
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The Evolution of CDN Management: A Paradigm

Shift to Infrastructure as Code for Akamai Property

Transformation

Avinash Ibbandi

Senior Manager, Software Engineering, Walmart Inc, Sunnyvale, California, USA

Abstract: Infrastructure as Code (IaC) has transformed how organizations manage their infrastructure by automating configurations

and deployments. Akamai Property Manager, a key component of Akamai's content delivery network (CDN), can be managed using IaC

to streamline property configuration and deployment processes. This journal entry explores the use of Terraform, a popular IaC tool, for

automating Akamai Property Manager. The article covers the prerequisites, steps for configuring Terraform, and best practices for version

control and CI/CD integration, providing a comprehensive guide for automating Akamai properties.

Keywords: Property Manager, Akamai Rule Engine, Akamai API Integration, Akamai Terraform Automation, Web Acceleration, Content

Caching, Edge Computing, Infrastructure as Code.

1. Introduction

Akamai Property Manager allows users to create and manage

edge configurations, rules, and behaviors for content delivery.

Managing these properties manually through Akamai’s user

interface can be cumbersome, especially when managing

multiple environments or configurations. Infrastructure as

Code (IaC) offers a solution by treating Akamai property

configurations as code, automating the setup, and promoting

collaboration through version control.

This journal entry explores how to automate Akamai Property

Manager using Terraform, a widely adopted IaC tool. It

outlines the steps required to automate property

configurations, integrate with Akamai’s APIs, and implement

best practices for version control and CI/CD pipelines.

2. Literature Review

Automating Akamai Property Manager with Terraform

situates this practice within infrastructure-as-code (IaC)

methodologies and edge service management, where tools

like Terraform are essential for codifying, automating, and

versioning infrastructure. Studies highlight IaC benefits in

improving repeatability, reducing errors, and accelerating

deployments. However, scaling IaC introduces challenges,

particularly in state management, as large, dynamic

environments can strain Terraform state handling and

performance issues that are especially relevant in managing

Akamai’s distributed edge configurations. Although Akamai

Property Manager is key for optimizing edge content delivery

and security, its Terraform provider does not yet support all

native features, limiting comprehensive automation and often

requiring a hybrid of manual and automated processes. This

constraint introduces potential inconsistencies, and as edge

services become increasingly central across industries, robust

automation solutions are in high demand. Addressing these

limitations calls for improved tooling, provider support, and

best practices like code modularization, state management

optimization, and fallback strategies for complex edge

environments.

3. Methodology & Technical Approach

1) Prerequisites

Before diving into automation, ensure the following

prerequisites are met.

• Install Terraform: Make sure you have Terraform

installed on your local machine. You can download it from

the Terraform official site.

• Akamai Credentials: You'll need Akamai credentials

(client token, client secret, and access token) for API

access. These can be generated from your Akamai Control

Center under the "Identity and Access Management"

section.

• Akamai Provider for Terraform: The Akamai provider

in Terraform allows you to interact with Akamai’s API to

manage properties.

• Akamai Edgegrid Configuration: Ensure that the

~/.edgerc file is properly set up with your Akamai

credentials.

2) Automating Akamai Properties Using Terraform

• Terraform, developed by HashiCorp, is a declarative tool

that enables infrastructure provisioning through code.

Akamai has a Terraform provider that facilitates property

management. Below are the steps to automate Akamai

Property Manager using Terraform.

• Install Terraform on your system by downloading it from

Terraform’s official website. Once installed, set up your

Terraform configuration file (main.tf) to interact with the

Akamai provider. A typical provider setup looks like this:

Terraform Provider Setup

provider "akamai" {

 edgerc = "~/.edgerc"

 section = "default"

}

Paper ID: SR241109034713 DOI: https://dx.doi.org/10.21275/SR241109034713 672

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Here, edgerc points to the authentication credentials required

for API access, which must be set up before running

Terraform commands.

3) Property Configuration

• Using Terraform, you can define your Akamai property in

a main.tf file. Below is a sample configuration for a simple

Akamai property:

• Setting Up Terraform for Akamai Terraform

Configuration: Create a directory for your Terraform

project, and inside that directory, create a new Terraform

configuration file (main.tf).

mkdir akamai-property-manager

cd akamai-property-manager

touch main.tf

• Create Property Configuration via Terraform Code: In

main.tf, you can start defining a basic property in Akamai

Property Manager. This includes rules for cache control,

redirects, and any other edge optimizations. Below is the

terraform code configure property manager on Akamai.

