
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Improve Application Availability by Configuring

Kubernetes Liveness & Readiness Probe

Pallavi Priya Patharlagadda

United States of America

Email: pallavipriya527.p[at]gmail.com

Abstract: Because of Kubernetes' extraordinary flexibility, enterprises can simply install, scale, and manage production-grade,

containerized workloads. Teams must navigate a lot of foreign terminology and technology in addition to tremendous complexity as a

result of this flexibility. When deploying mature applications to Kubernetes, there are two phrases you should be aware of: readiness probe

and liveness probe. To find out if a container is still running and responsive, we will cover using a liveness probe in Kubernetes clusters

in this guide.

Keywords: Kubernetes, containerized workloads, readiness probe, liveness probe, application deployment

1. Problem Statement

Kubernetes is an opensource system that helps to manage,

scale, and deploy containerized applications. To achieve

availability and scalability, Kubernetes need to know the

application status. Imagine a situation where an application is

stuck in a deadlock state and is nonresponsive. Similarly,

imagine an application is still booting and Kubernetes starts

sending the traffic. In both cases, we can see there is a drop in

the traffic. How does Kubernetes know about the application

readiness and liveness? Kubernetes provides probing to know

the readiness and liveness of the application. we can discuss

how to configure these in the subsequent sections.

2. Introduction

Developed in the Go program language, Kubernetes is an

open-source container orchestration system that was first

made available in 2014 under the terms of the Apache

License 2.0. Although Google established it initially, the

Cloud Native Computing Foundation (CNCF) is now

responsible for its maintenance.

Congratulations on creating and deploying a fantastic app to

Kubernetes! But how can you ensure that your application

continues to function as intended? Liveness and readiness

probes can help with that. By using these probes, Kubernetes

can keep an eye on your application and make sure it's stable,

responsive, and prepared to receive requests. Without them,

Kubernetes wouldn't be able to detect whether your

application has crashed or isn't operating correctly.

This post will explain liveness and readiness probes, their

purpose, their significance, and how to set them up for

Kubernetes deployments. You will learn how to configure

both basic HTTP checks and more intricate exec probes. By

the conclusion, you will understand how to maintain the

health and functionality of your Kubernetes apps. Sounds

excellent? Then let's get started!

1) What are Liveness and Readiness Probes?

In Kubernetes, liveness probes are vital indicators for

preserving the functionality and well-being of applications

operating in containers. These probes are intended to identify

and manage situations in which an application may be

running but is not functioning because of problems like

memory leaks, deadlocks, or other circumstances that cause

it to become unresponsive. Kubernetes may ensure that

services recover from failure without manual intervention by

automatically restarting containers that fail the check by

implementing a liveness probe. In production situations,

where downtime can have serious consequences, this

automatic recovery method is extremely important for

ensuring service availability and continuity.

On the other hand, Readiness Probes concentrate on an

application's operational preparedness to handle traffic.

Kubernetes only forwards traffic to pods that are ready to

process it, thanks to their assurance. This implies that

Kubernetes waits to deliver requests to these pods when an

application is starting up, loading big datasets, or going

through initializations. The pod does not receive traffic until

the readiness probe indicates that it is ready. This approach

is essential to load balancing and the seamless running of

services because it shields inactive services from incoming

traffic, which could cause mistakes or lower end-user

performance.

2) Why is it Important to Use Liveness and Readiness

Probes?

The significance of Liveness and Readiness Probes increases

in the context of cloud-native development when apps are

distributed and operated on dynamic, scalable infrastructures

like Kubernetes. Here's a closer examination of their

relevance:

● With the use of liveness probes, Kubernetes can initiate

automated self-healing activities by restarting containers

that exhibit non-functionality. When dealing with

Paper ID: SR24820065625 DOI: https://dx.doi.org/10.21275/SR24820065625 1830

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 8, August 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

problems that require a restart, this is very helpful in

making sure that programs self-recover with the least

amount of downtime.

● A key component of Kubernetes' load-balancing and

scalability capabilities is readiness probes. Kubernetes

may efficiently distribute requests among numerous

instances, improving the overall responsiveness and

dependability of applications, by guaranteeing that only

containers that are ready get traffic. Additionally, this

stops the cascade failure effect, which happens when

overloaded or failed services affect other services'

performance.

● Proximity and preparedness probes work together to

maximize the efficiency of processing power.

Kubernetes may guarantee effective resource allocation

by restarting or stopping non-functional containers,

giving priority to instances that are healthy and prepared

for use.

● Maintaining a superior user experience is ultimately

these probes' main objective. Kubernetes assists in

providing constant, dependable service performance by

protecting against routing traffic to unavailable or

malfunctioning services. Consumer satisfaction is greater

overall, with fewer errors and quicker response times.

