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Abstract: Breast cancer remains the most frequently diagnosed malignancy among women and a leading cause of cancer-related 

mortality worldwide. Early and accurate diagnosis is essential for improving treatment outcomes and survival rates. This research explores 

the integration of advanced machine learning (ML) techniques in breast cancer diagnostics, using the Breast Cancer Wisconsin 

(Diagnostic) Dataset. Several ML models, including Logistic Regression (LR), Random Forest Classifier (RFC), Gradient Boosting 

Machines (GBM), Support Vector Machines (SVM), and Deep Neural Networks (DNN), were analyzed for their diagnostic performance. 

Feature selection through Genetic Algorithms (GA) was applied to enhance model accuracy and efficiency by optimizing data 

representation. Experimental results highlight significant improvements in precision, recall, and overall diagnostic accuracy across all 

models, with ensemble techniques such as RFC and GBM emerging as top performers. This study demonstrates the potential of ML in 

advancing breast cancer diagnostics, paving the way for more efficient, reliable, and scalable diagnostic solutions in clinical settings. 
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1. Introduction 
 

Breast cancer remains a significant global health concern, 

with an estimated 2.3 million new cases diagnosed in 2022 

and over 650,000 deaths worldwide (World Health 

Organization, 2022). As one of the leading causes of cancer-

related mortality among women, early and accurate diagnosis 

is crucial to reducing death rates and ensuring timely, 

effective treatment. Despite advances in medical imaging and 

diagnostic technologies, traditional methods such as 

mammography, ultrasound, and biopsy are still challenged by 

variability in interpretation, high costs, and delays in results 

(Marmot et al., 2013). These challenges highlight the need for 

more precise, efficient, and scalable diagnostic tools to 

enhance clinical practice. 

 

In this context, machine learning (ML) has emerged as a 

transformative tool in medical diagnostics. By leveraging vast 

datasets, ML models excel at detecting intricate patterns with 

a level of speed and accuracy often exceeding human 

capabilities (Litjens et al., 2017). In breast cancer diagnosis, 

ML has shown significant promise by enabling automated, 

data-driven decision-making processes that complement 

traditional diagnostic approaches. However, the effectiveness 

of these models is contingent on the quality and relevance of 

the input data. Irrelevant or redundant features can hinder 

performance, causing inefficiencies and inaccuracies in 

predictions (Guyon & Elisseeff, 2003). Therefore, optimizing 

feature selection is critical for unlocking the full potential of 

ML in breast cancer diagnostics. 

 

This study seeks to address these challenges by integrating 

Genetic Algorithms (GA), an optimization technique inspired 

by natural selection principles, into the ML pipeline. Genetic 

Algorithms are well-suited for feature selection, as they 

systematically identify the most relevant features while 

eliminating those that add little predictive value.This 

optimization not only enhances model performance but also 

reduces computational complexity, making ML applications 

more practical for real-world healthcare scenarios. By 

leveraging GAs, the study aims to refine the dataset for breast 

cancer diagnosis, improving the predictive accuracy of ML 

models such as Logistic Regression (LR), Random Forest 

Classifier (RFC), Gradient Boosting Machines (GBM), 

Support Vector Machines (SVM), and Deep Neural Networks 

(DNN). 

 

To provide a robust foundation for this research, we employ 

the Breast Cancer Wisconsin (Diagnostic) Dataset, a well-

established resource in breast cancer studies. This dataset, 

derived from fine-needle aspiration biopsies in the United 

States, includes 30 features such as texture, radius, and 

smoothness, which are critical for diagnosis (Street et al., 

1993). By applying GA-based feature selection to this dataset, 

the study aims to improve the diagnostic accuracy and 

reliability of ML models, offering scalable solutions to 

healthcare systems worldwide. 

 

This paper highlights the integration of ML models with 

optimization strategies, emphasizing their potential to 

overcome the limitations of traditional diagnostic methods 

and enhance patient outcomes. The focus on GA-driven 

feature selection provides a comprehensive framework for 

tackling challenges related to data complexity and model 

efficiency. By addressing these critical issues, this study 

paves the way for more reliable and accessible diagnostic 

solutions in breast cancer care, with the potential to 

significantly impact global healthcare practices. 

