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Abstract: 

Fuzzy Fixed Point Theory has emerged as a powerful tool in addressing uncertainties in 

numerical methods for solving fuzzy equations. This theory extends classical fixed point 

concepts to fuzzy environments, enabling the resolution of equations where parameters and 

solutions are expressed as fuzzy sets rather than crisp numbers. The paper explores the 

application of fuzzy fixed point theory in developing numerical methods for solving fuzzy 

equations, with a focus on its convergence properties, stability, and computational efficiency. 

Techniques such as iterative methods and fuzzy differential equations are examined, 

demonstrating the utility of fuzzy fixed point theory in handling imprecise or vague data. 

The results reveal that fuzzy fixed point-based numerical methods offer robust solutions in 

various fields, including engineering, finance, and decision-making, where uncertainty is 

prevalent. 
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Introduction: 

Numerous experimenters have shown interest in studying fuzzy equations in the past.Perfect fine 

modeling of real-world situations with a query is what fuzzy equations are recognized for. Equations 
with variables that may be changed from the fuzzy set's form are known as fuzzy equations.FDEs 

may also be used to simulate discriminational equations when their parameters or countries are 

ambiguous. For modeling and nonlinear control, the outcomes of the fuzzy equations may be directly 

enforced. There are many issues with using finite-dimensional state models for creating control rules 

10 for distributed-mass systems.It is suggested to use Newton's system to solve “fuzzy nonlinear 
equations”. “Fuzzy nonlinear systems” are proposed to operate in the fixed point system. “Fuzzy 

Fourier transfigures” 15 is used to examine the logical outcome of a fuzzy heat equation under 

generalized “Hukuhara partial differentiability”.The fuzzy outside concept is used to bandy the 

oneness and stability of the outcome for the fuzzy Poisson equation. The “Runge-Kutta system”, the 

interpolation system, and the iterative system may all be used to get the numerical results of the fuzzy 
equations. FDE may be broken using certain numerical styles, such as the Runge-Kutta system and 

the Nystrom system. The fuzzy original value problem's approximate answer is obtained using the 

Euler system. Alternate-order FDE findings are obtained using the Laplace transfigure system. It is 

suggested to create the various non-traveling surge outcomes of nonlinear PDEs in the emulsion(G ′ 

G)-expansion system. Under generalized differentiability, first-order totally fuzzy direct 

discriminational equations with inpositive 25 or negative outcomes are examined. Fuzzy direct 

fractional discriminational equations under Riemann-Liouville H-differentiability are examined in 
concreted findings. Fuzzy equations may also be solved using artificial neural networks. Artificial 

neural networks are used to solve 30 fuzzy quadratic problems. Artificial neural networks are used 

to solve fuzzy polynomial problems. Binary fuzzy equations are solved using artificial neural 

networks. To approximate completely fuzzy matrix problems, a method based on fuzzy neural 

networks is proposed. On the other hand, when it comes to wide fuzzy equations, these methods fail 

when utilizing artificial neural networks. Similarly, they can't use artificial neural networks to directly 

create fuzzy sections. A system of artificial neural networks is suggested for solving FDEs under 

initial circumstances. A fuzzy conclusion system model based on an unsupervised adaptive network 

is suggested for solving discriminational equations. 40 are used in neural algorithms to solve 
discriminational equations. Two operational PDEs are handled by artificial neural networks. fuzzy 

PDE, fuzzy FDE, fuzzy fuzzy equations, and binary fuzzy equations. The roots of these equations 

may be obtained in a variety of ways, as this paper explains in detail. There are a number of conditions 
that ensure the roots of these equations are genuine. The benefits of numerical approaches with regard 

to perfection are also shown. The composition's following sections are arranged as follows. Some of 
the initial definitions used throughout the remainder of the study are provided in Section 2. A few 

numerical approaches for predicting the outcomes of fuzzy and binary fuzzy equations are covered 

in Section 3. Some numerical methods for varying the outcomes of fuzzy PDEs and FDEs are covered 

in Section 4. Fifty-five numerical examples with relative analysis are presented in Section 5. The 

paper is concluded in Section 6. Many experimenters have been interested in studying fuzzy 

equations for a long time. Perfect fine equations that represent real-world issues with queries are 

called fuzzy equations. Equations with modifiable parameters from the fuzzy form set are known as 

fuzzy equations. FDE may also be used to solve discriminational equations with ambiguous 
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parameters or nations. Direct enforcement of working fuzzy equations is possible for both modeling 

and nonlinear control. When creating control rules 10 for dispersed matter systems, several issues 

pertaining to the functioning of finite-dimensional state models are thrown in. The solution to fuzzy 

nonlinear equations is Newton's system. Fuzzy nonlinear systems are operated in fixed point systems. 