Five options are available in Kubernetes to regulate these

probes:

3) Implementing Liveness and Readiness Probes in

Kubernetes

We'll go in-depth into using Liveness and Readiness Probes

in Kubernetes to simulate a real-world situation in the

current section. We aim to guarantee the continuous high

availability and effective traffic handling of our Kubernetes-

managed application. We'll utilize a straightforward web

application as our example service for this reason.

a) Liveness Probe:

Assume that our program is being run by a Pod inside a

container, but for whatever reason—for example, a memory

leak, excessive CPU consumption, an application deadlock,

etc.—the application is not responding to our requests and is

stuck in error mode. The liveness probe performs the tasks

we instruct it to do, monitoring the health of the container

and restarting it if it malfunctions. Three definitions of

liveness probe exist:

Liveness command:

apiVersion: v1

kind: Pod

metadata:

 labels:

 test: liveness

 name: liveness-pod

spec:

 containers:

 - name: liveness

 image: k8s.gcr.io/busybox

 args:

 - /bin/sh

 - -c

 - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep

1200

 livenessProbe:

 exec:

 command:

 - cat

 - /tmp/healthy

 initialDelaySeconds: 30

 periodSeconds: 20

We are naming our container "liveness," and we are using

the following command to initialize it:

- touch /tmp/healthy; sleep 60; rm -rf /tmp/healthy; sleep

1200

to create a file healthy at path /tmp/healthy, and delete it after

60 seconds.

exec:

 command:

 - cat

 - /tmp/healthy

With this command, the liveness probe is instructed to open

the file at path /tmp/healthy; if it is unable to do so, the

liveness probe will fail and the container will restart.

initialDelaySeconds: 30

This delay instructs Kubelet to hold off on running the first

probe for thirty seconds.

periodSeconds: 20

This parameter tells Kubelet to run a probe once every

twenty seconds.

Thus, based on the example above, our container will start

and function properly for the first sixty seconds, at which

point the liveness probe will fail and the container will

restart.

Liveness HTTP request:

livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 initialDelaySeconds: 10

 periodSeconds: 5

In this instance, the application executing within the

container will get an HTTP GET request from the kubelet

addressed to the /healthz endpoint at port 8080. The Liveness

probe will fail if the answer is an error. If not, it will regard

the application as active.

TCP Liveness probe:

livenessProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 20

 periodSeconds: 15

The application-running container's port 8080 will be

attempted to be opened by the kubelet in this instance. The

Paper ID: SR24820065625 DOI: https://dx.doi.org/10.21275/SR24820065625 1831

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 8, August 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

application will be deemed healthy if it is successful; if not,

the probe will fail and the container will restart.

b) Readiness Probe:

Sometimes we want our application to run, but we don't want

it to serve traffic until certain requirements are satisfied, like

filling a dataset or waiting for another service to start up,

among other things. We employ readiness probes in these

situations. Only after the readiness probe's condition is

satisfied can our application handle traffic. The three

definitions of the readiness probe are the same as those of

the liveness probe.

4) When to use readiness probes?

When you want to make sure a container is ready to handle

incoming network traffic before it begins taking requests,

readiness probes come in handy.

Generally speaking, they are employed in situations when

your application or container has to do lengthy startup

operations before handling requests, such as loading

configuration, creating database connections, connecting to

message brokers and other microservices, or preheating

caches.

Proactive readiness probes may also assist in coordinating

the release order of your stateful applications. In some cases,

you may need to make sure that specific services or

components are completely functional before allowing them

to communicate with other areas of the application.

They may also be involved in deploying upgrades and

making sure pods scale smoothly. Through the use of

readiness probes, you may hold off on transmitting traffic to

newly created pods until they are prepared, as well as to pods

that may be having problems as a result of an upgrade.

It's important to take into account any resource limitations in

your cluster, since certain containers may require more time

to process requests during periods of heavy demand or until

they recover from resource depletion. One way to wait for

the container to recover enough is to use readiness probes to

postpone routing traffic.

1. HTTP Readiness Probe:

apiVersion: v1

kind: Pod

metadata:

 name: readiness-pod

spec:

 containers:

 - name: readiness-container

 image: readiness-image

 ports:

 - containerPort: 8080

 readinessProbe:

 httpGet:

 path: /somepath

 port: 8080

 initialDelaySeconds: 20

 periodSeconds: 15

2. TCP readiness probe example:

apiVersion: v1

kind: Pod

metadata:

 name: readiness-pod

spec:

 containers:

 - name: readiness-container

 image: readiness-image

 ports:

 - containerPort: 8080

 readinessProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 20

 periodSeconds: 15

3. Command readiness probe example:

apiVersion: v1

kind: Pod

metadata:

 name: readiness-pod

spec:

 containers:

 - name: readiness-container

 image: readiness-image

 ports:

 - containerPort: 80

 readinessProbe:

 exec:

 command:

