
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Application Programming Interface-Digital Strategy

for Core Banking

Arindam Roy

B. E (Jadavpur University, Mechanical), MBA (Systems & Finance, MDI-Gurgaon)

Email: arindamr34[at]gmail.com

Contact no: 9831483728

Abstract: Once regarded as a technical interface, the humble API is now praised as a strategic business asset that must be taken

seriously. Around the world, banks are awakening to the transformational potential of APIs as the core building block of open banking.

Here we consider APIs in the context of channel development and facilitating an “opti-channel” customer experience. By developing

and selling access to new API products, banks are able to create additional direct revenue streams. These premium APIs can also be

used as up-sells or cross-sells for other banking products (such as certain corporate accounts). APIs empower banks to deliver products

and services in context when customers need them. As well as integrating bank products into third-party apps and services, APIs allow

banks to disaggregate the banking value chain. This work provides a brief window into how API driven architecture is driving the

digital transformation for banks.

Keywords: APIs, digital transformation, banking, open banking, customer experience

Research

Data in the domains such as Account, Customers and

Product is the key for any bank and hence exposure of the

data through APIs and Events facilitates a bank to function

better.

Account Core API contains basic information of an account

including Account Id’s, related Product Id, account

currency, account holding branch, etc. It allows retrieving

and updating basic account information by calling Get

Account Core API and Update Account Core API

There is a close relationship between the Account Domain

and the Account product. A product defines a configuration

of various conditions (also called product rules) for an

account based on that product. In other words, product

conditions are inherited to any account instance of that

particular product.

Account domain offers APIs on Account Core, Account

Ownership, Account mandates, Account Restrictions,

Operational Rules, Open Account, Account Closure, Product

Information an Account Relations

Paper ID: SR24217002412 DOI: https://dx.doi.org/10.21275/SR24217002412 1308

mailto:arindamr34@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

API Endpoints

Operation
Endpoint

method
Endpoint Path Description

Get Core account information GET /accounts/ [account Id]

Retrieves basic account details based on the provided

account Id (anonymous account id or UUID). Basic

information consists of different account keys,

country and currency code, branches and product

relations

Get customers accounts GET
/customers/ [anonymous Customer

Key]/accounts

Retrieves basic account details for all accounts

owned by the customer identified by the proved

anonymous Customer Key e. g different account

keys, country and currency code, branches and

product relations

Update branch relation for

account
PUT

/account/ [account Id]/account-

holding-branch

Update the branch relation of the account (account

holding branch) to another branch

Change the product for

account
PUT /accounts/ [account Id]/product-id

Update the product relation on the account (change

the product on which the account is based

Update the account name for

the account
PUT /account/ [account id]/account-name Updates the account name based on the account Id

Update statement text for an

account
PUT /accounts/ [account Id]/statement-text Update statement text based on the Account Id

Delete Statement Text for an

account
DELETE /accounts/ [account Id]/statement-text Delete Statement Text based on the account Id

Delete account holding

branch updated value for an

account

DELETE
/accounts/ [account Id]account-

holding-branch-update

Delete account holding branch updated value for an

account based on the account t id

Account Core Bulk request is an asynchronous process to retrieve basic account details for the provided list of account ids.

The bulk request contains list of accounts across customers for which the user wants to retrieve account details

Attribute /Parameter Description Mapping to mainframe

attribute

Required

Account Id ID of type UUID to uniquely identify an account (anonymous

account id)

 Yes

Internal Id Internal unique identifier of an account IDKT Yes

National Id External account identifier (customer known).

in many cases in DK, the national Id is the same as the internal Id

E_IDKT Yes

Country Code The country code of the country the account is being operated in KONTOLAND_KD Yes

iban IBAN (International Banking Account Number) of the account IBAN Yes (not required

for internal

accounts)

Domestic Id The “preferred” external identification of the account in the

country of operation

SEKTOR_IDENT Yes

Domestic ID Type The type of the domestic ID can be either IBAN or National NA Yes

type KTTP Yes

Opening Date Creation date of the account in the bank ETDT Yes

Closure Date Settlement /closure of the account depending on the account status DTOPUD No

Status Account status

 Active

 Settled. – The account is about to be closed. When balance

reaches 0.0, the status will change to closed

 Closed-No further bookings can be made

 Unclaimed-If an account is untouched for a given period of

time, the balance is considered unclaimed. Account is closed

and the balance is moved to an internal account. Funds can

be reclaimed by the customer

 Settled pension

KTSTKD

 Active-0

 Settled.-1

 Closed-2

 Unclaimed-3

 Settled pension-4

Yes

Currency Currency code for the currency the account funds are held in e. g

DKK, GBP, SEK

VAKD Yes

Account Mandate:

Account mandates API are used to add or remove mandates on a specific account to change the expiration date of the

mandate. The input used to fetch this data is the account id (anonymous account id)

Account mandates are used for granting a third party (grantee) access to operate or view an account. One customer (access

grantee) can have only one type of mandate for each account.