The fuzzy Fourier transfigure 15 is used to analyze the fuzzy heat equation's analytical conclusion 

for generalized Hukuhara partial differentiability. Regarding consistency and stability of outcomes 

for fuzzy The fuzzy outside concept serves as the foundation for Poisson's equations. The Runge-

Kutta system, the interpolation system, and the iterative system may all be used to provide numerical 

results for fuzzy equations. Some numerical styles that are comparable to Runge-20 and Nystrom's 

system The FDE can be broken using Kutto's approach. To provide an approximate solution to the 

fuzzy original value issue, Euler's system is used. The alternate-order result FDE is obtained using 

the Laplace transform system. The construction of a G)-expansion system using several non-linear 

stationary surge PDEs is suggested in the emulsion (G ′). Under generalized differentiability, totally 

fuzzy direct discriminational equations of the first order with positive or negative outcomes are 

examined. Fractional discriminational equations under Riemann-Liouville H-differentiability are 

examined in a particular fuzzy direct result. Fuzzy equations may also be solved by artificial neural 

networks. In order to resolve IN 30 fuzzy quadratic equations, artificial neural networks are used. 

Fuzzy polynomial issues are solved with artificial neural networks. In order to resolve binary fuzzy 

equations, artificial neural networks are used in(). The fuzzy neural network-based system is intended 

to approximate the solution of entirely fuzzy matrix equations. Nevertheless, current approaches are 

unable to use artificial neural networks to solve generic fuzzy 35 equations. Additionally, he is unable 

to use artificial neural networks to directly create fuzzy sections. A neural network approach is 

suggested in artificial intelligence to solve FDE under initial circumstances. IN is a fuzzy conclusion 

system model designed to solve discriminational equations. It is based on an unsupervised adaptive 

network. 40 uses neural algorithms to solve discriminational equations. Two functional PDEs make 

use of artificial neural networks. A class of first-order PDEs is broken using multilayer artificial 

neural networks. An unsupervised artificial neural network is designed to address discriminative 

equations. An artificial neural network is used to address the boundary value control problem for the 

heat equation. This composition summarizes the 45 existing numerical result styles: fuzzy equations, 

binary fuzzy equations, FDE, and fuzzy PDE. The solutions to these equations may be derived by 

several methods, as discussed in this work. Several criteria guarantee that the roots of these equations 

are authentic. The advantages of numerical styles are shown in 50 specific dates. The subsequent 

sections of the document are organized as follows. Section 2 contains some preliminary definitions 

used in the subsequent sections of the work. Section 3 addresses several numerical methods for 

solving fuzzy equations and binary fuzzy equations. Section 4 addresses various numerical data 

methodologies for impacting fuzzy PDR and FDE results.   
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1 Fuzzy Initial Value Problem 
 

Here, we introduce fuzzy initial value problem in the following form: 

y '(t)= f (t, y(t)) , t ∈ [t0,T ] 
y(t ) =  y 

 

 

(1) 

0 0 

where y is a fuzzy function of t, f (t, y) is a fuzzy function of the crisp variable t and 
the fuzzy variable y, y' is the fuzzy derivative of y and y(t0)= y0 is a triangular or 
a triangular shaped fuzzy number. As a result, our issue is hazy cauchy. The 
fuzzy function y is represented by the notation y = [y1, y2].  
 It means that the r-level set of “y(t) for t ∈ [t0,T ]” is 

[y(t0)]r = [y1(t0; r), y2(t0; r)],  [y(t)]r = [y1(t; r), y2(t; r)] r ∈ (0, 1]. 

    The membership function is obtained by using Zadeh's extension concept. 

f (t, y(t))(s) = sup{y(t)(τ )|s = f (t, τ )}, s ∈ R (2) 

so f (t, y(t)) is a fuzzy number. From this it follows that 

[f (t, y(t))]r = [f1(t, y(t); r), f2(t, y(t); r)], r ∈ (0, 1] (3) 
 

where 

 
We define 

f1(t, y(t); r) = min{f (t, u)|u ∈ [y1(t; r), y2(t; r)]}, 

f2(t, y(t); r) = max{f (t, u)|u ∈ [y1(t; r), y2(t; r)]}. 

 

f1(t, y(t); r )=  F [t, y1(t; r), y2(t; r)], 

f2(t, y(t); r )=  G[t, y1(t; r), y2(t; r)]. 

 

(4) 

 
(5) 
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Definition 1.1 A function f : R → RF is called a fuzzy function. If for arbitrary fixed 
t0 ∈ R and ϵ > 0 ,a δ > 0 such that 

|t − t0| < δ ⇒ D[f (t),f (t0)] < ϵ  

exist, is said to be continuous. 
Fuzzy functions that are continuous in metric D are also taken into consideration in this 
study. Then, for t ∈ [t0,T ] and r ∈ [0, 1], [6], the existence of the Definitionnite of f (t, y(t); 
r) is guaranteed by the continuity of f (t, y(t); r). 
As a result, G and F may also be definite functions. 
 

