Static Charged Fluid Sphere in General Relativity

Kanchan Singh ${ }^{1}$, Dr Manish Kumar ${ }^{2}$
${ }^{1}$ Research Scholar, Department of Mathematics, Patliputra University Patna
${ }^{2}$ Associate Professor, Department of Mathematics A. N. College Patna (PPU) Email-kanchansingh.1477[a]gmail.com

Abstract

Within the context of general relativity, this theoretical astrophysical study explores the intricate dynamics of static charged fluid spheres. The central idea is the Tolman-Oppenheimer-Volkoff (TOV) equations, which are an expansion of Einstein's field equations designed for fluid spheres with electric charge that are spherically symmetric. The corresponding metric clarifies the geometry of space time around these celestial entities, exposing the complex interaction between electromagnetic and gravitational forces. The review reveals the hydrostatic harmony characterized by the TOV conditions, disentangling the fragile harmony between strains, thickness, and encased mass inside the charged liquid circle. Joining with Maxwell's situations improves grasping, uncovering the many-sided dance among gravitational and electromagnetic fields in this divine setting. The structural details of charged fluid spheres are made clear by the derived mass-radius relation, which sheds light on how the interaction of charge, pressure, and density affects their stability and maximum mass. Besides, measurable mechanics contemplations add to the deduction of the situation of state, enlightening the thermodynamic properties of an ideal, monoatomic relativistic gas inside these circles. Past clarifying astrophysical articles, the review prompts roads for future examination, calling for examinations concerning explicit states of state, dependability standards, and the thermodynamics administering charged liquid circles. This examination progresses perception of the complex convergences between broad relativity, electromagnetism, and the way of behaving of heavenly substances.

Keywords: General Relativity, Charged Fluid Sphere, Tolman-Oppenheimer-Volk-off Equations (TOV Equations), Einstein Field Equations, Hydrostatic Equilibrium,Electromagnetic Phenomena

1. Introduction

Within theoretical astrophysics, the investigation of static charged fluid spheres in the context of general relativity reveals an intriguing interaction between electromagnetic and gravitational processes. The Tolman-Oppenheimer-Volk-off (TOV) equations, which expand Einstein's field equations to account for the complexity brought about by a spherically symmetric fluid sphere with an electric charge, are the fundamental tools used in this work. A finely defined metric defining the space time geometry around such a sphere provides a lens through which to understand the gravitational effects of the charged fluid.
The TOV equations' hydrostatic equilibrium is the focus of these investigations, which shed light on the charged fluid sphere's delicate balance between pressure, density, and enclosed mass. The joining of Maxwell's situations further improves the story, giving a nuanced comprehension of how the electromagnetic field connects with gravity in this heavenly setting. The mass-range connection, a crucial result of these examinations, unfurls the underlying complexities of the charged liquid circle, revealing insight into how the interchange of charge, tension, and thickness impacts its dependability and most extreme mass.

Moreover, factual mechanics contemplations become an integral factor, yielding the condition of express that oversees the thermodynamic properties of an ideal, monoatomic relativistic gas inside the charged liquid circle. As this investigation unfurls, it develops our appreciation of astrophysical articles as well as prompts contemplations for future exploration. The review welcomes further examination into explicit states of state, solidness standards, and the thermodynamics of charged liquid circles, encouraging an all-encompassing comprehension of the fascinating convergences between broad relativity, electromagnetism, and astrophysical peculiarities.

2. Study Overview

The paper offers an exhaustive clarification of the answers for the Tolman-Oppenheimer-Volk-off (TOV) condition, which describes roundly symmetric static ideal liquid stars in everyday relativity. Accepting proper circumstances on the situation of state describing the matter, the creator's methodically get the TOV condition from the relativistic Euler conditions and the Einstein field conditions.

[^0]Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

They then show the presence and uniqueness of answers for the TOV condition depicting a star of limited range. The work reasons the condition of state for an ideal, traditional, monatomic relativistic gas utilizing measurable mechanics contemplations and furthermore addresses the minimization of issue contained inside a circle. Determined to assist readers with better getting a handle on the TOV condition an overall relativistic form of the Path Emden condition the essayists offer a thorough and supportive prologue to the subject of relativistic heavenly models. The article is a helpful asset for anyone with any interest at all in relativistic astronomy and general relativity since it gives an assortment of specialized data, numerical examination, and condition of state suspicions.

