
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Comparative Analysis of Scheduling Algorithms for

Latency Optimization in Real-Time Applications

Jatin Pal Singh

Abstract: Real-time applications, from video conferencing to financial trading, hinge on the timely delivery of data streams. However,

latency can disrupt this flow, compromising user experience and operational efficiency. This paper explores scheduling and resource

allocation algorithms as weapons against latency in data streaming. We delve into Earliest Deadline First (EDF), Weighted Fair

Queuing (WFQ), and Rate Monotonic Scheduling (RMS), dissecting their mechanisms, theoretical guarantees, and practical

implications for latency optimization. We examine trade-offs between these algorithms, considering factors such as deadline constraints,

resource availability, and fairness requirements. Through theoretical analysis and experimental evaluation, we aim to provide

actionable insights and recommendations for selecting and implementing optimal scheduling strategies in diverse data streaming

scenarios, paving the way for more responsive and efficient real-time applications.

Keywords: Data streaming, Latency optimization, Scheduling algorithms, Resource allocation, Earliest Deadline First (EDF), Weighted

Fair Queuing (WFQ), Rate Monotonic Scheduling (RMS), Network Calculus

1.Introduction

In the relentless march of real-time applications, where

decisions are made in milliseconds, data streams are the

lifeblood. But like unruly crowds vying for a limited exit,

these streams can be plagued by chaos and delay. Enter

the strategic art of scheduling and resource allocation, the

key to transforming this data deluge into a smooth,

responsive flow.

This paper delves into the intricate mechanics of this art,

dissecting scheduling algorithms as the conductors

orchestrate the data symphony and resource allocation

strategies as the stage managers ensuring each packet gets

its moment in the spotlight. We peel back the layers of

Earliest Deadline First, where milliseconds become

deadlines and data packets sprint to meet them. We unveil

the balancing act of Weighted Fair Queuing, where

different streams claim their rightful share of the

bandwidth, each note given its due prominence. And we

explore the Rate Monotonic Scheduling, a static priority

scheduling algorithm where tasks with shorter periods

have higher priority.

Our journey is not merely theoretical. We venture into the

real-time battlefield, wielding these algorithms as tools to

conquer latency in diverse applications. We witness video

conferences transformed from choppy stutters to seamless

exchanges, financial markets dancing to the rhythm of

timely data feeds, and industrial control systems operating

with the precision of a well-oiled machine.

This is not just a battle against milliseconds; it's a quest

for the perfect data flow, where information arrives

precisely when needed, empowering real-time

applications to reach their full potential. Join us as we turn

the knobs of scheduling and allocation, crafting the future

where data streams sing in perfect harmony, unburdened

by the shackles of delay.

Overview of Scheduling and Resource Allocation

methods:

The scheduling and resource allocation methods in

computing systems primarily focus on optimizing the use

of available resources while ensuring efficient task

execution. Scheduling methods determine the order and

timing of tasks, considering factors like priority and

resource availability. Resource allocation involves

assigning the necessary resources to each task, such as

CPU time, memory, or bandwidth. Various algorithms and

strategies are employed in different contexts, from

operating systems to cloud computing, each with a

specific focus on minimizing latency, maximizing

throughput, or balancing load effectively. This involves a

detailed examination of existing algorithms, their design

principles, and performance metrics in various scenarios.

While there are several scheduling & resource allocation

methods - Least Slack Time, Max-Min Fairness

Algorithm, Proportional Fair Scheduling, Banker’s

Algorithm, Dynamic Resource Allocation etc, this paper’s

scope is to compare - Earliest Deadline First (EDF),

Weighted Fair Queuing (WFQ) & Rate Monotonic

Scheduling (RMS) in terms of their effectiveness in

reducing latency, with a focus on specific application

areas like real-time systems or network traffic

management. Let’s get a basic overview of these three

methods:

● Earliest Deadline First (EDF): EDF simply prioritizes

tasks based on their deadlines, with the tasks having the

earliest deadlines being addressed first. This method is

particularly useful in real-time systems where meeting

task deadlines is critical. EDF aims to minimize the

number of missed deadlines, making it a suitable

choice for systems where timely task completion is a

priority.