 

2 Modified Euler’s Method 

Consider the initial value problem 

y '(t)= f (t, y(t)) , t ∈ [t ,T ] 

y(t0)= y0 
(6)

 

It is known that, the sufficient conditions for the existence of a unique solution to 
(6) are that f to be continuous function satisfying the Lipschitz condition of the 
following form: 

 f (t, x) − f (t, y)  ≤ L  x − y  , L > 0. 

We replace the interval [t0,T ] by a set of discrete equally spaced grid points 
 

t < t < t < . . .  < t = T, h = 
T − t0 

, t = t + ih, i = 0, 1 , . . . ,  N. 

0 1 2 N N 
i 0 

to obtain the Euler method for the system (6), we apply Trapezoidal numerical 
integration method. Integrate the differential equation 

y'(t)= f (t, y(t)) over [tn, tn+1] to obtain 
 

 

 
Therefore 

tn+1 

tn 

y'(t) dt = 
tn+1 

tn 

f (t, y(t)) dt. 

y(tn+1)= y(tn)+ h 
h

f (tn, y(tn)) + f (tn+1, y(tn+1))
i
 

 
(7) 

3 

− 12 f 
(2) (ξ1, y(ξ1)) 

for some tn ≤ ξ1 ≤ tn+1. Equation (7) is an implicit equation in term of 

y(tn+1). To avoid of solving such implicit equation we will substitute y(tn+1) 

∫ ∫ 
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2 

n 

n 2 2 

n 2 2 2 y 3 

2 

  

by y(t )+  hf (t , y(t )) + h
2 

f'(ξ , y(ξ )) in right hand of (7), where 

n n n 2 2 2 

ξ2 ∈ [tn, tn+1]. Therefore, 

y(tn+1) 
= y(t )+  h f (t , y(t )) + hf t 

 

 
, y(t 

 

 
)+  hf (t 

 

 
, y(t 

 

 
)) + h

2 

f'(ξ , y(ξ ))
 
 

n 2 n n 
h3 (2) 

2 n+1 n n n 2 2 2 

− 12 f (ξ1, y(ξ1)), tn ≤ ξ1 ≤ tn+1, tn ≤ ξ2 ≤ tn+1. 
(8) 

But we have 

f
  

t , y(t )+  hf (t , y(t )) + h
2 

f'(ξ , y(ξ ))
 
 

= f
 
t , y(t )+  hf (t , y(t ))

  
+ h

2 

f'(ξ , y(ξ ))f (t 
(9) 

,ξ  ) 

where ξ3 is in between y(tn)+ hf (tn, y(tn)) and 
y(t )+  hf (t , y(t )) + h

2 

f'(ξ , y(ξ )). 
n n n 2 2 2 

As the result of above we will have 

y(tn+1)  = y(tn)+ h 
h

f (tn, y(tn)) + f (tn+1, y(tn)+ hf (tn, y(tn))
i
 

(10) 

+ h
3 

f'(ξ , y(ξ ))f (t ,ξ ) − h
3 

f ''(ξ , y(ξ )) 
4 2 2 y  n+1 3 12 1 1 

Thus we have the following one-step explicit equation for calculation y(tn+1) using 
y(tn): 

y(t ) =  y(t )+  
h 

h
f (t , y(t )) + f (t , y(t )+  hf (t , y(t ))

i 
(11) 

with initial value y0 = y(t0). 
By dropping the remainder term in (9), we obtain an equivalent equation with 

(11), modified Euler’s method as following, 

h 
y(tn+1)= y(tn)+ 

2 
[f (tn, y(tn)) + f (tn+1, y(tn+1))] n ≥ 0. (12) 

Let y(0)(tn+1)= y(tn)+ hf (tn, y(tn)) be a good initial guess of the solution 

y(tn+1), and define 
 

y(j+1)(t ) =  y(t h 
)+  [f (t , y(t )) + f (t , y(j)(t ))], j = 0, 1 , . . .  (13) 

n+1 n 2 n n n+1 n+1 

n+1 

n 2 

n+1 n n n+1 

n+1 

n n n n+1 n n n 
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n+1 n+1)= 
2 

[ n n 
n+1 n+1 
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which (13) is known as iterative solution of modified Euler’s method relation. To 
analyze the iteration and to determine conditions under which it will converge, 
subtract (13) from (12) to obtain 

 

y(t ) − y(j+1)(t 
h  f (t , y(t )) + f (t , y(j)(t ))]. (14) 



 

    