3. Method

The far reaching strategic methodology introduced in the review "Static Circular Ideal Liquid Stars with Limited Range in Everyday Relativity: A Survey" can be summarized as follows:

The Tolman-Oppenheimer-Volk-off (TOV) condition is inferred purposefully by the creators from the relativistic Euler conditions and the Einstein field conditions. Overall relativity, these conditions depict ideal liquid stars that are circularly symmetric and static (Nambo, and Sarbach, 2020).

Local presence Near the Centre:Given a focal strain, the review lays out the presence of a solitary nearby answer for the TOV condition near the focal point of balance. A monotonically declining solution that meets the criteria for a finite-radius spherical static star is shown to have a special extension of this solution.
$1 / \mathrm{x}^{2}{ }^{2} \mathrm{~d} / \mathrm{dx}\left(\mathrm{x}^{2} \mathrm{~d}^{\theta} / \mathrm{dx}\right)+\theta^{\mathrm{N}}=0$
Utilization of the Withdrawal Planning Guideline: To exhibit the presence of the nearby arrangement, the creators reword the TOV condition as a fixed-point issue and utilize the constriction planning standard. By demonstrating a capability and coordinating the two sides of the situation, the fixed-point condition should be satisfied in order to accomplish this.

[^1]Augmentation to Limited Sweep and Buchdahl Bound: The creators show the way that the nearby arrangement can be reached out to a boundless sweep or a limited range, contingent upon explicit suppositions made on the situation of state. Moreover, that's what they exhibit, no matter what the circle's span, the smallness of the stuff encased inside it
fulfils the notable Buchdahl bound (Nambo, and Sarbach, 2020).

Equation of State:In light of measurable mechanics contemplations, the review determines the condition of state for an ideal, traditional, monoatomic relativistic gas.

Mass-Radius Relation

The mass-range connection for a static charged liquid circle can be gotten by incorporating the TOV condition and utilizing the condition of state (connection among tension and thickness).

For explicit conditions of express, the mass-range connection can be broke down to figure out the impact of charge on the soundness and most extreme mass of the circle. For instance, on account of an accused ideal liquid of a steady strain, the mass-sweep connection demonstrates the way that rising the charge can prompt precariousness and lower the greatest mass the circle can uphold prior to imploding.

Further Estimations and Contemplations
These estimations structure an establishment for investigating the properties of static charged liquid circles in everyday relativity. Further examination can include:

Settling the field conditions for explicit conditions of state and examining the inside and outside arrangements.
Concentrating on the steadiness of the circle utilizing different rules and taking into account the job of charge.
Exploring the thermodynamics of the circle and relating it to its gravitational and electromagnetic properties.

It likewise determines specific condition of state suppositions, like the inspiration of tension, the monotonic increment of strain, and the presence of a positive rest mass energy.

Equations

Static, roundly symmetric ansatz and field conditions
The coupled system made up of the ten independent components of Einstein's field equations provides the field equations defining a relativistic, self-gravitating perfect fluid configuration.
$\mathrm{G}_{\mu \mathrm{v}}=8 \pi \mathrm{G}_{\mathrm{N}} / \mathrm{c}^{4} \mathrm{~T}_{\mu \mathrm{v}}$
Along with the 4 relativistic Euler conditions,

Symbol	Meaning
v	Speed of the wave
T	Tension in the string
μ	Linear mass density of the string

It is the equation $v=\sqrt{ } T \div \mu$
Provides us with the information that the speed of the wave is directly proportional to the square root of the tension in the string, and that it is inversely proportional to the square root of the linear mass density of the string. Based on this, it can be deduced that a string with a higher tension will have a quicker wave speed, but a string with a higher linear mass density will have a slower wave speed.

