temporal difference learning methods emanate 

from Minsky’s pioneering work of developing methods to 

simulate behaviour of sentient organisms in computer 

systems in an understandable way [5]. Minsky’s notion of 

secondary reinforcers being a stimulus that reinforces a 

behaviour after it has been associated with a primary 

reinforce forms the basis of temporal learning. Temporal 

difference learning methods are driven by the difference 

between temporally successive estimates of the same 

quantity, such as, the probability of winning a game. 

Reinforcement learning methods based on temporal learning 

are particularly effective for learning in environments where 

decisions are made over time and feedback is delayed. 

Samuel [6] paved the way for advancements in temporal 

learning-based reinforcement learning. 

 

Rich Sutton and Andrew Barto, known as founders of the 

modern field of reinforcement learning, presented adaptive 

element based on the historical psychological theory of 

animal learning [7], wherein, reinforcement refers to the 

strengthening of a pattern of behaviour as a result of the 

animal receiving a stimulus in an appropriate temporal 

relationship with another stimulus or response. Behavioural 

changes produced by reinforcement persist even after the 

stimulus is withdrawn. Similarly, the adaptive element 

developed by Sutton and Barto learnt to increase its response 

rate in anticipation of increased stimulation, thereby 

producing a conditioned response before the occurrence of 

the unconditioned stimulus [8]. 

 

The three research paths of trial-and-error learning, optimal 

control, and temporal difference methods were integrated by 

Watkins [9] in the form of one of the most significant 

algorithms of reinforcement learning, Q-learning. In the 

years since, reinforcement learning has witnessed substantial 

growth, showcasing its versatility in artificial intelligence, 

machine learning, and other domains. The integration of 

these diverse viewpoints reflects its collaborative, 

interdisciplinary approach, continuously shaping and 

expanding its frontiers.  

 

3. Reinforcement Learning Framework 
 

Reinforcement learning allows an autonomous agent to 

sense and act in its environment by learning to choose 

optimal actions to achieve its goals. The goal can be  defined 

by  a  reward  function that  assigns  a numerical value (an 

immediate payoff) to  each distinct action the agent may take 

from each distinct state. This reward function may be built 

into the agent, or known only to an external supervisor who 

provides the reward value for each action performed by the 

agent. The task of the agent is to perform sequences of 

actions, observe their consequences, and learn a control 

policy. The ideal control policy is one that, from any initial 

state, chooses actions that maximize the reward accumulated 

over time by the agent. The reward sent to the agent at any 

time depends on the agent's current action and the current 

state of the agent's environment. The agent cannot alter the 

process that does this. The only way the agent can influence 

the reward signal is through its actions, which can have a 

direct effect on reward, or an indirect effect through 

changing the environment's state. 

 

Figure 2 depicts the working of an agent that is interacting 

with its environment described by a set of possible states S.  

The agent can perform any of a set of possible actions A. 

Each time it performs an action a, in some state st the agent 

receives a real-valued reward r that indicates the immediate 

value of this state-action transition. This produces a 

sequence of states si, actions ai, and immediate rewards ri. 

The agent's task is to learn a control policy n : S  + A, that 

maximizes the expected sum of these rewards, with future 

rewards discounted exponentially by their delay. 

 

 
Figure 2: Reinforcement learning framework 
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The reinforcement learning agent contains two components: 

a policy and a learning algorithm.  A policy defines the 

learning agent's way of behaving at a given time. A policy is 

a mapping from perceived states of the environment to 

actions to be taken when in those states. In some cases the 

policy may be a simple function or lookup table, whereas in 

others it may involve extensive computation such as a search 

process. Within an agent, the policy is implemented by a 

function approximator with tunable parameters and a 

specific approximation model, such as a deep neural 

network. The policy is the core of a reinforcement learning 

agent in the sense that it alone is sufficient to determine 

behaviour. In general, policies may be stochastic. The 

learning algorithm continuously updates the policy 

parameters based on the actions, observations, and rewards. 

The goal of the learning algorithm is to find an optimal 

policy that maximizes the expected cumulative long-term 

reward received during the task. 

 

4. Literature Review 
 

4.1 Background 

 

Machine learning is the area of artificial intelligence 

concerned with creating computer programs that can solve 

problems requiring intelligence by learning from data. There 

are three main branches of machine learning, namely, 

supervised learning, unsupervised learning, and 

reinforcement learning.  