 - /bin/sh

 - -c

 - check-readiness.sh

 initialDelaySeconds: 20

 periodSeconds: 15

5) Best Practices for Using Probes in Kubernetes

It takes more than simply setting up to implement Liveness,

Readiness, and Startup Probes in your Kubernetes

deployments. It necessitates carefully analyzing the unique

behaviors, requirements, and operational settings of your

application. These enhanced best practices will help you

maximize the use of probes in your cloud-native apps.

a) Select the Appropriate Probe Type

Every kind of probe has a unique function and is appropriate

in a variety of situations:

HTTP GET Probes: Perfect for online applications where the

health or readiness condition of the service can be simply

represented via an HTTP endpoint. It is appropriate for

services that can use HTTP status codes to report their status

because it is simple and less intrusive.

TCP Socket Probes: Beneficial for applications that don't

always require an HTTP server to be operational but where

establishing a TCP connection is a dependable sign of health

or preparedness. Databases and other backend services that

listen on a certain port frequently experience this.

Exec Command Probes: With the ability to run custom

instructions to assess the condition or preparedness of your

Paper ID: SR24820065625 DOI: https://dx.doi.org/10.21275/SR24820065625 1832

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 8, August 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

service, these probes provide the greatest flexibility. When

checking numerous internal states or when the rationale for

the health check is complex, this is especially helpful.

b) Set Up Timeouts and Delays Suitably

Initial Delay Seconds: With this configuration, your

application has enough time to launch before the kubelet

starts running the probes. A miscalculation of this latency

may cause the kubelet to begin checking before the

application is ready, which could result in premature probe

failures.

Period Seconds: Establishes the frequency of probe

execution. If you set this number too high, it may take longer

to discover problems, and if you set it too low, it may

overwhelm your application with health checks.

Timeout Seconds: The duration in seconds that the probe

will time out. To prevent false negatives, it's important to

give your application adequate time to reply, especially

when it's under a lot of pressure.

c) Use Startup Probes to Help Containers That Start

Slowly

Startup probes are an excellent complement to your

Kubernetes health check plan, especially for apps that take

longer to start up. They guard against the danger associated

with aggressive liveness probe setups, which is the kubelet

destroying the container before it has finished starting.

Use Case: If your service must import substantial datasets,

gather data, or carry out any extended initialization

processes, a startup probe makes sure Kubernetes does not

see the application as unsuccessful during this beginning

stage.

Configuration Tips: Determine the failure Period and

threshold the startup probe's seconds to numbers that

correspond to the longest possible starting time for your

program. The liveness and readiness probes take over to

control the program's lifecycle once the startup probe

completes its initial run, signaling that the application is

ready.

d) Track and Modify in Light of Observations

Logging and Monitoring: To gain insight into the behavior

of your probes in production, provide comprehensive

logging for the health endpoints in your application and keep

an eye on these logs. This understanding will assist you in

optimizing probe settings.

Iterative Refinement: The behavior of your application may

alter over time as a result of demand fluctuations,

dependency updates, or code changes. To ensure that your

probes continue to be accurate and effective in the face of

these changes, periodically evaluate and modify the setups.

e) Consider the Side Effects of the Probe

Performance Impact: Probes can add to the strain on your

application when they are required. Take into account the

performance effect of the probe execution, especially if it

occurs frequently, especially when using exec and HTTP

probes.

Idempotency: Make sure that when you run your readiness

and liveness probes, your application remains in the same

state. This is known as idempotence. This is essential to

prevent unexpected side effects that can change the behavior

of the program.

3. Conclusion

This concludes our review of Kubernetes liveness and

readiness probes and how they support the seamless

operation of your installations and apps. You can make sure

your pods stay healthy and that users can still use your

services by setting up these health checks. To keep problems

from affecting your users, Kubernetes will automatically

restart unhealthy pods or remove them from load balancers.

Determining health checks may look like additional labor at

the front, but the time savings from automated self-healing

and less troubleshooting make it worthwhile. You'll have

more time to concentrate on creating fantastic applications

because your Kubernetes cluster will be operating smoothly.

References

[1] https://kubernetes.io/docs/tasks/configure-pod-

container/configure-liveness-readiness-startup-probes/

[2] https://kubernetes.io/docs/tasks/configure-pod-

container/configure-liveness-readiness-startup-probes/

[3] https://medium.com/@AADota/kubernetes-liveness-

and-readiness-probes-difference-1b659c369e17

[4] https://medium.com/@sachinadi424/keeping-

kubernetes-healthy-liveness-and-readiness-probe-

explained-661757b825ff

[5] https://kubebyexample.com/learning-paths/application-

development-kubernetes/lesson-4-customize-

deployments-application-2

[6] https://spacelift.io/blog/kubernetes-readiness-probe

Paper ID: SR24820065625 DOI: https://dx.doi.org/10.21275/SR24820065625 1833

https://www.ijsr.net/