● Weighted Fair Queuing (WFQ): WFQ is a network

scheduling algorithm that allocates bandwidth among

multiple data flows. It's used to ensure fair bandwidth

distribution, particularly in situations where network

traffic must be managed efficiently. WFQ assigns

weights to different queues or traffic flows, based on

which it schedules their packets, thus providing a fair

allocation of resources based on the predefined weights.

This approach is particularly beneficial for handling

Paper ID: SR24212060600 DOI: https://dx.doi.org/10.21275/SR24212060600 1179

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

diverse types of traffic with varying bandwidth

requirements in a network.

● Rate Monotonic Scheduling (RMS): Rate Monotonic

Scheduling (RMS) is a fixed-priority algorithm used

primarily in real-time operating systems. It assigns

priority to tasks based on their request rate (frequency

of execution), with the task having the shortest period

(or highest frequency) receiving the highest priority.

This scheduling method is optimal for periodic tasks in

preemptive systems where each task’s execution time is

less than or equal to its period. RMS is widely used due

to its simplicity and effectiveness in ensuring that time-

critical tasks are completed within their required

deadlines.

Let’s take a deeper look at each of these & compare.

I - Earliest Deadline First (EDF)

In the fast-paced world of data streaming, where

milliseconds matter, Earliest Deadline First (EDF)

emerges as a potent weapon against the nefarious villain

of latency. This dynamic scheduling algorithm prioritizes

tasks based on their deadlines, ensuring the timely

delivery of data for real-time applications. Imagine it as a

meticulous maestro, orchestrating the flow of data

packets, ensuring those with imminent deadlines reach

their destination first. EDF is an optimal scheduling

algorithm on preemptive uniprocessors, in the following

sense: if a collection of independent jobs, each

characterized by an arrival time, an execution requirement

and a deadline, can be scheduled (by any algorithm) in a

way that ensures all the jobs complete by their deadline,

the EDF will schedule this collection of jobs so they all

complete by their deadline. For example, consider three

tasks:

Task A: Execution Time = 2 units, Deadline = 4 units

Task B: Execution Time = 1 unit, Deadline = 6 units

Task C: Execution Time = 3 units, Deadline = 8 units

Let’s assume

● All tasks arrive at time 0.

● Execution Time is the time required to complete the

task.

● Deadline is the time by which the task must be

completed.

Time Units Task Scheduled

0-2 Task A

2-3 Task B

3-6 Task C

At time 0, all tasks are available. Task A has the earliest

deadline at 4 units, so it is scheduled first. Task A

completes at time 2. Next, Task B, with the next earliest

deadline at 6 units, is scheduled. Task B completes at time

3. Finally, Task C is scheduled and runs until it completes

at time 6. If you observe, EDF works with three main

ideas 1) Deadline Awareness: Each data packet in the

stream carries a pre-assigned deadline, signifying the

latest acceptable time for its arrival. 2) Priority Queue:

EDF maintains a prioritized queue, placing packets with

earlier deadlines closer to the front. & 3) Preemptive

Scheduling: If a new packet with an earlier deadline

arrives while another task is being processed, EDF

preempts the ongoing task and prioritizes the newcomer.

This ensures that deadline-critical data receives immediate

attention.

Benefits of EDF:

 Minimized Latency: By prioritizing tasks with tighter

deadlines, EDF reduces the average time it takes for

data to reach its destination, contributing to a smoother

and more responsive experience for users.

 Guaranteed Deadlines: For streams with strictly

defined deadlines, EDF provides theoretical guarantees

that all packets will arrive on time, making it ideal for

mission-critical applications.

 Fairness and Efficiency: EDF avoids starvation by

eventually processing all incoming packets, even those

with later deadlines. This ensures overall fairness in

resource allocation and prevents lower-priority data

from being indefinitely delayed.

Challenges and Considerations:

 Deadline Accuracy: The effectiveness of EDF hinges

on reliable deadline estimation. Inaccurate deadlines can

lead to suboptimal scheduling and potential deadline

violations.