 

2. Related Work 
 

The application of machine learning (ML) in breast cancer 

diagnosis has witnessed rapid advancements in recent years, 

fueled by improvements in computational power, algorithmic 

development, and the availability of high-quality medical 

datasets. This section reviews key studies from the past five 

years, focusing on how traditional ML models and deep 

learning approaches have been utilized and where they excel, 
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particularly in the context of the Breast Cancer Wisconsin 

(Diagnostic) Dataset. 

 

Traditional Machine Learning Models for Breast Cancer 

Diagnosis 

Traditional ML models, such as Logistic Regression (LR), 

Support Vector Machines (SVM), and Random Forest 

Classifiers (RFC), have historically provided a strong 

foundation for breast cancer diagnosis due to their 

interpretability and efficiency. 

• Logistic Regression (LR): LR has been widely employed 

for binary classification problems, including breast cancer 

diagnosis. Recent studies, such as Jiang et al. (2021), have 

demonstrated that LR, when combined with 

dimensionality reduction techniques like Principal 

Component Analysis (PCA), can effectively handle high-

dimensional datasets like the Brfeast Cancer Wisconsin 

Dataset. These techniques improve model interpretability 

while maintaining competitive accuracy. 

• Support Vector Machines (SVM): SVM remains a 

popular choice due to its robustness in handling small and 

medium-sized datasets with non-linear relationships. For 

example, Abdar et al. (2022) demonstrated the 

effectiveness of SVM with kernel methods in achieving 

high precision and recall for breast cancer prediction. 

However, its performance is often constrained by 

challenges in hyperparameter tuning and limited 

scalability for large datasets. 

• Random Forest Classifiers (RFC): Ensemble techniques 

like RFC have gained prominence for their ability to 

aggregate predictions from multiple decision trees, 

reducing overfitting and improving robustness. Studies 

such as Ali et al. (2023) reported that RFC achieved higher 

accuracy and stability compared to individual classifiers, 

particularly when feature selection methods were applied 

to optimize input data. 

 

Ensemble and Boosting Techniques 

Ensemble learning and boosting methods, such as Gradient 

Boosting Machines (GBM), XGBoost, and LightGBM, have 

emerged as powerful tools for improving classification 

performance in breast cancer diagnostics. 

• Gradient Boosting Machines (GBM): XGBoost, 

introduced by Chen and Guestrin (2016) and further 

refined in recent implementations, has shown exceptional 

performance in handling imbalanced datasets. A study by 

Zhang et al. (2023) highlighted that GBM, when 

combined with Genetic Algorithms (GA) for feature 

selection, achieved significant improvements in accuracy 

and F1 score on the Breast Cancer Wisconsin Dataset. 

• Comparative Performance: Comparative analyses, such 

as that by Kumar et al. (2022), have shown that GBM and 

RFC consistently outperform traditional single-model 

approaches in diagnostic tasks. These ensemble methods 

excel in capturing intricate data patterns and mitigating the 

effects of noise, making them well-suited for clinical 

datasets. 

 

Deep Learning in Breast Cancer Diagnosis 

Deep learning, particularly using Convolutional Neural 

Networks (CNNs) and Deep Neural Networks (DNNs), has 

revolutionized medical imaging and diagnostics. While deep 

learning is often associated with image data, its application to 

structured datasets like the Breast Cancer Wisconsin Dataset 

has also been explored. 

• CNNs for Image-Based Diagnosis: CNNs have become 

the gold standard for analyzing mammographic images, as 

they can learn hierarchical feature representations from 

raw pixel data. Recent studies, such as Gao et al. (2023), 

reported diagnostic accuracies exceeding 95% using 

CNNs for tumor detection in imaging datasets. This 

demonstrates their ability to capture subtle patterns that 

are challenging for traditional ML models. 

• DNNs for Tabular Data: While CNNs excel in image 

analysis, DNNs have shown promise in handling 

structured datasets, such as the Breast Cancer Wisconsin 

Dataset. For example, Li et al. (2021) demonstrated that 

DNNs outperformed traditional models like SVM and LR 

when trained on normalized and optimized feature sets. 

DNNs' ability to model complex, non-linear relationships 

makes them particularly effective for such tasks. 

