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On a Hypersurface of a Conformal 3-Change
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Abstract: We have considered the conformal f8 - change of the Finsler metric is given by L = e’ f(L, B), where ¢ is a function of x ,
B(x,y) =b;(x)y* is a 1-form on the underlying Manifold M™ and f(L, B) isa homogeneous function of degree one in L and . In this

paper we have studied some properties of hypersurface of a Conformal p - change.
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1. Introduction

Let F* = (M™, L) be an n-dimensional Finsler space on the
differentiable manifold M™ equipped with the fundamental
function L(x,y), B. N. Prasad, Bindu Kumari and C. Shibata
[1],[2] have studied the B-change that is L = f(L,B) ,
where f is positively homogeneous function of degree one in
L and B and P is given by B(x,y) = b;(x)y" is a 1-form on
M",

The conformal theory of Finsler space was initiated by
M.S.Knebelman [7] in 1929 and has been investigated in
detail by many authors C Hashiguchi [8] , lzumi [3],[4]
and Kitayama [10].

The Conformal change is defined as L(x,y) = e®L (x, y),
where ¢ is a function of position only and known as
Conformal factor. The B-change of special Finsler space has
been studied by H. S. Shukla, O. P. Pandey and Khageshwar
Mandal [7]. In 2018, H.S.Shukla and Neelam Mishra had
studied the some properties of conformal B — change [5].

The conformal

by

B — change of the Finsler metric is defined

L=e’f(L,B) (1.1)
Where, B(x,y) = b;(x)y* and b; is 1 — form . We have
called this change as conformal B — change of Finsler metric.

In this paper we investigate some properties of hypersurface
of a conformal B-change. The Finsler space equipped with
the metric L given by (1.1) will be denoted by F"
.Throughout the paper the quantites corresponding to F™
will be denoted by putting bar on the top of them . We shall

denote the partial derivatives with respect to
xtand y' by 0; and 9; respectively.
The homogeneity off gives

Lfi+Bf=f (1.2)

Where subscripts 1 and 2 denotes the partial derivatives with
respect to L and P respectively.

Differentiating (1.2) with respect to L and B respectively, we
get

L fia+Bfiz=0and Lfi, + ff,, =0 (1.3)
Hence we have

Ju_ Sz _fe
ﬁZ LB 2 !
which gives

fi1 = .3200 , fiz =—LBw , foz = L*w (1.4)

where Weierstrass function «w is positively homogeneous
function of degree - 3 inL and 3.

Therefore
Lw; + fw, +3w =0 (1.5

Again w,and w, are positively homogeneous function of
degree —4 in L and (3, so that

(@ Lwy+pPw,+4w, =0, (1.6)
(b) Lle + ﬁwzz + 4’(1)2 =0.

Throughout the paper we frequently use equations (1.2) to
(1.7) without quoting them.

2. Fundamental quantities of (M™, L) :

To find the relation between the fundamental quantites of
(M™ L) and (M™ L), we use the  following results :

6‘1.18 = bi !aLL = li ) ajli = L_lhi]' (21)
where h;; are components of angular metric tensor of (
M™, L) given by

hij = gl]_lll] = Lala]L .

The successive derivatives of (1.1)
y! and 1y’ gives ,

with respect to

l_i =e’(fi ttfo)li + e’ fom; (2.2)

— 20
== Lff1 hij + e?? fLl2wm;m; (2.3)

where m; = b;—tl; and T = g

From (2.2) and (2.3) , we get the following relation
between the metric tensors of (M™, L) and (M™, L)

Jij = q-19:;j + 9L + q—3(limj + ljmi) +q-ammy
(2.4)
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where

e°ff

q—l = T ’ q—Z = eZU(fLZw +f22)T2 ) Q—3 =

e f,(fi +1f2) 1G4 = ezo(szw + fzz) .