 Overhead: Maintaining a prioritized queue and

preemption mechanisms can introduce some overhead,

potentially impacting overall system performance.

 Real-Time Implementation: Implementing EDF in

real-time systems demands efficient data structure and

algorithm choices to minimize processing delays and

prevent deadline misses.

EDF in Action (real world use cases):

Despite its challenges, EDF is a valuable tool for latency

optimization in diverse data streaming applications.

Consider its potential in:

 Real-time video conferencing: Prioritizing video

frames with stricter deadlines ensures smooth playback

and minimizes frustrating audio-video synchronization

issues.

 Financial market data feeds: Timely delivery of stock

prices and trading updates is crucial for making

informed investment decisions. EDF provides the

necessary speed and reliability.

 Embedded Systems: EDF is used in embedded systems

for controlling machinery, robots, or other devices

where tasks need to be completed in a timely manner.

 Automotive Systems: In automotive electronics, EDF

schedules tasks like sensor data processing and actuator

control to ensure timely responses.

 Medical Devices: For critical healthcare devices like

heart monitors and ventilators, EDF ensures that tasks

are executed within their deadlines for patient safety.

Paper ID: SR24212060600 DOI: https://dx.doi.org/10.21275/SR24212060600 1180

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 Multimedia Systems: EDF is used to manage audio

and video streaming to prevent lags and ensure smooth

playback.

 Industrial Control Systems: In automated production

lines, EDF schedules tasks to synchronize machinery

operations efficiently.

 Network Routers and Switches: EDF can prioritize

data packets to optimize network traffic flow and reduce

latency.

EDF can be further fine-tuned and augmented with other

latency-mitigating techniques like caching and

compression to build a robust arsenal against the enemy of

latency. Through careful consideration and optimization,

EDF can empower a new generation of real-time

applications that thrive on immediacy and precision.

2.Weighted Fair Queuing (WFQ)

Weighted Fair Queuing (WFQ) is an advanced network

scheduling algorithm used in packet-switched networks. It

is an extension of the Fair Queuing (FQ) algorithm but

with an important distinction: WFQ allows for weighted

allocation of bandwidth among different traffic flows. In

WFQ, each flow of packets is assigned a weight, and

bandwidth is allocated to these flows in proportion to

these weights. This means that flows with higher weights

are given more bandwidth, ensuring that important or

priority traffic can be transmitted faster. Let’s understand

this with an example. Imagine a network where three

different types of traffic – A, B, and C – are being

transmitted. Each type of traffic has been assigned a

different weight based on its priority or importance.

 Traffic Type A (High Priority): Weight = 3

 Traffic Type B (Medium Priority): Weight = 2

 Traffic Type C (Low Priority): Weight = 1

Traffic

Type
Weight

Proportion of Total

Bandwidth
Allocated Bandwidth

A 3 3/ (3+2+1) = 0.5
60 Mbps * 0,

5 = 30 Mbps

B 2 2/ (3+2+1) = 0.333
60 Mbps * 0.333 = 20

Mbps

C 1 1/ (3+2+1) = 0.167
60 Mbps * 0.167 = 10

Mbps

These weights determine the proportion of bandwidth

each traffic type receives. If the total available bandwidth

is, for instance, 60 Mbps, the distribution of this

bandwidth among the different types of traffic is based on

their respective weights. In the above table:

 Traffic Type A, being the highest priority, gets half of

the total bandwidth (30 Mbps), as its weight is 3 out of

the total weight of 6 (3+2+1).

 Traffic Type B gets one-third of the total bandwidth (20

Mbps), in line with its weight.

 Traffic Type C, as the lowest priority, receives the

remaining one-sixth of the bandwidth (10 Mbps).

The WFQ algorithm dynamically adjusts the queue

servicing based on the traffic flow and its assigned weight,

thus managing network resources efficiently and

maintaining the Quality of Service (QoS) for different

types of traffic.