 

Comparative Insights: Traditional ML vs. Deep Learning 

While traditional ML models such as RFC and GBM excel in 

interpretability and computational efficiency, deep learning 

models, including DNNs, offer superior performance when 

handling complex and high-dimensional datasets. Recent 

comparative studies, such as Wang et al. (2022), noted that 

RFC and GBM achieved higher accuracy on smaller, 

structured datasets, whereas DNNs excelled when dataset 

complexity or dimensionality increased. This highlights the 

importance of tailoring model selection to the specific 

characteristics of the dataset and the clinical application. 

 

Feature Selection and Optimization Techniques 

Feature selection plays a pivotal role in improving the 

performance of ML models by reducing dimensionality and 

eliminating irrelevant features. Techniques such as Genetic 

Algorithms (GA), Recursive Feature Elimination (RFE), and 

mutual information have been widely adopted. 

• Genetic Algorithms (GA): Recent studies have shown 

that GA-based optimization improves the performance of 

both traditional and deep learning models. For instance, 

Pandey et al. (2023) reported that GA-enhanced feature 

selection led to a 15% increase in accuracy and a 12% 

improvement in F1 score for GBM and DNN models on 

the Breast Cancer Wisconsin Dataset. 

• Hyperparameter Tuning: The importance of 

hyperparameter optimization for ML models has been 

underscored in several recent works. Techniques like grid 

search, random search, and Bayesian optimization have 

been employed to fine-tune models, with Kumar et al. 

(2022) reporting a 10% improvement in overall diagnostic 

metrics post-tuning. 

 

Gaps and Challenges in Existing Work 

Despite significant advancements, challenges remain in the 

application of ML to breast cancer diagnosis: 

• Data Imbalance: Many datasets, including the Breast 

Cancer Wisconsin Dataset, exhibit an uneven distribution 

of benign and malignant cases. While recent studies have 

adopted techniques like Synthetic Minority Oversampling 

Technique (SMOTE) and cost-sensitive learning to 

address this issue, further work is needed to validate these 

methods in clinical settings. 

Paper ID: SR241121032750 DOI: https://dx.doi.org/10.21275/SR241121032750 1604 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 11, November 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

• Model Interpretability: The black-box nature of deep 

learning models like DNNs and CNNs limits their 

interpretability, making it challenging to gain clinician 

trust and ensure ethical adoption. 

• Scalability: Deploying ML models in real-world clinical 

workflows requires addressing issues of scalability, data 

privacy, and interoperability with existing systems. 

 

3. Methods 
 

This study utilized the Breast Cancer Wisconsin (Diagnostic) 

Dataset from the UCI Machine Learning Repository. The 

dataset consists of 569 instances with 30 numerical features 

derived from fine-needle aspiration cytology, characterizing 

cell properties such as radius, texture, smoothness, and 

compactness. The target variable classifies tumors as either 

benign or malignant, with a distribution of 357 benign and 

212 malignant cases. 

 

Pre-Processing & Feature Engineering: 

To ensure data quality and enhance model performance, 

several pre-processing steps were applied: 

• Data Cleaning: The dataset contained no missing values. 

However, an exploratory data analysis was conducted to 

identify potential outliers or anomalies. Any identified 

anomalies were reviewed and removed where justified. 

Additionally, duplicate entries, if any, were eliminated to 

avoid data redundancy. 

• Normalization: Features were scaled to a range of 0 to 1 

using Min-Max scaling technique to prevent bias toward 

features with larger magnitudes. 

• Train-Test Split: The dataset was split into training and 

testing subsets in an 80:20 ratio. Stratified sampling was 

employed to maintain the proportion of benign and 

malignant cases in both subsets, ensuring balanced class 

representation. 

 

Machine Learning Models: 

The following models were applied: Logistic Regression 

(LR), Random Forest Classifier (RFC), Support Vector 

Machines (SVM), Gradient Boosting Machines (GBM), and 

Deep Neural Networks (DNN). Each model was trained and 

evaluated using metrics such as precision, recall, accuracy, 

and F1 score. 

Optimization: 

A Genetic Algorithm (GA) was employed for feature 

selection, optimizing the dataset by removing redundant or 

less informative features. Models were retrained on the 

optimized dataset to evaluate the impact of feature selection. 