Paper ID: SR24217002412 DOI: https://dx.doi.org/10.21275/SR24217002412 1309

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Method End point Path Description Request Body Response Body

POST /accounts/ [anonymous

Account Id/mandates/

[anonymous Customer Key]]

Add a new mandate to

grant 3rd Party access to

view or operate the

account

[“type’: ”A-TWO

JOINTLY”, ”valid From

Date”: ”YYYYMMDD”,

>Optional “valid To Date”:

”YYYYMMDD”Optional

[“anonymous Customer Key”:

”XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXX”, “type”: “A-

TWO JOINTLY”, “valid From Date”:

”20210712”, “valid To Date”:

”20211231”

PUT /accounts/ [anonymous

Account Id]/ mandates/

[anonymous Customer Key]

Change expiration date of

an existing account

mandate identified y the

customer ID

[valid To Date”:

”YYYYMMDD”]

[“anonymous Customer Key”:

”XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX”, “type”:

”A-TWO JOINTLY”, “valid From

Date”: ”20210712”, ”valid To Date”:

”20221231”

DELETE /accounts/ [anonymous

Account Id]/mandates/

[anonymous Customer Key]

Remove an existing

mandate to revoke the

granted access

[account Id], [anonymous

Customer Key]

[“anonymous Customer Key”:

”XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX”, “type”:

”A-TWO JOINTLY”, “valid From

Date”: ”20210712”, ”valid To Date”:

”20221231”

GET /accounts/ [anonymous

Account Id]/mandates

Get mandates available on

an account

[account Id] [“anonymous Customer Key”:

”XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX”, “type”:

”A-TWO JOINTLY”, “valid From

Date”: ”20210712”, ”valid To Date”:

”20221231”

GET /customers/ [anonymous

Customer Key]/account-

mandates

Get all the mandates where

the customer is a mandate

holder

[anonymous Customer Key] [“account internal Id”:

XXXXXXXXXXX, “type”:

”SEPARATE”, ”valid From Date”:

”01-01-2019”, “valid To Date”: ”31-

12-2019”]

POST /accounts/ [anonymous

Account Id/mandates/

[anonymous Customer

Key]/validate-input

Validating input of add a

new mandate to grant a 3rd

Party access to view or

operate the account

[“type’: ”A-TWO

JOINTLY”, ”valid From

Date”: ”YYYYMMDD”,

>Optional “valid to Date”:

”YYYYMMDD”Optional

PUT /accounts/ [anonymous

Account Id/mandates/

[anonymous Customer

Key]/validate-input

Validating input of change

epiration date of an

existing account mandate

identified by the customer

Id (anonymous Customer

Key)

DELETE /accounts/ [anonymous

Account Id/mandates/

[anonymous Customer

Key]/validate-input

Validating input to remove

an existing mandate to

revoke the granted access

[account Id], [anonymous

Customer Key]

Input parameters
Parameter Name In Parameter Description Required (Yes/No) Datatype

Authorization Header JWT Token Yes JSON

Anonymous Customer Key Request Param Anonymized customer Id

because of GDPR

Yes String (UUID)

Account Id Request Param Anonymized account Id Yes String (UUID)

Type Body Type of mandate Yes Sting

-Separate

-Separate-Not Self

-Channel Debiting

-Channel Inquiry

A-Two Jointly

Two Jointly –Not Self

-Several Persons-Jointly

-All Owners Together

-Individual Agreement

B-Two Jointly

C-Two Jointly Separate

E-Bus. Self

A-Two Jointly

Valid From Date Body The date from where

the mandate is valid

No String

Valid To Date Body The date when the

mandate expires

No String

Paper ID: SR24217002412 DOI: https://dx.doi.org/10.21275/SR24217002412 1310

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Output parameters
Parameter name In Parameter description Required (Yes/No) Data type

Anonymous customer key Body Anonymized customer id because of GDPR Yes String (UUID)

Application Error Message Error response String

hhtp Status Code Error response String

Type Body Type of mandate Yes String

Valid From Date Body The date from where the mandate is valid Yes String

Valid To Date Body The date when the mandate expires Yes String

Account Ownership

The details provided by the API are the number of owners associated to that account, designated owner which is the primary

owner of an account. Anonymous Customer key for each owner and other information like capital and interest percentage.