In the domain of spacetime physical science, signified by Greek images μ, v, and others, the Einstein tensor parts G μv, related with the metric tensor $g^{\wedge} v$, exemplify gravitational
impacts with balance properties. T μv addresses the energyforce tensor, where $T v \mu$ mirrors its parts. This tensor portrays the causes of issue and energy. Inside the system of ideal liquid elements, the spacetime is depicted by these tensors. Notably, there are ten independent components in the metric tensor g , which is symmetric. The exchange of $G \mu \nu$ and $T \mu \nu$ clarifies the gravitational effect of energymatter dispersion, offering an extensive comprehension of spacetime elements and gravitational powers.

Examining here,

Term	Formula	Value
T $\mu \nu$	pu_ $\mu \mathrm{u} _v+\mathrm{pg} \mathrm{g}_{_} \mu v$	$2 \rho u v+\mathrm{p} \delta \mu \mathrm{v}$
T_00	pu_0u_0 + p g_00	$2 \rho u^{\wedge} 2+\mathrm{p}$
T_11	pu_1u_1+pg_11	$2 \rho v^{\wedge} 2+\mathrm{p}$
T_22	$\rho u_{\sim} 2 u_{\sim} 2+\mathrm{pg}_{2} 22$	$2 \rho v^{\wedge} 2+\mathrm{p}$
T_01	$\rho \mathrm{u}$-0u_1	0
T_02	¢u_0u_2	0
T_12	pu_1u_2	0

The condition is:

$\mathrm{T} \mu \nu=\rho c^{\wedge} 2 \mathrm{u}_{-} \mu \mathrm{u}_{-} v+\mathrm{p} \mathrm{g}_{-} \mu \nu$
Here is a breakdown of the images:
$T \mu v$: This addresses the pressure energy tensor, a 4×4 network that portrays the conveyance of energy, force, and stress inside a liquid in space time.
ρ : This is the rest mass thickness of the liquid, estimated in units of mass per unit volume.
c : This is the speed of light in a vacuum, a basic steady in material science.
$\mathrm{u}_{-} \mu$: This is the four-speed of the liquid, a vector that depicts the smooth movement's in space time.
p: This is the strain of the liquid, a scalar amount that addresses the power applied by the liquid per unit region.
$\mathrm{g}_{-} \mu \mathrm{v}$: This is the metric tensor, a 4×4 framework that depicts the math of space time.
Explanation:
Energy Thickness Term:
$\rho c^{\wedge} 2$ addresses the energy thickness of the liquid, which is how much energy per unit volume.
$u_{_} \mu u_{_} v$ is a tensor item that extends the four-speed onto itself, guaranteeing that the energy thickness is lined up with the smooth movement's.
Pressure Term:
pg $_\mu \nu$ addresses the commitment of strain to the pressure energy tensor.
p is the strain, and $\mathrm{g}_{-} \mu v$ is the metric tensor, which guarantees that the tension is dispersed in a way reliable with the math of space time.
Key Points:
This condition is major in everyday relativity, especially for demonstrating liquids in bended space time.
It depicts the energy, force, and stress of an ideal liquid regarding its thickness, strain, and four-speed.
The pressure energy tensor assumes a urgent part in Einstein's field conditions, which relate the bend of space time to the dissemination of issue and energy.
$\left(T_{\alpha \beta}\right)=\operatorname{diag}(\epsilon, p, p, p)$,
Subsequently, the upsides of ε and p compare to the tension and energy thickness that are a moving close by the liquid identified by an eyewitness (that is, an onlooker whose world line is opposite to the four speeds).

The Riemann curvature tensor $\mathrm{R} \alpha \beta \mu \nu$ can be used to get the Einstein tensor G μv in the following way:
$\mathrm{G}_{\mu \mathrm{v}} \mathrm{R}_{\mu \mathrm{v}}-\mathrm{R} / 2 \mathrm{~g}_{\mu \mathrm{v}}$
Where the Ricci scalar is addressed by $\mathrm{R}=\mathrm{g} \mu \nu \mathrm{R} \mu \nu$ and the parts of the Ricci tensor are addressed by $\mathrm{R} \mu \mathrm{v}=\mathrm{R} \alpha \mu \alpha v$. Thus, the components of the Riemann curve tensor are given by,