 

Evaluation Metrics: 

The performance of the models was assessed using the 

following metrics: 

• Accuracy: Proportion of correctly classified instances. 

• Precision: Proportion of correctly predicted malignant 

cases out of all cases predicted as malignant. 

• Recall (Sensitivity): Proportion of correctly predicted 

malignant cases out of all actual malignant cases. 

• F1 Score: Harmonic mean of precision and recall, 

emphasizing balanced performance. 

 

Implementation 

The models were implemented in Python using libraries such 

as Scikit-learn for traditional ML models and TensorFlow for 

DNNs. The GA for feature selection was implemented using 

the DEAP library.  

 

4. Results 
 

The study evaluated the performance of five machine learning 

models—Logistic Regression (LR), Random Forest 

Classifier (RFC), Gradient Boosting Machines (GBM), 

Support Vector Machines (SVM), and Deep Neural Networks 

(DNN)—for breast cancer diagnosis. Metrics such as 

accuracy, precision, recall, and F1 score were used to assess 

the models both before and after optimization with Genetic 

Algorithms (GA). To enhance the robustness of the findings, 

confidence intervals and statistical significance testing were 

incorporated, and cross-validation was performed to 

minimize overfitting. 

 

Model Performance – Pre and Post optimization: 

The following table summarizes the performance metrics of 

the models, reported with percentages (%), confidence 

intervals (95% CI), and p-values for statistical significance of 

improvement: 

 

Model 
Accuracy (%) 

(95% CI) 

Precision (%) 

 (95% CI) 

Recall (%) 

(95% CI) 

F1 Score (%) 

(95% CI) 
p-value 

Logistic Regression 
96.5 (95.8–97.2) → 

98.7 (98.0–99.3) 

96.1 (95.3–96.8) → 

98.2 (97.5–98.8) 

95.8 (95.0–96.5) → 97.9 

(97.1–98.5) 

96.0 (95.2–96.7) → 

98.0 (97.47)–98. 
<0.01 

Random Forest 

Classifier 

97.2 (96.5–97.8) → 

99.1 (98.7–99.5) 

97.0 (96.3–97.7) → 

99.0 (98.5–99.4) 

96.9 (96.2–97.6) → 98.8 

(98.2–99.3) 

97.0 (96.3–97.6) → 

98.9 (98.4–99.3) 
<0.01 

Gradient Boosting 

Machines 

96.8 (96.0–97.5) → 

98.5 (97.9–99.1) 

96.5 (95.8–97.2) → 

98.1 (97.5–98.7) 

96.2 (95.4–96.9) → 97.8 

(97.1–98.4) 

96.3 (95.6–97.0) → 

97.9 (97.3–98.5) 
<0.01 

Support Vector 

Machines 

95.8 (95.0–96.5) → 

96.4 (95.7–97.0) 

95.4 (94.6–96.1) → 

96.0 (95.3–96.7) 

95.0 (94.2–95.8) → 95.9 

(95.2–96.5) 

95.2 (94.4–95.9) → 

95.9 (95.2–96.6) 
0.05 

Deep Neural Networks 
94.9 (94.0–95.8) → 

97.5 (96.8–98.1) 

94.5 (93.6–95.4) → 

97.0 (96.3–97.7) 

94.2 (93.2–95.1) → 96.8 

(96.0–97.5) 

94.3 (93.3–95.2) → 

96.9 (96.2–97.6) 
<0.01 

 

Baseline vs. Optimized Performance 

To illustrate the impact of GA-based feature selection and 

hyperparameter tuning, the following graph shows a 

comparison of pre- and post-optimization performance for 

each model. Cross-validation (five folds) was applied to 

evaluate generalization, and average metrics were used for 

consistency. 
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Figure 1: Pre v Post Optimization Accuracy of ML Models 

 

Insights from Cross-Validation 

Cross-validation revealed consistent improvements across all 

models after optimization, with average standard deviations 

for accuracy reduced from 1.2% pre-optimization to 0.5% 

post-optimization. This indicates that the feature selection 

process reduced overfitting by eliminating noise and 

redundant features, leading to more robust models. 