Benefits of WFQ:

 Fairness: WFQ ensures that all traffic flows are treated

fairly in terms of bandwidth allocation, preventing any

single flow from dominating the network resources.

 Quality of Service (QoS): It supports Quality of Service

by allowing priority traffic, such as voice or video, to be

allocated more bandwidth, ensuring smoother

transmission with minimal latency or jitter.

 Flexibility: WFQ is highly flexible and can be adjusted

to meet the specific needs of different types of network

traffic.

 Efficient Utilization of Bandwidth: It optimizes the

usage of available bandwidth by dynamically adjusting

the allocation based on the flow weights.

 Congestion Management: WFQ can help manage

network congestion by allocating bandwidth in a

controlled manner to different traffic types.

Challenges and Considerations of WFQ:

 Complexity: WFQ is more complex to implement and

manage compared to simpler queuing mechanisms like

First-In-First-Out (FIFO).

 Resource Intensive: It requires more processing power

and memory to monitor and manage the traffic flows

and their respective weights.

 Weight Assignment: Determining the appropriate

weights for different traffic types can be challenging

and requires a deep understanding of the network's

traffic patterns.

 Dynamic Traffic Patterns: In networks with highly

dynamic traffic patterns, maintaining optimal

performance with WFQ can be difficult as the relative

importance of flows may change rapidly.

 Scalability Issues: In very large and complex networks,

the overhead of implementing and maintaining WFQ

can be significant.

 Latency for Low Priority Traffic: While WFQ ensures

fairness, low-priority traffic may experience higher

latency during times of congestion.

In summary, while WFQ offers several advantages in

managing network traffic efficiently and fairly, it also

brings challenges in terms of complexity, resource

requirements, and the need for careful configuration and

management. The decision to use WFQ should be based

on a thorough analysis of network requirements and traffic

patterns.

WFQ in Action (real world use cases):

Weighted Fair Queuing (WFQ) is employed in various

real-world scenarios, particularly in network traffic

management and Quality of Service (QoS) optimization.

Here are some of its key use cases:

1. Internet Service Providers (ISPs): ISPs use WFQ to

manage bandwidth allocation among different

Paper ID: SR24212060600 DOI: https://dx.doi.org/10.21275/SR24212060600 1181

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

customers or types of services. For instance, higher

priority might be given to business customers or real-

time services like VoIP and video conferencing.

2. Corporate Networks: In corporate settings, WFQ is

used to prioritize critical business applications over

less critical traffic, ensuring that essential services

like ERP systems and video conferencing get the

necessary bandwidth.

3. Data Centers: WFQ aids in managing traffic flow

within data centers, especially for balancing loads

between servers and ensuring efficient data transfer

across the network.

4. Wireless Networks: Mobile and wireless network

operators use WFQ to manage bandwidth among

users and applications, prioritizing services like

emergency calls or real-time video streaming.

5. Streaming Services: WFQ can be used by streaming

platforms to prioritize traffic and ensure smooth

streaming experiences, especially when network

resources are constrained.

6. Voice over Internet Protocol (VoIP): WFQ is

crucial in VoIP applications to ensure voice packets

are prioritized, minimizing latency and packet loss for

clear voice transmission.

7. Cloud Computing: Cloud service providers employ

WFQ for managing network traffic to and from cloud

resources, ensuring fair usage and optimal

performance for all users.

8. E-Commerce Platforms: For e-commerce platforms,

WFQ helps in prioritizing critical transactions and

user interactions, especially during high traffic

periods.

9. Online Gaming: Online gaming platforms use WFQ

to prioritize game traffic to ensure low-latency and

high-quality gaming experiences.

10. Video Surveillance Systems: In video surveillance,

WFQ helps in prioritizing video feed traffic over

other network uses, ensuring real-time and

uninterrupted video streaming.

These use cases demonstrate WFQ's flexibility and

effectiveness in managing diverse traffic types and

ensuring that high-priority tasks are serviced appropriately

in various network environments.