 

Supervised learning is the task of learning from labelled 

data. In supervised learning, a human decides which data to 

collect and how to label it. The goal in supervised learning is 

to generalize. A classic example is a handwritten-digit 

recognition application; a human gathers images with 

handwritten digits, labels those images, and trains a model to 

recognize and classify digits in images correctly. The trained 

model is expected to generalize and correctly classify 

handwritten digits in new images. 

 

Unsupervised learning is the task of learning from 

unlabelled data. Even though data no longer needs labelling, 

the methods used by the computer to gather data still need to 

be designed by a human. The goal in unsupervised learning 

is to compress. A classic example of is a customer 

segmentation application; a human collects customer data 

and trains a model to group customers into clusters. These 

clusters compress the information uncovering underlying 

relationships in customers. 

 

In supervised learning, the algorithm is trained on a labelled 

dataset, where each input is associated with a corresponding 

output or target label. The goal is to learn a mapping from 

inputs to outputs, enabling the model to make predictions on 

unseen data. In contrast, unsupervised learning deals with 

unlabelled data, aiming to discover inherent patterns or 

structures within the input without explicit guidance. 

Common tasks include clustering similar data points or 

reducing the dimensionality of the feature space. While 

supervised learning emphasizes prediction accuracy through 

labelled examples, unsupervised learning focuses on 

revealing the underlying relationships and structures present 

in the data without predefined labels.  

Reinforcement learning can be seen as a way to bridge the 

gap between artificial intelligence and the natural way that 

humans and animals learn. Like humans and animals, the 

agent in reinforcement learning is faced with a series of 

decisions, and it must choose the action that leads to the 

highest reward. Reinforcement learning algorithms are 

designed to learn from their experiences, much like humans 

and animals. At each step, the agent selects an action based 

on its current knowledge of the environment and the rewards 

it has received in the past. This knowledge is stored in a 

value function, which represents the agent's estimate of the 

expected reward for each possible action in a given state. 

The agent then receives a reward from the environment, 

which is used to update its value function. The updated 

value function is used to guide the agent's decision-making 

process in the next step. This process repeats until the agent 

reaches a terminal state or a stopping condition is reached. 

 

The main advantage of reinforcement learning is its ability 

to handle complex, uncertain, and changing environments. 

Unlike supervised learning, reinforcement learning does not 

rely on a pre-existing dataset, but instead learns from 

interaction with the environment. This makes it well-suited 

for applications where the optimal behaviour may change 

over time, or where it is not possible to explicitly define the 

desired outcome. Another advantage of reinforcement 

learning is that it can handle partial observability, where the 

agent may not have complete information about the state of 

the environment. This is often the case in real-world 

applications, such as robotic navigation, where the agent 

must make decisions based on incomplete or noisy sensor 

data. To handle partial observability, reinforcement learning 

algorithms can use techniques such as state abstraction, 

transfer learning, and deep reinforcement learning. Table 1 

highlights the key differences between supervised, 

unsupervised and reinforcement learning. 

Table 1: Key differences between supervised, unsupervised 

and reinforcement learning 

Criteria 
Supervised 

machine learning 

Unsupervised 

machine learning 

Reinforcement 

machine 

learning 

Definition 
Learns by using 

labelled data 

Trained using 

unlabelled data 

without any 

guidance 

Works on 

interacting with 

the environment 

Type of data Labelled data Unlabelled data 
No predefined 

data 

Type of 

problems 

Regression and 

classification 

Association and 

Clustering 

Exploitation or 

Exploration 

Supervision Extra supervision No supervision No supervision 

Algorithms 

Linear 

Regression, 

Logistic 

Regression, SVM, 

KNN etc. 

K-Means, 

C-Means, Apriori 

Q-Learning, 

SARSA 

Aim 
Calculate 

outcomes 

Discover 

underlying 

patterns 

Learn a series 

of action 

Application 
Risk Evaluation, 

Forecast Sales 

Recommendation 

System, Anomaly 

Detection 

Self-Driving 

Cars, Gaming, 

Healthcare 
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4.2  Reinforcement Learning Algorithms  

 

Reinforcement learning encompasses a variety of 

algorithms. One of the earliest, Q-learning was introduced 

by Watkins [9] as a reinforcement learning method of 

learning to control a Markov Decision Process by 

incremental dynamic programming. The ‘Q’ in Q-learning 

stands for quality that represents how useful a given action is 

in gaining some future reward. The objective of the model is 

to find the best course of action given its current state. Q-

learning is a model-free, off-policy reinforcement learning 

that will find the best course of action, given the current 

state of the agent. Depending on where the agent is in the 

environment, it will decide the next action to be taken. The 

learned action-value function, Q, directly approximates the 

optimal action-value function, independent of the policy 

being followed. Deep Q-Networks combine Q-learning with 

neural networks to address complex tasks like multi-robot 

path planning [10]. 