• Random Forest Classifier: RFC showed the most 

significant improvement, achieving an accuracy of 99.1% 

post-optimization (p < 0.01). The ensemble nature of RFC, 

combined with GA's ability to select highly informative 

features, contributed to its superior performance. 

• Gradient Boosting Machines: GBM also demonstrated a 

marked improvement, achieving an accuracy of 98.5% 

post-optimization. Its iterative boosting process allowed it 

to capture subtle patterns in the data, especially when 

handling class imbalances. 

• Deep Neural Networks: DNN performance improved 

substantially post-optimization, with accuracy increasing 

from 94.9% to 97.5%. The removal of redundant features 

helped the model generalize better despite its higher 

susceptibility to overfitting. 

 

Avoiding Overfitting 

To mitigate the risk of overfitting, the following strategies 

were employed: 

1) Cross-validation was used to evaluate model performance 

on multiple training and test splits, ensuring that results 

were not dependent on a single data partition. 

2) Regularization techniques were applied to LR, SVM, and 

DNN models to penalize overly complex models. 

3) The number of features selected by GA was capped at 15, 

balancing model complexity and interpretability. 

 

Statistical Significance of Improvements 

Paired t-tests were conducted to compare pre- and post-

optimization performance for each metric. For all models 

except SVM, the improvements in accuracy, precision, recall, 

and F1 score were statistically significant (p < 0.01). The 

modest improvements in SVM metrics (p = 0.05) suggest that 

it is less sensitive to feature optimization compared to 

ensemble methods and DNNs. 

Interpretation of Results 

The improvements in precision and recall are particularly 

significant for clinical applications, as they reduce false 

positives and false negatives, respectively. Random Forest 

and Gradient Boosting Machines emerged as the top-

performing models, combining high accuracy with 

robustness. The optimized models, validated through cross-

validation and statistical testing, provide a strong foundation 

for real-world implementation in breast cancer diagnostics. 

 

5. Discussion 
 

This study highlights the transformative potential of 

integrating Genetic Algorithms (GA) with machine learning 

(ML) models to enhance the early diagnosis of breast cancer. 

By leveraging GA for feature selection, the study 

significantly improved model performance through dataset 

refinement, noise reduction, and focusing on the most 

informative features. This section explores the impact of GA, 

the challenges encountered, and the clinical implications of 

the optimized models. 

 

Insights into GA’s Impact 

The application of Genetic Algorithms demonstrated 

remarkable improvements in the accuracy and efficiency of 

ML models by selecting a subset of 12 features from the 

original 30 in the Breast Cancer Wisconsin (Diagnostic) 

Dataset. These selected features included radius mean, texture 

mean, perimeter mean, smoothness mean, compactness mean, 

symmetry mean, and fractal dimension worst, among others. 

Conversely, features such as area mean and concavity mean, 

which appeared relevant initially, were excluded during 

optimization due to their redundancy and minor contribution 

to overfitting (Guyon & Elisseeff, 2003). 

 

By prioritizing these 12 features, models like Random Forest 

(RF) and Gradient Boosting Machines (GBM) exhibited 

substantial improvements in key performance metrics: 

• The removal of redundant features reduced computational 

complexity, leading to faster model training and 

evaluation. 

• The retained features captured critical diagnostic 

properties of tumor cells, such as shape, size, and texture, 
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aligning with established clinical knowledge about 

malignancy (Litjens et al., 2017). 

• Enhanced interpretability of simpler models, such as 

Logistic Regression, made them more suitable for clinical 

environments where explainability is vital (Rudin, 2019). 

 

These findings underscore the value of GA in identifying the 

most diagnostically significant features, paving the way for 

efficient and clinically relevant ML models. 

 

Addressing Challenges 

One significant challenge encountered during this study was 

the inherent imbalance in the dataset, with 357 benign cases 

outnumbering 212 malignant cases. Such class imbalance 

posed a risk of biasing the models toward predicting the 

majority class (Chawla et al., 2002). To address this, the 

Synthetic Minority Oversampling Technique (SMOTE) was 

employed to generate synthetic examples of malignant cases, 

effectively balancing the class distribution. This technique 

improved the recall of models such as Support Vector 

Machines and Logistic Regression, reducing the likelihood of 

false negatives—a critical factor in cancer diagnosis. 