2 + h F tn+1, Y1(tn; r)+ hF [tn, Y1(tn; r), Y2(tn; r)] 

2 n n 1 n 2 n 

+ h G tn+1, Y1(tn)+ hF [tn, Y1(tn; r), Y2(tn; r)] 

2 n 1 2 

Use the Lipschitz condition in problem (8) to bound this with 

|y(t 
 

) − y(j+1)(t 
hK 

)|≤ |y(t ) − y(j)(t )| j ≥ 0, (15) 

thus 

n+1 n+1 
 

2 n+1 n+1 

hK  j+1 

|y(tn+1) − y(j+1)(tn+1)|≤  
2 

If 

|y(tn+1) − y(0)(tn+1)|. (16) 

hK 
≤ 1 

2 
then the iterates “y(j)(tn+1) will converge to y(tn+1) as j → ∞, and the 
computation of yn+1 from yn contains a truncation error of O(h3)”, for more 
details see [1]. 

 

3 Modified Euler’s Method for Numerical 
Solution of FDEs 

Let Y = [Y1, Y2] be the exact solution and y = [y1, y2] be the approximated solution 
of the initial value equation(1) by using the one-step modified method. Let, 

[Y (t)]r = [Y1(t; r), Y2(t; r)] , [y(t)]r = [y1(t; r), y2(t; r)]. 

“Also we note that throughout each integration step, the value of r is 
unchanged. The exact and approximated solution at tn are denoted by” 

[Y (tn)]r = [Y1(tn; r), Y2(tn; r)] , [y(tn)]r = [y1(tn; r), y2(tn; r)] (0 ≤ n ≤ N), respectively. 

The grid points at which the solution is calculated are 

h = 
T − t0 

, t = t + ih 0 ≤ i ≤ N. 

N 
i 0 

By using the modified Euler method we obtain: 
Y1(tn+1; r)  = Y1(tn; r)+ h F [tn, Y1(tn; r), Y2(tn; r)] 

h 2 
 

 

,Y (t ; r)+ hG[t ,Y (t ; r),Y (t ; r)]
i
 

(17) 

 
and 

+h3A1(r) 

Y2(tn+1; r)  = Y2(tn; r)+ h G[tn, Y1(tn; r), Y2(tn; r)] 

h 2 
 

 

 

,Y (t ; r)+ hG[t ,Y (t ; r),Y (t ; r)]
i
 

(18) 

+h3A2(r) 

2 

n n n 
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2 

2 

n=0 

n=0 

n=0 

+ h F tn+1, y1(tn; r)+ hF [tn, y1(tn; r), y2(tn; r)] 

+ h G tn+1, y1(tn)+ hF [tn, y1(tn; r), y2(tn; r)] 

where A = [A1, A2], [A]r = [A1(r), A2(r)] and 

[A 
1 

f'(ξ ,Y (ξ )).f (t ,ξ ) − 
1 

f ''(ξ ,Y (ξ )] . (19) 

 
Also we have 

]r =[  2 
4 

2 y  n+1 3 12 1 1 r 

y1(tn+1; r)  = y1(tn; r)+ h F [tn, y1(tn; r), y2(tn; r)] 
h 2 

 
 

 

 
and 

, y2(tn; r)+ hG[tn, y1(tn; r), y2(tn; r)]
i
 

 
y2(tn+1; r)  = y2(tn; r)+ h G[tn, y1(tn; r), y2(tn; r)] 

h 2 
 

, y2(tn; r)+ hG[tn, y1(tn; r), y2(tn; r)]
i
 

We will next demonstrate that whenever h → 0, the y1(t; r) and y2(t; r) 
described in the earlier manner converge to Y1(t; r) and Y2(t; r), respectively. 
We first review the following lemmas in order to demonstrate these claims. 

 

Lemma 3.1 Let the sequence of numbers {Wn}N satisfy 

|Wn+1|≤ A|Wn| + B, 0 ≤ n ≤ N − 1, 

For the specified positive constants A and B. Then 
 

 
Proof. See[10]. 2 

 

|Wn|≤ 
An 

An − 1 
|W0| + B 

A − 1 
, 0 ≤ n ≤ N. 

 

Lemma 3.2 Let the sequence of numbers {Wn}N , 

{Vn}N 

satisfy 

|Wn+1|≤ |Wn| + A max{|Wn|, |Vn|} + B, 

|Vn+1|≤ |Vn| + A max{|Wn|, |Vn|} + B, 

for the given positive constants A and B. Then, denoting 

Un = |Wn| + |Vn|, 0 ≤ n ≤ N, 
 

we have 

Un ≤ Ān
  ̄Ā

n − 1 
U0 + B 

Ā − 1 
, 0 ≤ n ≤ N, 

where Ā = 1  + 2A and B̄ = 2B. 