 

SARSA (State-Action-Reward-State-Action) is a model-

free, on-policy reinforcement learning method proposed by 

Rummery and Niranjan [11]. While Q-learning sets the 

reward for having carried out an action in a state based on 

the highest-rewarded action available within the new, 

resulting state, SARSA carries out an second action from the 

second state according to the policy it has learned and sets 

the reward for the first state-action pair based on what then 

happens. Actor-Critic algorithms involve both value-based 

and policy-based methods to enhance learning [12]. 

 

Deep reinforcement learning algorithms use neural networks 

to represent value functions and policies, carrying an 

increased ability to handle complex, high-dimensional 

environments as compared to other algorithms. In another 

class, policy gradient algorithms, policy is directly 

parameterized as a probability distribution over actions. 

These policies are typically represented as neural networks. 

Policy gradient methods excel in handling stochastic action 

spaces but can be sample-inefficient. Policy gradient 

methods are prone to high variance, which can lead to slow 

convergence and instability in learning. Actor-critic methods 

are a refinement of policy gradient methods that incorporate 

elements from both policy-based and value-based 

reinforcement learning methods. Actor-critic methods 

introduce a critic component which is typically a value 

function (e.g., a state-value function or an action-value 

function) that estimates the expected cumulative reward 

associated with taking actions in a given state. 

 

5. Challenges 
 

Reinforcement learning is an active and important area of 

research in artificial intelligence. However, like any 

scientific discipline, it carries some potential challenges. 

Reinforcement learning has an inherent complexity. 

Identifying and addressing these challenges is important for 

the development of effective algorithms. Despite promising 

results in the literature, computational complexity, 

nonstationarity, partial observability, and credit assignment 

remain significant challenges in this field. Various 

researchers and developers have reported that reinforcement 

learning does not work for real-world use-cases.  

5.1 Environment Specification 

 

Reinforcement learning deals with sequential decision-

making problems where an agent interacts with an 

environment to achieve a goal. In a typical reinforcement 

learning problem, there is a learner and a decision maker 

called agent and the surrounding with which it interacts 

called the environment (c.f. Figure 2). The environment, in 

return, provides rewards and a new state based on the 

actions of the agent. A complete specification of an 

environment defines a task, one instance of the 

reinforcement learning problem. So, in reinforcement 

learning, the agent is not taught how it should do something 

but is presented with rewards, whether positive or negative, 

based on its actions. The goal in reinforcement learning is 

typically to find an optimal policy that maximizes the 

expected cumulative reward over time. 

 

The reinforcement learning agent and its environment 

interact at each of a sequence of discrete time steps, t = 

0,1,2,… .At each time step t, the agent receives some 

representation of the environment's state, St ⊆ S, where S is 

the set of possible states, and on that basis selects an action, 

At ⊆ A(St), where A(St) is the set of actions available in 

state St. One time step later, in part as a consequence of its 

action, the agent receives a numeric reward, Rt+1 ⊆ R, and 

enters a new state, St+1. The reward of action At is denoted 

by Rt+1 instead of Rt because the next reward and next state, 

Rt+1 and St+1, are jointly determined.  

 

Capturing all possible states of the environment effectively 

for a real-life problem at hand is a big challenge. Real-world 

environments are often complex and high-dimensional as 

they usually involve a large number of intrinsic variables. 

The Designing a state representation that can capture such a 

high dimensional information can be overwhelming. Also, 

there is an issue of partial observability or limited 

perception. The agent might not have access to all the 

information about the environment making it infeasible to 

define the complete state. 

 

Also, choosing a highly elaborate state representation might 

improve the agent's ability to learn complex behaviours, but 

it can also increase the computational cost of training. 

Trade-off between accuracy and efficiency is necessary. 

 

Researchers and developers are solely dependent on OpenAI 

Gym1, which is an open source Python library for 

developing and comparing reinforcement learning 

algorithms and provides a standard set of environments and 

the required API to communicate between learning 

algorithms and environments. At the time writing this paper, 

the environment suite mainly comprises simulated robots 

and Atari games. 