3.Rate Monotonic Scheduling

Rate Monotonic Scheduling (RMS) is a fixed-priority

algorithm predominantly used in real-time operating

systems for scheduling periodic tasks. In RMS, tasks are

assigned priorities based on their request rates (or

frequency of execution); the task with the shortest period

(or the highest frequency) receives the highest priority.

RMS operates on the principle that shorter tasks are more

critical, and hence, should be executed first. It’s a

preemptive scheduling algorithm, meaning a higher

priority task can interrupt a lower priority task.

Let's consider three periodic tasks with different periods

and execution times.

● Task A: Execution Time = 1 unit, Period = 4 units

● Task B: Execution Time = 2 units, Period = 6 units

● Task C: Execution Time = 3 units, Period = 8 units

In RMS, the task with the shortest period gets the highest

priority. Thus, Task A has the highest priority, followed

by Task B, and then Task C.

Time Units Task Scheduled

0-1 Task A

1-3 Task B

3-6 Task C

6-7 Task A

7-9 Task B

9-12 Task C

12-13 Task A

…. ….

● In the first time unit, Task A is executed as it has the

highest priority.

● In the next two time units, Task B is executed. Although

Task C is also ready, Task B has a higher priority.

● Then Task C is executed for 3 units of time as it’s the

only task remaining.

● At time unit 6, Task A is ready again (as its period is 4

units), so it preempts Task C and is executed for one

unit.

● The cycle repeats based on the periods of the tasks.

This table demonstrates how RMS schedules tasks based

on their periods. It ensures that tasks with shorter periods

(and hence higher priorities) are executed first. RMS is

optimal for systems where all tasks are periodic, and their

execution time is always less than their periods. This

example assumes no other overheads like context

switching time.

Benefits of RMS:

1. Simplicity and Predictability: RMS is straightforward

and easy to implement. The fixed priority assignment

simplifies the design of real-time systems.

2. Optimality for Preemptive Systems: For a set of

periodic tasks with static priorities, RMS is optimal.

This means no other static priority scheduling can meet

deadlines for a given task set if RMS cannot.

3. Determinism: RMS provides deterministic behavior,

essential in real-time systems where understanding how

the system will behave in any situation is crucial.

4. Efficient for Hard Real-Time Systems: It’s well-

suited for hard real-time systems where missing a

deadline could lead to system failure or catastrophic

results.

Challenges and Considerations of RMS:

1. Limited to Periodic Tasks: RMS is most effective for

systems with entirely periodic tasks. It's less suitable for

a periodic or sporadic tasks.

2. Deadlines Equal to or Less Than Periods: RMS

assumes that the deadline of a task is equal to or less

than its period, which may not always be the case in

complex systems.

3. Priority Inversion: Lower priority tasks holding

resources needed by higher priority tasks can lead to

Paper ID: SR24212060600 DOI: https://dx.doi.org/10.21275/SR24212060600 1182

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

priority inversion, though this can be mitigated by

protocols like Priority Inheritance.

4. Utilization Bound: The utilization of CPU for 'n' tasks

in RMS is bounded, which may lead to underutilization

of the processor.

5. Difficulty in Priority Assignment for Mixed Systems:
In systems where periodic, aperiodic, and sporadic tasks

coexist, assigning priorities can be challenging.

6. Task Dependency Handling: RMS doesn't inherently

handle task dependencies, which can be an issue in

systems where tasks are interdependent.

7. Scalability Issues: As the number of tasks increases,

managing and maintaining RMS can become more

complex.

8. Not Ideal for Soft Real-Time Systems: For systems

where deadlines are important but not critical, RMS

might be overly rigid, leading to inefficient processing.

In summary, while RMS is highly effective for certain

types of real-time systems, it has limitations that must be

considered during system design, particularly regarding

task types, frequency, and interdependencies.

Understanding these challenges is crucial for effectively

implementing RMS in appropriate real-time applications.

Let’s take a look at some of the real world

implementations of RMS.

RMS in Action (real world use cases):

Some of the key use cases include:

1. Automotive Systems: In car control systems, RMS is

used for scheduling tasks like engine monitoring, fuel

injection control, and braking systems, where timely

execution is critical for safety and performance.