(20) 

(21) 
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Proof. See[10].  
Our following observations confirmed the point-wise convergence of the 
modified "Euler approximations" to the exact answer. Let F [t, u, v] and G[t, u, v] 
be the functions which are given by the equations (6), (7) where u and v are 
constants and u ≤ v. Thus the domain of F and G are defined as the following: 

K = {(t, u, v)|t0 ≤ t ≤ T, −∞ < u ≤ v, −∞ < v < ∞}. 

In what follows, we shall prove the convergence theorem using the 
aforementioned symbols. 

Theorem 3.3 Assume that the partial derivatives of F (t, u, v) and G (t, u, v) are 
constrained over RF and that they belong to C1(RF). The numerical solutions of 
(22) and (23) then converge uniformly in t to the precise solutions Y1(t; r) and 
Y2(t; r) for arbitrarily defined r, 0 < r ≤ 1. 

Proof. It is sufficient to show 

lim y1(tN ; r )=  Y1(tN ; r), lim y2(tN ; r )=  Y2(tN ; r) 
h→0 h→0 

where “ tN = T . Let Wn = Y1(tn; r) − y1(tn; r), Vn = Y2(tn; r) − y2(tn; r), by using 
the equations (19), (20), (22) and (23)”, we get: 

|Wn+1|≤ |Wn|+Lh max{|Wn|, |Vn|}+Lh[2Lh max{|Wn|, |Vn|}+max{|Wn|, |Vn|}]+h3M1, 

|Vn+1|≤ |Vn|+Lh max{|Wn|, |Vn|}+Lh[2Lh max{|Wn|, |Vn|}+max{|Wn|, |Vn|}]+h3M2, 

where M1, M2 are upper bound for A1(r), A2(r) respectively. Hence, 

|Wn+1|≤ |Wn| + Lh{1+ (1 + 2Lh)} max{|Wn|, |Vn|} + h3M, 

|Vn+1|≤ |Vn| + Lh{1+ (1 + 2Lh)} max{|Wn|, |Vn|} + h3M, 

where M = max{M1, M2}, and L > 0 is a bound for the partial derivatives of 

F and G. Therefore from Lemma 5.2, we obtain 

2n 3 (1 + 2Lh)2n − 1 

|Wn|≤ (1 + 2Lh) |U0| + 2h M 
(1 + 2Lh)2 − 1 

,
 

|Vn|≤ (1 + 2Lh)2n |U0| + 2h3M 
(1 + 2Lh)2n − 1 

(1 + 2Lh)2 − 1 
,
 

where |U0| = |W0| + |V0|. In particular, 

|W  |≤  (1 + 2Lh)2N |U | + 2h3M 
(1 + 2Lh)

 
2(T−t0 ) 

h − 1 , 

N 0 (1 + 2Lh)2 − 1 
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2 

h i 

2 

h i 

1 

2 

2 

= y2(tn; r)+ h G(tn, y1(tn; r), y2(tn; r)) + G(tn+1, y(j)(tn+1; r), y(j)(tn+1; r)) 
h i 

 

|V  |≤  (1 + 2Lh)2N |U | + 2h3M 
(1 + 2Lh)

 
2(T−t0) 

h − 1 , 
N 0 

since W0 = V0 = 0, we have 

(1 + 2Lh)2 − 1 

e4L(T−t0) − 1  2 e4L(T−t0) − 1  2
 

|WN |≤  
M 2L(1 + hL) 

h , |VN |≤  M 
2L(1 + hL) 

h ,
 

Thus, if h → 0, we conclude WN → 0 and VN → 0, which completes the 
proof. 2 

By using modified Euler method (14), we obtain: 

y1(tn+1; r) 

= y1(tn; r)+ h  F (tn, y1(tn; r), y2(tn; r)) + F (tn+1, y1(tn+1; r), y2(tn+1; r)) , 

y2(tn+1; r) 

= y2(tn; r)+ h  G(tn, y1(tn; r), y2(tn; r)) + G(tn+1, y1(tn+1; r), y2(tn+1; r)) , 

 
and from (11), we have y1(tn+1; r) and y2(tn+1; r) in right side of above 
equations as follows: 

y1(tn+1; r )=  y1(tn; r)+ hF [tn, y1(tn; r), y2(tn; r)], 

y2(tn+1; r )=  y2(tn; r)+ hG[tn, y1(tn; r), y2(tn; r)]. 