 

5.2 Computational Complexity 

 

Reinforcement learning agents rely on trial and error while 

interacting with the environment to learn and thus require 

large number of interactions with the environment. This is 

often computationally expensive and time consuming, 

 
1 https://openai.com/research/openai-gym-beta 
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especially in real world and complex environments. As 

discussed in previous sub-section, defining comprehensive 

state representations often involves numerous features, 

leading to high dimensionality. Thus, the required training 

data grows exponentially with the number of features. This 

exponential growth significantly increases the computational 

cost of training and can make learning intractable for 

complex environments.  

 

Deep reinforcement learning algorithms rely on function 

approximation methods like neural networks to represent 

value functions or policies. Training these neural networks 

over the high dimensional state space involves significant 

computational resources, further contributing to the overall 

complexity. 

 

5.3 Safety 

 

Efficient reinforcement learning models may be built for toy 

games and simulation environments, but when it comes to 

applying reinforcement learning to real-world “safe-critical” 

tasks such as autonomous driving, ensuring safety becomes 

a challenge. To exhibit safe behaviour and learn a safe 

policy that satisfies state-wise safety constraints, the agent 

needs to evaluate the safety of each state and prevent 

entering unsafe states. The safety critic that evaluates the 

safety of the task policy in states and a safety threshold 

together construct a boundary that divides the state space 

into safe and unsafe subspaces. Sub-optimal policies may 

lead to more states being considered as unsafe, thus limiting 

agent exploration [13]. This leads to a conservative agent 

since the agent is prone to misjudge under-explored states as 

unsafe. This greatly limits exploration, which in turn leads to 

inadequate collection of trajectories to correct the safety 

critic. 

 

5.4 Complexity of Performance Evaluation 

 

The inherent trial and error nature of reinforcement learning 

inhibits the usage of general machine learning performance 

evaluation metrics such as accuracy, precision, recall, f-

score, mean squared error and so on. The most fundamental 

metric that measures the performance of a reinforcement 

learning agent is the total reward accumulated by the agent 

over a specific period or episode. Since future rewards are 

generally less valuable than immediate rewards, a discount 

factor is often used to give lesser significance to future 

rewards. Other than this, the percentage of episodes where 

the agent achieves the desired goal can be indicative of 

agent’s accuracy.  

 

Usually, plotting the agent's average reward over time in the 

form of a learning curve helps to visualize to identify 

potential issues like convergence or stagnation. Metrics like 

exploration rate or entropy of the policy are also used to 

measure the effectivity of the agent’s trade-off between 

exploration and exploitation. Lower the number of 

interactions the agent needs with the environment to achieve 

good performance; more efficient it is considered.  

Evaluating generalizability of agent to unseen environments 

is both challenging and important.  

 

Performance evaluation using the above-mentioned metrics 

is a complex process, because environments of 

reinforcement learning agents are particularly random and 

thus, getting a statistically significant evaluation is difficult. 

Infrequent or delayed rewards call for alternative reward 

shaping techniques as it may be difficult to attribute success 

to specific actions. An intuitive method of evaluation is by 

using ablation studies wherein components of the model or 

training process are systematically removed and the impact 

on performance is analysed. Although this helps to identify 

crucial elements and potential areas for improvement, the 

process has high computation cost. Running multiple 

evaluation episodes can also be computationally expensive, 

especially for complex environments. 

 

5.5 Unpredictability and Inexplainability 

 

Reinforcement learning trade-off between exploring new 

actions to discover better rewards and exploiting already 

learned actions that provide known rewards. 

Unpredictability arises as the agent may prioritize one over 

the other at different stages of learning. Real-world 

environments are inherently stochastic, leading to 

unpredictable outcomes even when the agent follows the 

same policy and performs same set of actions. Also, the non-

linearity in the real-world continuous state spaces can make 

it challenging to predict the long-term consequences of an 

agent's actions. 

 

The problem of inexplainability is much prominent in 

reinforcement learning as compared to other machine 

learning approaches. First, the high dimensional state space 

hinders explainability of the agent's decision-making 

process. Second, in scenarios with delayed rewards or where 

the outcome is a result of a series of past actions, it becomes 

challenging to determine which specific action contributed 

most to the final outcome. This makes it difficult to explain 

the agent's decision-making process and pinpoint the reasons 

behind its choices. Third, like other deep learning 

algorithms, deep reinforcement learning techniques lack 

transparency of the internal workings of the model. 