2. Avionics and Aerospace: RMS is employed in avionics

for scheduling tasks in flight control systems, such as

navigation, communication, and system monitoring, to

ensure smooth and safe operation of aircraft.

3. Industrial Automation: In automated manufacturing

and processing plants, RMS schedules tasks in robotic

arms, conveyor belts, and other machinery to optimize

production efficiency and safety.

4. Consumer Electronics: In devices like smart TVs or

gaming consoles, RMS can be used to manage various

periodic tasks like streaming, rendering, and user input

processing to ensure a seamless user experience.

5. Telecommunications: RMS is applied in network

routers and switches for scheduling tasks related to data

packet processing and transmission, ensuring efficient

and timely data flow.

6. Medical Devices: Critical healthcare devices like

pacemakers and ventilators use RMS to ensure that vital

functions are executed at regular intervals for patient

safety.

7. Embedded Systems: In embedded systems, such as

home automation or security systems, RMS is used to

manage periodic tasks like sensor data processing and

actuator control.

8. Real-time Operating Systems (RTOS): Operating

systems designed for real-time applications often

implement RMS for managing system-level tasks

efficiently.

In these applications, RMS is chosen for its predictability

and optimality in handling periodic tasks with strict timing

constraints, ensuring that all tasks are executed within

their defined time periods.

Comparing scheduling & resource allocation

If we need to make a choice on which method to simply

based on assignments:

● EDF (Earliest Deadline First): Best suited for real-

time systems where tasks have varying deadlines. It

dynamically prioritizes tasks based on their deadlines,

aiming to minimize deadline misses. However, it can be

complex and has higher overhead.

● WFQ (Weighted Fair Queuing): Designed for

network environments, it allocates bandwidth fairly

among flows. It's effective in handling diverse and

dynamic network traffic but can be less efficient with

bursty traffic patterns.

● RMS (Rate-Monotonic Scheduling): Ideal for simple

real-time systems with fixed, periodic tasks. It's easy to

implement and predictable, but not suitable for tasks

with irregular periods or varying execution times.

However, for a complete method study, you need to

consider, all of these:

1. Real-Time Performance Metrics:

○ Deadline Miss Rate: Frequency of missing

deadlines under each algorithm.

○ Response Time: Time taken from task initiation

to completion.

○ Jitter: Variability in response time, important for

time-sensitive applications.

2. Resource Utilization:

○ CPU Utilization: How effectively each

algorithm utilizes CPU resources.

○ Memory Overhead: Amount of memory

required for scheduling tasks.

3. Scalability and Adaptability:

○ Performance Under Load: How each algorithm

performs under high load conditions.

○ Adaptability to Changing Workloads: Ability

to handle sudden changes in task volume or

priorities.

4. Fault Tolerance and Robustness:

○ Behavior Under Failure: How each algorithm

copes with component failures or unexpected

system behavior.

○ Recovery Mechanisms: Ability to recover from

missed deadlines or errors.

5. Implementation Complexity:

○ Ease of Implementation: Complexity involved

in implementing each algorithm in a real-world

scenario.

○ Maintenance Requirements: Ongoing

maintenance efforts required.

6. Quality of Service (QoS) Metrics (especially

relevant for WFQ in network scenarios):

○ Bandwidth Allocation Efficiency: How

effectively the algorithm allocates bandwidth

among different flows.

Paper ID: SR24212060600 DOI: https://dx.doi.org/10.21275/SR24212060600 1183

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

○ Packet Loss Rate: Frequency of packet loss in

network traffic.

7. Energy Efficiency:

○ Power Consumption: How much power each

scheduling algorithm consumes, particularly

important in battery-operated or energy-sensitive

environments.

8. Predictability:

○ Determinism: How predictable the behavior of

each algorithm is, crucial for hard real-time

systems.

9. Applicability to Different Domains:

○ Versatility: How well each algorithm can be

adapted to different application domains (e.g.,

embedded systems, telecommunications, cloud

computing).

10. Cost Analysis:

○ Implementation Cost: Resources and time

required for implementation.