The contravariant components g of the metric tensor of

(M™, L) will be derived from (2.4) as follows:
g U =p_1gY + p_ol'U + p_s(I'm/ + mil) +
p_am‘m/, (2.5)

where,
1
P-1= Z '
L fB
P2 = W[ﬂfz (L_z_AfZ) - fwp?® = 2pt|
L2f,
P-3 = _ezafzzt )
- Lo
BT
I'= g”lj y bz = gljblbj .
p =  fife—fLBw,t= fi+L3wA, A=b*—1?% q=

3f,0 + fo, . (2.6)
@ 3f ==L+ e fym; (27)
(b) 9:fy = —e’LBwm;

©) dif, = e“LPom;

3wl;

(d) g0 = =2

+ w,m; ,

(e) 3ib2 = 'ZCi ,

—Zﬁml .

12

(f) 0,A= —2C;

(@) 0;p = —LBqm; (2.8)
(b) 0;t = —2L%wC ; + (I}Aw, — 3LBw)m; ,
(©) 9iq = =221 + (4fr0, + 3120 + fwyp)m;

Where, denotes the contraction with b viz.
C; = Cyb'b* .

Differentiating (2.4) with respect to y* and using (2.1) and
(2.7), we get
Cijk = q-1Ciji + Usji , (2.9)
Uijk = U_l(hijmk + hjkml- + hkimj) + U_zml-mjmk,
qL?

where U_; = 2%, U, ="

3. Hypersurface of a conformal -change

The hypersurface F™ 1= (M™%, L(u,v)) of the finsler
space F™ = (M™, L) is given by the equation x! = x!(u%) ,
wherea=1,2,3,.......... , n-1. The supporting element y!
at a point u = u® of M™~1 is assumed to be tangent to M™~!

y' = By(wv® (CRY)

dxt

where B = is the matrix of projection factors of rank

n-1 can be assumed as the components of linearly
independent vectors that are tangent to F*~1. At every point
of u®of F™ 1, a unit normal vector B is defined as [9] ,

9ijB'B/ =1 and g;;B’BL =0 .(3.2)

The induced metric tensor g,s and induced Cartan tensor
Cqpy of F™~* are given as follows [9],

@) gop = 95;BLB) (3.3)
and (b) Capy = CijBLB]BY

Now we obtain the condition under which the hyperurface
of the transformed Finsler space F™ to be the normal vector.

Let F"1 = (M™% L(u,v)) be a Finslerian hypersurface
of the transformed Finsler space F™ .

The unit normal vector B‘(u,v) of F*™ ' is uniquely

identified as

The BZ is the inverse projection factor of B! , is uniquely
defined by

Elg=gijg_aBBé (3.5)

where g*# is the inverse metric tensor of the metric tensor
Jap along F™1.

In view of equations (3.4) and (3.5) it follows that

Transvecting the equation (3.2) by v® and using BLv® =
yt, we get

By’ =0 (37)
Contracting the equation (2.4) by B'B/ and using (3.3) and
(3.6) , we obtain

g_ijBiBj =q_,+ q_4(Bimi)2 (38)

which demonstrate that Bi/\/ is a unit
q-1

+q_4 (Bimi)z
normal vector.

Again contracting (2.4) by B.B’ and using (3.3) , (3.6) we
get

GijBLB) = (q-sli + q_sm)BL(BIm;) (3.9)

Which demonstrates that the vector B/ normal to F*~1 if
and only if

(-3l + q-4m;) By (B'm;) =0 (3.10)
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This shows that at least one of the following conditions is
correct

(@) (q-sli + q_4m)B; =0 (3.11)
(b) Bim, = o.

Transvecting condition (3.11) (a) by v* gives L=0 which
is not possible.

Therefore condition (3.11) (b) holds i.e.,
Bim; =0

(3.12)

In view of (3.7), the equation (3.12) can be equivalently
written as
B/b; =0 (3.13)

According to the equation (3.8) , (3.9) and (3.13) , we get
Bi=—t_ (314

(q-1)

5

which gives

B; = g;jB’ = \/(q-1)B; (3.15)
Thus, we have

Theorem: If F™~1 is the hypersurface of the space F" then
the vector b; is tangential to the hypersurface F*~! if and
only if each vector normal to F*~1 is also normal to F*~1 .
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