 

6. Conclusion and Recommendations  
 

Reinforcement learning comes with numerous challenges. 

Addressing these challenges is a prerequisite for the 

development of effective reinforcement learning algorithms. 

Although the literature portrays a glorious future for 

reinforcement learning, quite a few implementational 

hurdles must be crossed to achieve it. Problems like 

computational complexity both in implementation and 

evaluation, non- stationarity, partial observability, 

convergence issues and credit assignment remain largely 

unsolved. Although deep learning approaches are known to 

handle high dimensional data well, the problem of sample 

inefficiency surfaces in deep reinforcement learning as well 

in addition to other approaches.  

 

Thus, in addition to the general machine learning challenges 

like requirement of extensive domain knowledge, increased 

computational complexity in multi-agent environments, 

increased efficiency requirement in real-time scenarios, the 

challenges discussed in this paper necessitate the on-going 
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research and development in reinforcement learning to 

create more techniques that can learn effectively in 

distributed modes, with reduced sample complexity, handle 

high-dimensional states, and operate within real-time 

constraints. OpenAI’s work on Reinforcement Learning with 

Human Feedback [14], used to train Large Language Models 

like ChatGPT is a sole and significant milestone in this 

direction.  

 

Advanced versions of feature engineering and 

dimensionality reduction techniques need to be incorporated 

into reinforcement learning models in order to be able to 

effectively represent the numerous features of environment’s 

state. Clustering may also be used in order to reduce the size 

of state space such that the state-action mapping may be 

done effectively.  

 

Explainable reinforcement learning (XRL) techniques is an 

emerging solution to the “black box” nature of deep 

reinforcement learning. Model-agnostic methods work with 

any algorithm and focus on explaining the agent's decisions 

as to why a specific action was chosen in a given state using 

techniques like feature attribution and counterfactual 

explanations. Model-specific methods analysing the 

parameters of a specific algorithm in order to offer insights 

into its decision-making process. Learning interpretable 

policies such as curriculum learning may be used to 

gradually increase the difficulty of the learning tasks, 

leading to more predictable behaviour. Study [15] 

emphasizes the importance of considering the purpose and 

audience for explanations and suggests focusing on 

explanations that are actionable and relevant to the specific 

use case. 

 

As a replacement for deep reinforcement learning models, 

transformers may also be used. Transformers are a type of 

neural network architecture that rely on an attention 

mechanism to understand the relationships between different 

parts of an input sequence in order to capture long-range 

dependencies. Transformers consist of encoders that process 

the input sequence, and decoders that use the encoded 

information to generate the output sequence. The attention 

mechanism2 is used within both encoders and decoders to 

identify the most relevant parts of the input sequence for a 

particular concept. 

 

 
Figure 3: Architecture of Decision Transformer [16] 

 
2 The attention mechanism allows the model to consider 

information from any position in the sequence, not just the 

immediate neighbours. Attention calculations can be performed in 

parallel for all positions in the sequence, making transformers 

faster to train compared to sequential processing in other neural 

network architectures. 

Thus, by reformulating a reinforcement learning problem as 

a sequence-modelling problem, wherein the states, actions, 

and rewards are laid out in an auto-regressive manner and 

transformer architecture may be used to find optimal actions. 

By framing the problem in this way, the Decision 

Transformer (c.f. Figure 3) can efficiently parse through the 

sequence of states, actions, and rewards, and intuitively 

anticipate the best course of action. This results in an 

algorithm that seamlessly uncovers the most effective 

strategies, elegantly bypassing the complexities and 

instabilities often encountered in traditional reinforcement 

learning methods.  

 

The transformer architecture is reported to be more robust, 

particularly in situations with sparse or distracting rewards; 

extremely simple as it requires one network; and matching 

or even surpassing the state-of-the-art reinforcement 

learning baselines [16]. 

 

Last but not the least, while traditional reinforcement 

learning emphasizes maximizing reward sans any 

consideration of safety constraints of the  real world 

environment, a  subfield of reinforcement learning called 

“safe reinforcement learning” focuses on developing 

algorithms that achieve good performance while ensuring 

safety [17]. One approach is to modify the objective function 

to include a penalty term for violating predefined safety 

constraints. Second is to include human feedback in the form 

of demonstrations of safe and unsafe behaviours to guide the 

agent’s learning process. Third is to use formal verification 

techniques to analyse the safety properties of a 

reinforcement learning gent's policy before deployment. 
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