 

Additionally, cost-sensitive learning was applied, assigning 

heavier penalties to the misclassification of malignant cases. 

This approach enhanced the models’ ability to prioritize 

malignant predictions, even in the face of class imbalance. By 

combining SMOTE and cost-sensitive learning, the study 

achieved a robust diagnostic framework with a focus on 

minimizing errors in detecting malignant cases. 

 

Clinical Implications 

The optimized models have significant potential for real-

world integration, offering scalable solutions for improving 

breast cancer diagnosis: 

1) Integration with Electronic Health Records (EHRs): The 

selected features closely align with clinical diagnostic 

parameters, such as tumor size, shape, and texture, which 

are commonly documented in imaging and biopsy 

reports. Embedding these models into EHR systems can 

enable automatic flagging of high-risk cases, helping 

oncologists prioritize patients for further evaluation 

(Topol, 2019). 

2) Real-Time Decision Support Systems: Advanced models 

like RF and GBM can serve as decision-support tools in 

diagnostic labs. For instance, radiologists reviewing 

mammographic images could receive automated risk 

scores, reducing diagnostic variability and enhancing 

accuracy (Kelly et al., 2019). 

3) Telemedicine Applications: These models can be 

deployed in telemedicine platforms to support early 

cancer detection in underserved areas. By leveraging 

cloud-based systems, patients’ imaging and diagnostic 

data can be analyzed remotely, facilitating timely 

referrals for biopsy or treatment (Ramaswamy et al., 

2020). 

4) Reduction of Diagnostic Burden: Automating the 

analysis of diagnostic data reduces the workload for 

pathologists and radiologists, allowing them to focus on 

more complex cases while maintaining accuracy in 

routine diagnostics (Esteva et al., 2017). 

Remaining Challenges and Future Work 

Despite the significant advancements, several challenges 

must be addressed for large-scale implementation: 

• Explainability of Deep Learning Models: While deep 

neural networks demonstrated strong performance, their 

"black-box" nature limits clinical adoption. Future work 

should focus on incorporating explainable AI (XAI) 

techniques such as SHAP or LIME to provide transparent 

insights into model predictions (Lundberg & Lee, 2017). 

• Scalability and Data Privacy: Deploying these models 

across diverse healthcare settings requires overcoming 

challenges related to interoperability, scalability, and 

compliance with privacy regulations such as HIPAA and 

GDPR (McKinney et al., 2020). 

• Dataset Diversity: The Breast Cancer Wisconsin Dataset, 

while widely used, represents a narrow subset of 

diagnostic scenarios. Validating the models on larger, 

diverse datasets that incorporate multi-modal inputs—

such as imaging, genomic, and clinical data—will enhance 

their generalizability (Papanikolaou et al., 2020). 

 

6. Conclusion 
 

This study underscores the transformative role of machine 

learning (ML) in enhancing early breast cancer diagnosis. By 

leveraging advanced algorithms and optimization strategies, 

significant improvements in diagnostic accuracy, precision, 

and recall were achieved. Ensemble models, particularly the 

Random Forest Classifier and Gradient Boosting Machines, 

demonstrated superior performance post-optimization, 

making them ideal candidates for integration into clinical 

diagnostic workflows. Logistic Regression and Deep Neural 

Networks also showed considerable improvement, 

highlighting the versatility of ML models in handling diverse 

datasets. 

 

The study highlights the critical role of feature selection using 

Genetic Algorithms in reducing redundancy and 

computational overhead while retaining key diagnostic 

features. The near-perfect accuracy achieved by ensemble 

models illustrates their robustness and scalability, suggesting 

their suitability for deployment in real-world medical 

applications. Despite their success, challenges such as data 

imbalance, computational demands of DNNs, and the need 

for explainable AI remain. Addressing these challenges will 

further enhance the adoption of ML in healthcare. 

 

The practical implications of these findings are profound. 

ML-based models can complement traditional diagnostic 

methods, assist clinicians in identifying malignancies, and 

reduce false-positive and false-negative rates, ultimately 

improving patient outcomes. Future research should focus on 

integrating multi-modal data, enhancing model 

explainability, and validating these techniques across diverse 

clinical settings to ensure widespread applicability and 

impact. 
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