• Ensure that the syntax and indentation are correct

before executing the code.

data "akamai_property_rules_builder" "property_rule_default" {

rules_v2024_02_12 {

name = "default"

is_secure = false

comments = "Rules are evaluated from top to bottom and the last matching rule wins."

behavior {

origin {

 cache_key_hostname = "REQUEST_HOST_HEADER"

 compress = true

 custom_valid_cn_values = ["{{Origin Hostname}}", "{{Forward Host Header}}",]

 enable_true_client_ip = true

 forward_host_header = "ORIGIN_HOSTNAME"

 hostname = var.origin_hostname

 http_port = 80

 https_port = 443

 ip_version = "IPV4"

 origin_certificate = ""

 origin_certs_to_honor = "STANDARD_CERTIFICATE_AUTHORITIES"

 origin_sni = true

 origin_type = "CUSTOMER"

 ports = ""

 standard_certificate_authorities = ["akamai-permissive",]

 true_client_ip_client_setting = false

 true_client_ip_header = "True-Client-IP"

 verification_mode = "CUSTOM"

 }

 }

 behavior {

 cp_code {

 value {

 description = var.cpcode_name

 id = akamai_cp_code.cp_code.id

 name = var.cpcode_name

 products = [var.product_id,]

 }

 }

 }

 behavior {

 caching {

 behavior = "NO_STORE"

 }

 }

 children = [

 data.akamai_property_rules_builder.property_rule_origins.json,

 data.akamai_property_rules_builder.property_rule_redirects.json,

 data.akamai_property_rules_builder.property_rule_caching_rules.json,

 data.akamai_property_rules_builder.property_rule_denied_by_ip.json,

]

 }

}

Paper ID: SR241109034713 DOI: https://dx.doi.org/10.21275/SR241109034713 673

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

data "akamai_property_rules_builder" "property_rule_origins" {

 rules_v2024_02_12 {

 name = "Origins"

 comments = "Control the routings to different origin servers."

 criteria_must_satisfy = "all"

 children = [

 data.akamai_property_rules_builder.property_rule_routing_based_on_path.json,

]

 }

}

data "akamai_property_rules_builder" "property_rule_redirects" {

 rules_v2024_02_12 {

 name = "Redirects"

 comments = "Control the redirects."

 criteria_must_satisfy = "all"

 children = [

 data.akamai_property_rules_builder.property_rule_redirect_based_on_path.json,

]

 }

}

data "akamai_property_rules_builder" "property_rule_caching_rules" {

 rules_v2024_02_12 {

 name = "Caching Rules"

 comments = "Control the settings related to caching content at the edge and in the browser."

 criteria_must_satisfy = "all"

 children = [

 data.akamai_property_rules_builder.property_rule_css_and_java_script.json,

]

 }

}

data "akamai_property_rules_builder" "property_rule_denied_by_ip" {

 rules_v2024_02_12 {

 name = "Denied By IP"

 comments = "Control the IP whitelist."

 criteria_must_satisfy = "all"

 criterion {

 client_ip {

 match_operator = "IS_NOT_ONE_OF"

 use_headers = false

 values = ["127.0.0.1",]

 }

 }

 behavior {

 deny_access {

 reason = "deny-by-ip"

 enabled = true

 }

 }

 }

}

data "akamai_property_rules_builder" "property_rule_routing_based_on_path" {

 rules_v2024_02_12 {

 name = "Routing Based on Path"

 comments = "Route request to a origin based on path match."

 criteria_must_satisfy = "all"

 criterion {

 path {

 match_case_sensitive = false

 match_operator = "MATCHES_ONE_OF"

 normalize = false

 values = ["/sourcepath",]

 }

 }

Paper ID: SR241109034713 DOI: https://dx.doi.org/10.21275/SR241109034713 674

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 behavior {

 origin {

 cache_key_hostname = "REQUEST_HOST_HEADER"

 compress = true

 custom_valid_cn_values = ["{{Origin Hostname}}", "{{Forward Host Header}}",]

 enable_true_client_ip = true

 forward_host_header = "ORIGIN_HOSTNAME"

 hostname = var.origin_hostname

 http_port = 80

 https_port = 443

 ip_version = "IPV4"

 origin_certificate = ""

 origin_certs_to_honor = "STANDARD_CERTIFICATE_AUTHORITIES"

 origin_sni = true

 origin_type = "CUSTOMER"

 ports = ""

 standard_certificate_authorities = ["akamai-permissive",]

 true_client_ip_client_setting = false

 true_client_ip_header = "True-Client-IP"

 verification_mode = "CUSTOM"