From section 5, we consider initial guesses, 

y(0)(tn+1; r )=  y1(tn; r)+ hF [tn, y1(tn; r), y2(tn; r)], 

y(0)(tn+1; r )=  y2(tn; r)+ hG[tn, y1(tn; r), y2(tn; r)], 

for the iterative solutions below, respectively: 

y
(j+1)(tn+1; r) 

(22) 
 

 
(23) 

 

 
(24) 

1 h i 
= y1(tn; r)+ h  F (tn, y1(tn; r), y2(tn; r)) + F (tn+1, y(j)(tn+1; r), y(j)(tn+1; r)) , 

2 1 2 

y
(j+1)(tn+1; r) 

 
 

2 1 2 

(25) 

In order to show the next crucial theorem, the following lemma must be proven. 

Lemma 3.4 Let F (t, u, v) and G(t, u, v) belong to C1(RF ) and the partial derivatives of 
F and G be bounded over RF . Then for arbitrarily fixed r, 
0 ≤ r ≤ 1, 

D(y(tn+1), y(0)(tn+1)) ≤ h2L(1 + 2C), 

where L is a bound of partial derivatives of F and G, and 

C = max{|G[tN , y1(tN ; r), y2(tN−1; r)]|r ∈ [0, 1]} < ∞. 

. 
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= 

= 

= 

h 
2 F tn+1, y1(tn; r)+ hF [tn, y1(tn; r), y2(tn; r)], y2(tn; r) 

h 
2 G tn+1, y1(tn; r)+ hF [tn, y1(tn; r), y2(tn; r)], y2(tn; r) 

h 
2 F tn+1, y1(tn; r)+ hF [tn, y1(tn; r), y2(tn; r)], y2(tn; r) 

h 
2 G tn+1, y1(tn; r)+ hF [tn, y1(tn; r), y2(tn; r)], y2(tn; r) 

Proof. By substituting (23) in (22) and subtraction obtained equation from (24), 
we get, 

 

 
y1(tn+1; r) − y(0)(tn+1; r) 

n  h 1 

+hG[tn, y1(tn; r), y2(tn; r)]
i 
− F [tn, y1(tn; r), y2(tn; r)]

,
, y2(tn+1; 

r) − y(0)(tn+1; r) 
n  h 2 

+hG[tn, y1(tn; r), y2(tn; r)]
i 
− G[tn, y1(tn; r), y2(tn; r)]

,
, 

 

 

and from those, we can get, 
 

 
y1(tn+1; r) − y(0)(tn+1; r) 

n  h 1 

+hG[tn, y1(tn; r), y2(tn; r)]
i
 

−F 
h

tn, y1(tn; r)+ hF [tn, y1(t;r), y2(tn; r)], y2(tn; r)+ hG[tn, y1(tn; r), y2(tn; r)]
i
 

+F 
h

tn, y1(tn; r)+ hF [tn, y1(t;r), y2(tn; r)], y2(tn; r)+ hG[tn, y1(tn; r), y2(tn; r)]
i
 

−F [tn, y1(tn; r), y2(tn; r)]
,
, 

(26) 

 
y2(tn+1; r) − y(0)(tn+1; r) 

n  h 2 

+hG[tn, y1(tn; r), y2(tn; r)]
i
 

−G
h

tn, y1(tn; r)+ hF [tn, y1(t;r), y2(tn; r)], y2(tn; r)+ hG[tn, y1(tn; r), y2(tn; r)]
i
 

+G
h

tn, y1(tn; r)+ hF [tn, y1(t;r), y2(tn; r)], y2(tn; r)+ hG[tn, y1(tn; r), y2(tn; r)]
i
 

−G[tn, y1(tn; r), y2(tn; r)]
,
. 

(27) 

The following relations are derived by applying the mean value theorem to the 
partial derivatives of F and G, when L > 0 (26) and 

= 

 

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Paper ID: MR241128145849 DOI: https://dx.doi.org/10.21275/MR241128145849 1864 

Volume 13 Issue 11, November 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 



  
 

1 

2 

1 

2 

≤ h2L 
2 1 2 

≤ h2L 
2 1 2 

 
|y1(tn+1; r) − y(0)(tn+1; r)| 

n 1 , 

≤ h
2L{1+ 2|G(t ,y (t ; r),y (t ; r)]|}, 
2 n 1  n 2  n (28) 

|y2(tn+1; r) − y(0)(tn+1; r)| 
n 2 , 

≤ h
2L{1+ 2|G(t ,y (t ; r),y (t ; r)]|}. 