The list will not contain account details. Filters can be used to isolate ownership data for single customer in the response

Attribute/Parameter Description Mapping to mainframe attribute

Number of Owners The number of owners for one account n/a

Association Owned Account Yes/No MKFLEJ

Valid From Ownership valid from GAEFRDT

Designated Owner Primary owner of an account PRIMEJER

Anonymous Customer Key Customer Id n/a (conversion of KNID or KundelId is customer id

Capital Percentage e. g 50, 00 Kappc

Interest Percentage e. g 100, 00 renpc

Request

Operation Method Endpoint Path
Request

payload
Response payload

Get information on

the owner of an

account

GET
/ [account

ID]/ownership

[“ownership”: [“number Of Owners”: 2, ”association Owned

Account”: ”No”, ”validFrom”: ”2008-03-21”, “designated Owner”:

”xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”, “owners”:

[“anonymous Customer Numbe”:

”XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX”,

“capital Percentage”: 50.00, “interest Percentage”: 50.00]

Error codes
Successful Read 200

Unauthorized 401

Not found 404

Internal Server Error 500

Bad Request 400

In Digital Core, we communicate changes over Account

Events published using the bank’s enterprise

publish/subscribe solution

Events are published to specific topics:

Consumers can create queues that subscribe to topics and

receive all messages published there. All account event

payloads are based on existing Account APIs.

Publish/subscribe enterprise platform (also known as

PubSub) is an implementation of publish-subscribe pattern.

Implementation is built on top of the messaging system IBM

MQ

This platform enables developers to create event driven

systems. Key benefits are the following

 Space decoupling-Interacting parties do not need to know

each other

 Time decoupling – Publishers ad subscribers do not need

to be up at the same time

 Synchrnization decoupling – Sending and receiving

events does not block participants

The PubSub solution enables mainly 2 usecases scenarios:

1) Master Data Management – Enables consumers to keep

locally persisted entities consistent (local replica of

data)

2) Other domains to be notified and react according to

changes in the domain (triggering automated

processes/notifications and similar)

API Event Architecture

Paper ID: SR24217002412 DOI: https://dx.doi.org/10.21275/SR24217002412 1311

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Logical Components

CDC Router

Component responsible for:

 Listening to DB2 QREP changes for specific tables

 Inserting Account related Qrep changes to the Qrep Queue

Component is required because some tables will be shared among multiple subdomains

Cloud Store

A database used for:

 Storing current account information for the KT Account Core API

 Storing temporary “account changes” information for the Publisher component

Consistency Check A process for checking periodically if the data between DB2 and Cloud store is consistent

DB2 DBLAN database – contains master data for Account Core

Event Handler

Component responsible for

 Persisting events in Event store

 Inserting events in pubsub queue

Event History API API for accessing historical events from Event store (“replay” functionality)

Event Queue Queue used by different Account subdomains for sending events to the PubSub queue

Event store A database used for storing all historical events send by subdomains

KT Account Core API A REST api for accessing account information (its V2 – on cloud)

Publisher
Component responsible for publishing Account related events to the Events queue. Evens are

constructed based on Cloud store content

PubSub Queue
 A Bank topic based Queue that can be subscribed by other systems for receiving updates on

Account related information (e. g Account Stats change, etc)

Qrep Queue A queue containing DB2 messages about changes in Account related tables

Reconciliation Service

An API that allows to initiate manual resynchronization of data for:

 Given account ids

 Given date range

Sync

Component responsible for:

 Propagating account related changes from DB2 to cloud store

 Preparing events for the Publisher

Sync Queue
A queue for handling resynchronization grpc calls that are in the CUSY reference

architecture and allows better scalability

Paper ID: SR24217002412 DOI: https://dx.doi.org/10.21275/SR24217002412 1312

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Event Consumer Journey

Paper ID: SR24217002412 DOI: https://dx.doi.org/10.21275/SR24217002412 1313