 }

 }

 }

}

data "akamai_property_rules_builder" "property_rule_redirect_based_on_path" {

 rules_v2024_02_12 {

 name = "Redirect Based on Path"

 comments = "301/302 Redirect based on path match."

 criteria_must_satisfy = "all"

 criterion {

 path {

 match_case_sensitive = false

 match_operator = "MATCHES_ONE_OF"

 normalize = false

 values = ["/sourcepath",]

 }

 }

 behavior {

 redirect {

 destination_hostname = "SAME_AS_REQUEST"

 destination_path = "OTHER"

 destination_protocol = "HTTPS"

 mobile_default_choice = "DEFAULT"

 query_string = "APPEND"

 response_code = 301

 destination_path_other = "/destinationpath"

 }

 }

 }

}

data "akamai_property_rules_builder" "property_rule_css_and_java_script" {

 rules_v2024_02_12 {

 name = "CSS and JavaScript"

 comments = "Override the default caching behavior for CSS and JavaScript."

 criteria_must_satisfy = "any"

 criterion {

 file_extension {

 match_case_sensitive = false

 match_operator = "IS_ONE_OF"

 values = ["css", "js",]

 }

 }

 behavior {

Paper ID: SR241109034713 DOI: https://dx.doi.org/10.21275/SR241109034713 675

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 caching {

 behavior = "MAX_AGE"

 must_revalidate = false

 ttl = "2h"

 }

 }

 }

}

4) Applying the Configuration

After configuring the property, you can apply the Terraform

configuration using the following commands:

• Initialize Terraform: terraform init

This command initializes the working directory, setting up

the required Terraform provider.

• Plan the Changes: terraform plan

This step allows you to preview the changes Terraform

will make when applying the configuration, ensuring that

everything is correct.

• Apply the Changes: terraform apply

Terraform will now create or modify the Akamai property

as defined in the configuration.

5) Integrating Akamai CLI for Automation

In addition to Terraform, Akamai provides a CLI that can be

used for additional automation tasks such as activating

properties, validating configurations, and managing edge

behaviors. The Akamai CLI can complement IaC by handling

post-deployment tasks.

Install Akamai CLI using: brew install akamai

To activate a property, for example, you can use the following

command:

• akamai property activate --network staging --property-

name example-property

• This command activates the property on the staging

network, ready for testing before pushing it to production.

6) Version Control and CI/CD

• Managing Akamai properties as code enables

collaboration, version control, and repeatability. Storing

your Terraform configuration files in a version control

system like Git ensures that every change is tracked,

allowing for seamless collaboration among teams.

• Furthermore, integrating Terraform with CI/CD

pipelines, such as Jenkins, GitLab CI, or GitHub Actions,

allows for automated deployments and continuous

delivery of Akamai configurations. This automation

enhances deployment reliability, reduces manual errors,

and ensures consistency across environments.

CI/CD Example Pipeline

Here’s an example of how a CI/CD pipeline might look in

GitLab CI to automate Akamai Property Manager:

stages:

 - deploy

deploy_to_akamai:

 stage: deploy

 script:

 - terraform init

 - terraform apply -auto-approve

 only:

 - main

This configuration ensures that changes to the main branch

automatically trigger the Terraform deployment, applying

updates to Akamai properties.

When automating Akamai configurations, especially using

tools like Terraform or APIs, following best practices ensures

smooth deployments, minimizes errors, and maximizes

efficiency. Below are the key best practices for automating

Akamai configurations:

4. Best Practices

1) Use Infrastructure as Code (IaC) Tools

• Terraform Automation: Automate Akamai

configurations like Property Manager and

EdgeWorkers with Terraform for repeatability,

version control, and consistency.

• Version Control: Store Terraform code in Git for

tracking, collaboration, and rollback.

Paper ID: SR241109034713 DOI: https://dx.doi.org/10.21275/SR241109034713 676

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

2) Modularize Code

• Reusable Modules: Divide Terraform code into

modules (e.g., caching, security policies) to simplify

updates and scalability.