 

2 

In particular, 

n 1  n 2  n 

|y (t ); r) − y(0)(t ; r)|≤ h
2L (1 + 2C), 

1 N 1 N 2 
|y (t ; r) − y(0)(t ; r)|≤ h

2L (1 + 2C), 
2 N 2 N 2 

by adding two inequalities, one obtains, 

|y1(tN ); r) − y(0)(tN ; r)| + |y2(tN ; r) − y(0)(tN ; r)|≤ h2L(1 + 2C). 
1 2 

Hence 

D(y(tN ), y(0)(tN )) ≤ h2L(1 + 2C), (29) 

This completes the proof. 2 

Theorem 3.5 “ Let F (t, u, v) and G(t, u, v) belong to C1(RF ) and the partial 
derivatives of F and G be bounded over RF and 2Lh < 1. Then for arbitrarily 
fixed 0 ≤ r ≤ 1, the iterative numerical solutions of y(j)(tn; r) and y(j)(tn; r) 
converge to the numerical solutions y1(tn; r) and y2(tn; r) in 
t0 ≤ tn ≤ tN , when j → ∞.” 

Proof. It is sufficient to show 

lim y(j)(tN ; r )=  y1(tN ; r), lim y(j)(tN ; r )=  y2(tN ; r) 
j→∞  

1 
j→∞  

2
 

where tN = T . For n = 0, 1 , . . . ,N  − 1, By using the equations (22) and (25), we 
get: 

y1(tn+1; r) − y(j+1)(tn+1; r) 
= h{F [tn+1, y1(tn+1; r), y2(tn+1; r)] − F [tn+1, y(j)(tn+1; r), y(j)(tn+1; r)]}, 

2 1 2 

y2(tn+1; r) − y(j+1)(tn+1; r) 
= h{G[tn+1, y1(tn+1; r), y2(tn+1; r)] − G[tn+1, y(j)(tn+1; r), y(j)(tn+1; r)]}. 

2 1 2 
(30) 

   

n n n n n 

2 n n n n n 

2 1+ |F [t , y(t ; r),y (t ; r)]| + |G[t n ,y (t ; r),y (t ; r)]| 

1+ |F [t , y(t ; r),y (t ; r)]| + |G[t n ,y (t ; r),y (t ; r)]| 
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1 

1 

1 

2 

Let L > 0 be a bound for the partial derivatives of F and G; the following relations 
are derived from the application of the mean value theorem to  (30): 

|y1(tn+1; r) − y(j+1)(tn+1; r)| 
≤ Lh {|y1(tn+1; r) − y(j)(tn+1; r)| + |y2(tn+1; r) − y(j)(tn+1; r)|}, 

2 1 2 (31) 

|y1(tn+1; r) − y(j+1)(tn+1; r)| 
≤ Lh {|y1(tn+1; r) − y(j)(tn+1; r)| + |y2(tn+1; r) − y(j)(tn+1; r)|}. 

2 1 2 

Consequently, as derived from Definition D, the Hausdorff distance, as discussed in 
section 2, will yield: 

|y1(tn+1; r) − y(j+1)(tn+1; r)|≤ LhD(y(tn+1), y(j)(tn+1)), 

|y2(tn+1; r) − y(j+1)(tn+1; r)|≤ LhD(y(tn+1), y(j)(tn+1)). 

Hence, “adding two inequalities gives”, 

D(y(tn+1), y(j+1)(tn+1))  ≤ 2LhD(y(tn+1), y(j)(tn+1)) 

. 

D(y(tn+1), y(j+1)(tn+1))  ≤ (2Lh)j+1D(y(tn+1), y(0)(tn+1)). 

Using lemma 3.4  in special case, we get: 
 

D(y(tN ), y(j+1)(tN
 )) ≤ 

1 
(2Lh)j+2h(1 + 2C). 

2 

The desired result finally follows from condition 2Lh ≤ 1, 

lim D([y(tN )]r, [y(j)(tN )]r)= 0. 
j→∞ 

The proof is complete. 2 

 

4 Numerical Results 

There are two numerical examples that we will provide in this section. We have 
created an error table for each of the cases in order to determine the degree of 
precision that exists between our numerical solution and the theoretical precise 
solution. The errors are derived from the equation “D[Y (t; r), y(t; r)] for t = tN ,  r 
∈ [0, 1].” 

In addition to the “convergence theorem”, the numerical results demonstrate 
that errors are reduced as h decreases. The precise solutions and the 
approximated solutions for example 1 and example 2 are illustrated in figure 1 
and figure 2, respectively, employing the Euler method alongside the proposed 
method “(Mod.Euler method)”. 
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Figure 1: h=0.2 

 
Example 4.1 Consider the initial value problem [10] 

y '(t)= y(t), t ∈ [0, 1] 

y(0) = (0.75 + 0.25r, 1.125 − 0.125r) 

The exact solution at t = 1  is given by 

Y (1; r) = [(0.75 + 0.25 r)e, (1.125 − 0.125 r)e], 0 ≤ r ≤ 1. 