○ Operational Cost: Ongoing costs associated

with the operation of each algorithm.

11. User and Industry Acceptance:

○ Popularity: How widely each algorithm is used

in the industry.

○ User Satisfaction: Feedback from users or

system administrators regarding each algorithm's

performance.

12. Compliance and Standards:

○ Conformance to Standards: How each

algorithm aligns with industry standards and

regulations.

Let’s try to get some of these based on the arguments

presented in the paper listed:

Paper ID: SR24212060600 DOI: https://dx.doi.org/10.21275/SR24212060600 1184

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 2, February 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4.Conclusion

In conclusion, the comparison between Earliest Deadline

First (EDF), Weighted Fair Queuing (WFQ), and Rate-

Monotonic Scheduling (RMS) reveals that each algorithm

has distinct characteristics and is suited to specific

scenarios. EDF excels in environments where task

deadlines are critical and varied, offering dynamic

prioritization to minimize deadline misses, albeit at the

cost of higher complexity and resource overhead. WFQ

stands out in network traffic management, ensuring fair

bandwidth distribution and efficiently handling diverse

traffic, though it may struggle with bursty traffic patterns.

RMS, with its simplicity and predictability, is ideal for

systems with fixed, periodic tasks, particularly in hard

real-time environments, but it falls short in handling tasks

with irregular periods or execution times.

The choice of scheduling algorithm should, therefore, be

guided by the specific requirements of the system in

question, including factors like real-time performance,

resource utilization, scalability, and the nature of the tasks

or network traffic involved. Understanding the strengths

and limitations of each algorithm is crucial for system

designers and network administrators to optimize

performance, reliability, and efficiency in their respective

domains.

References

[1] Brandt and M. Brandt. On the M(n)/M(n)/s Queue

with Impatient Calls. Performance Evaluation, 35:1–

18, 1999.

[2] L. Georgiadis, R. Guérin, V. Peris and K. Sivarajan,

"Efficient network QoS provisioning based on per

node traffic shaping", Proceedings of IEEE

INFOCOM 96, pp. 102-110, 1996.

[3] G. Quadros, A. Alves, E. Monteiro and F. Boavida,

"How unfair can weighted fair queuing be?,"

Proceedings ISCC 2000. Fifth IEEE Symposium on

Computers and Communications, Antibes-Juan Les

Pins, France, 2000, pp. 779-784, doi:

10.1109/ISCC.2000.860738.

A. Atlas and A. Bestavros, "Statistical rate monotonic

scheduling," Proceedings 19th IEEE Real-Time

Systems Symposium (Cat. No.98CB36279), Madrid,

Spain, 1998, pp. 123-132, doi:

10.1109/REAL.1998.739737.

[4] Lui Sha, R. Rajkumar and S. S. Sathaye, "Generalized

rate-monotonic scheduling theory: a framework for

developing real-time systems," in Proceedings of the

IEEE, vol. 82, no. 1, pp. 68-82, Jan. 1994, doi:

10.1109/5.259427.

[5] Alan A. Bertossi, Andrea Fusiello, Rate-monotonic

scheduling for hard-real-time systems, European

Journal of Operational Research, Volume 96, Issue 3,

1997, Pages 429-443, ISSN 0377-2217,

https://doi.org/10.1016/S0377-2217(97)83306-1.

[6] Casavant T. L., Kuhl J. G., A Taxonomy of

Scheduling in General Purpose Distributed

Computing Systems, “IEEE Transactions on Software

Engineering”, 1988, 14(2), pp. 141-154.

[7] Cheng S., Stankovic J.A., Ramamritham K.,

Scheduling Algorithms for Hard RealTime Systems:

A Brief Survey, (In:) Hard Real-Time Systems:

Tutorial,Stankovic J.A., Ramamritham K. (eds.),

IEEE,1988, pp. 150-173

Paper ID: SR24212060600 DOI: https://dx.doi.org/10.21275/SR24212060600 1185

https://doi.org/10.1016/S0377-2217(97)83306-1