• Use Variables: Externalize environment-specific

values with Terraform variables for flexible

configuration management.

3) Ensure Idempotency

• Automate Consistently: Avoid manual overrides,

ensuring automation produces consistent results.

• Test in Staging: Deploy configurations in staging

before production to catch issues early.

4) Adopt GitOps

• CI/CD Pipelines: Integrate with CI/CD pipelines

(e.g., Jenkins) to test and validate configurations

before deployment.

• Approval Gates: Require approvals for sensitive

updates to ensure impact control.

5) Versioning and Rollbacks

• Akamai Versioning: Use Akamai’s API for

automatic version control.

• State Management: Manage Terraform state files

securely using remote backends like AWS S3.

6) Monitoring and Alerts

• Real-time Monitoring: Use Akamai’s APIs with

observability tools for insights on performance and

security.

• Set Alerts: Enable alerts for key metrics and

implement synthetic testing to validate changes.

7) Security Best Practices

• Automate Security Settings: Use Terraform to

automate WAF, bot management, and DDoS

settings.

• Rotate API Keys: Regularly rotate API keys and

enforce HTTPS for secure content delivery.

8) Edge Logic Automation

• EdgeWorkers: Automate EdgeWorker

deployments and version control to streamline edge

processing.

9) Caching and Purging

• Automate Cache Purging: Use Akamai’s Fast

Purge API for timely cache invalidation and apply

appropriate TTLs for content.

10) Multi-environment Strategy

• Separate Environments: Automate each

environment separately to ensure consistency and

reduce errors.

11) Documentation

• Document Configurations: Keep detailed

documentation of configurations and CI/CD

workflows for easy reference.

12) Regular Audits

• Audit Configurations: Periodically audit

configurations to ensure they meet performance and

security standards. Review metrics to optimize

performance.

• Review Usage Metrics: Regularly review CDN

usage, cache efficiency, and traffic patterns to ensure

that automation is delivering optimal performance.

5. Discussion

Akamai automation through Terraform simplifies the process

of managing and provisioning Akamai properties, enabling

DevOps teams to achieve infrastructure-as-code (IaC)

practices. By leveraging Terraforms declarative configuration

language, users can define Akamai resources such as property

configurations, behaviors, and rulesets in version-controlled

code. This brings consistency, repeatability, and the ability to

track changes over time, which is needed for large-scale

deployments. Automation using Terraform also eliminates the

need for manual configuration within Akamai Property

Manager, reducing human error and speeding up the

deployment process. Terraforms state management ensures

that the current configuration is always in sync with the

defined code, allowing teams to maintain precise control over

their Akamai edge platform configurations.

In addition to streamlining the configuration process,

terraform automation provides the flexibility to integrate with

CI/CD pipelines, further enhancing the operational efficiency

of managing Akamai properties. Through automated

pipelines, changes to Akamai configurations can be validated,

tested, and applied seamlessly without manual intervention.

This approach aligns well with the broader DevOps

philosophy of continuous integration and continuous delivery,

allowing organizations to deploy updates and improvements

quickly and with reduced risk. Furthermore, leveraging

Terraforms modularity, teams can create reusable

components, ensuring that common Akamai configuration

patterns are standardized across the organization, driving both

efficiency and consistency in edge service management.

6. Conclusion

Automating Akamai Property Manager with Infrastructure as

Code (IaC) streamlines property management, reduces

manual effort, and enhances scalability. By using tools like

Terraform and Akamai CLI, organizations can ensure all

configurations are version controlled and integrated with

CI/CD pipelines. This journal outlines a guide for

implementing IaC for Akamai properties, emphasizing

efficient large-scale configuration management, minimal

downtime, and fast updates.

While Terraform offers substantial benefits for managing

Akamai properties, challenges such as configuration

complexity, limited provider features, and large state file

performance issues remain. Overcoming these through

modular design, manual interventions for unsupported

features, and efficient state management enables teams to

harness Terraform effectively, reducing errors and

accelerating deployments.

References

[1] Terraform Documentation:

https://www.terraform.io/docs

[2] Akamai Developer: https://developer.akamai.com

[3] Akamai CLI: https://techdocs.akamai.com/cli/docs.

Paper ID: SR241109034713 DOI: https://dx.doi.org/10.21275/SR241109034713 677

http://www.ijsr.net/