Using iterative solution of modified Euler’s method, we have 

y1(0; r )=  0.25 + 0.25 r, y2(0; r )=  1.125 − 0.125 r, 

and by 

y(0)(ti+1; r )=  y1(ti; r)+ hy1(ti; r), 

y(0)(ti+1; r )=  y2(ti; r)+ hy2(ti; r), 

where i = 0, 1 , . . . ,N  − 1 and h =  1 . Now, using these equations as an initial 
guess for following iterative solutions, respectively, 

y(j)(ti+1; r )=  y1(ti; r)+ h [y1(ti; r)+ y(j−1)(ti+1; r)], 
1 2 1 

y(j)(ti+1; r )=  y2(ti; r)+ h [y2(ti; r)+ y(j−1)(ti+1; r)], 
2 2 2 

where j = 1, 2, 3. Thus we have y1(ti; r )=  y(3)(ti; r) and y2(ti; r )=  y(3)(ti; r), 
1 2 

for i = 1 , . . . ,N .  
Therefore, Y1(1; r) ≈ y(3)(1; r) and Y2(1; r) ≈ y(3)(1; r) are obtained. Table 1 

1 2 

shows estimation of error for different values of r ∈ [0, 1] and h. 
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√ √ 

N 

1 

2 

l1(r)= √k2,1(r)/k1,1(r), l2(r)= √k2,2(r)/k1,2(r), 

Table 1 

 

h 

r 
0.1 0.01 0.001 .0001 

0 0.0025350660 0.0000254824 0.0000002548 0.0000000025 
0.2 0.0024787331 0.0000249162 0.0000002491 0.0000000024 
0.4 0.0024223964 0.0000243499 0.0000002435 0.0000000024 
0.6 0.0023660616 0.0000237836 0.0000002378 0.0000000023 
0.8 0.0023097268 0.0000232173 0.0000002321 0.0000000023 
1 0.0022533920 0.0000226510 0.0000002265 0.0000000022 

Example 4.2 Consider the fuzzy initial value problem 

y'(t)= k1y2(t)+ k2, y(0) = 0, 

where kj > 0(j = 1, 2) are triangular fuzzy numbers. 

The exact solution is given by 

Y1(t; r )=  l1(r) tan(w1(r)t), 

Y2(t; r )=  l2(r) tan(w2(r)t), 

with     

 
  

 

where 

w1(r)=  k1,1(r)k2,1(r), w2(r)=  k1,2(r)k2,2(r), 

[k1]r = [k1,1(r), k1,2(r)] and [k2]r = [k2,1(r), k2,2(r)], 

k1,1(r)= 0.5+ 0.5r, k1,2(r)= 1.5 − 0.5r, 

k2,1(r)= 0.75 + 0.25r, k2,2(r)= 1.25 − 0.25r. 

Now by using equations below 

y1(0; r )=  y2(0; r )= 0, 
y(0)(ti+1; r )=  y1(ti; r)+ h(k11y2(ti; r)+ k21), 

1 1 
y(0)(ti+1; r )=  y2(ti; r)+ h(k12y2(ti; r)+ k22), 

2 2 

for i = 0, 1 , . . . ,N  − 1 and h =  1 , as an initial guess for following iterative 
solutions, respectively, 

y(j)(ti+1; r )=  y1(ti; r)+ h [k11y2(ti; r)+ k11(y(j−1)(ti+1; r))2 + 2k21] 
1 2 1 1 

y(j)(ti+1; r )=  y2(ti; r)+ h [k12y2(ti; r)+ k12(y(j−1)(ti+1; r))2 + 2k22] 
2 2 2 2 

where j = 1, 2, 3. Similar to example 6.1,we have y1(ti; r )=  y(3)(ti; r) and 

y2(ti; r )=  y(3)(ti; r), for i = 1 , . . .  ,N.  
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Figure 2: h=0.1 
 

 
Therefore,Y1(1; r) ≈ y(3)(1; r) and Y2(1; r) ≈ y(3)(1; r). Table 2 shows 

1 2 

estimation of error for different values of r ∈ [0, 1] and h. 
 
 
 
 
 
 
 

 
Table 2 

 
 

 

h 

r 
0.1 0.01 0.001 .0001 

0 0.4417099428 0.0079388827 0.0000845005 0.0000008504 
0.2 0.18106314062 0.0027073124 0.0000282513 0.0000001172 
0.4 0.0847937757 0.0011335243 0.0000116861 0.0000001172 
0.6 0.0433920492 0.0005375096 0.0000054962 0.0000000550 
0.8 0.0235983073 0.0002766096 0.0000028118 0.0000000281 
1 0.0133874352 0.0001505383 0.0000015235 0.0000000152 
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5 Conclusion 

This study presents the application of an iterative approach utilizing modified 
Euler's method for the numerical resolution of “fuzzy differential equations”. It is 
clear that the approach presented in this paper, characterized by an O(h3) 
complexity, surpasses “Euler's method”, which is defined by an O(h) complexity 
[10]. 
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