In order to calculate the ten distinct components of the Einstein tensor Gv that appear, the 40 independent Christoffel symbols must first be calculated, as described in the preceding subsection (Nambo, Sarbach, 2020). It is advantageous to utilize the measurement's block-corner to corner structure to play out this estimation, which is as per the following:

Equation	Standard Form
$(9)=(90+12918)$	$0=12999$
$(9)=(-2)$	$0=-11$

Volume 13 Issue 1, January 2024

Where the coordinate's t , rare denoted by a, b, and ϑ, v by A, B. Regarding the particular parameterization pertinent to this segment, the pair of blocks is provided by,
$G_{a b} d x^{a} d x^{b}=-e^{2 \theta ®} d t^{2}+e^{2 \theta ®} d r^{2}$

The equation of state

The request digs into the connection between pressure (p) and energy thickness (ε) with regards to the condition of
issue. This relationship is communicated as elements of temperature (T) and molecule thickness (n) in a factual mechanics model, as signified by $\mathrm{P}=\mathrm{p}(\mathrm{n}, \mathrm{T})$ and $\epsilon=\epsilon(\mathrm{n}$, T). For an ideal monoatomic relativistic gas, these connections are definite further in Reference segment B.

Maxwell equation

This connection interfaces the mass (M) of the charged circle to its span (R) and can be determined by incorporating the Tolman-Oppenheimer-Volk-off (TOV) condition with a particular condition of state for the liquid and taking into account the electrostatic commitment. For instance, with a polytropic condition of state ($\mathrm{P}=\mathrm{K} \rho^{\wedge} \mathrm{n}$), the mass-span connection could take the structure:
$\mathrm{M}=4 \pi / 3 \mathrm{c}^{\wedge} 2 \mathrm{R}^{\wedge} 3\left(\rho _\mathrm{c}+3(\mathrm{n}-1) / \mathrm{nK} \rho _\mathrm{c}^{\wedge}(1-\mathrm{n}) / \mathrm{n}+\mathrm{Q}^{\wedge} 2 /(8 \pi \varepsilon \mathrm{R})\right)$
Where $\rho_{-} \mathrm{c}$ is the focal thickness, K is the polytropic steady, n is the polytropic file, Q is the absolute charge of the circle, and ε is the permittivity of free space. This condition shows how the mass relies upon the charge, thickness, and strain profile of the circle.

The ideal liquid supposition places thermodynamic balance inside every phone of the fluid or gas, sticking to the standards of thermodynamics (Nambo and Sarbach, 2020).
$P=p(n, T)$
$\epsilon=\epsilon(n, T)$
Taking into account a cell with a consistent number N of particles, key detectable amounts characterizing its state incorporate energy ($U=\varepsilon N / n$), volume ($V=N / n$), entropy ($\mathrm{S}=\mathrm{sN} / \mathrm{n}$, with s as entropy thickness), and temperature (T).

The first law of thermodynamics states that, when N is constant, $\mathrm{D}(/ \mathrm{n})=\mathrm{Td}(\mathrm{s} / \mathrm{n})-\mathrm{pd}(1 / \mathrm{n})$ elucidates the cell's dynamic interaction between energy, entropy, temperature, and pressure as well as the thermodynamic principles that govern its state. The cell's thermodynamic properties' intricate balance and transformations are captured in this equation.

Equation

Equation	Description
Metric for Charged Fluid Sphere	
Einstein Field Equations	$\backslash\left(8 \backslash\right.$ pi Glrho $(\mathrm{r})=\mathrm{e}^{\wedge}\{-4 \backslash \mathrm{Psi}(\mathrm{r})\} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\{1\}\left\{\mathrm{r}^{\wedge} 2\right\} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\{\mathrm{d}\}\{\mathrm{dr}\}\left(\mathrm{r}^{\wedge} 2 \backslash\right.\right.\right.$ frac $\left.\{\mathrm{d} \backslash \mathrm{Psi}\}\{\mathrm{dr}\}\right)$ $\left.\backslash \operatorname{frac}\{1\}\left\{\mathrm{r}^{\wedge} 2\right\} \backslash \operatorname{left}\left(2 \mid \mathrm{Psi}(\mathrm{r})-\backslash \mathrm{frac}\{\mathrm{d}\}\{\mathrm{dr}\}\left(\mathrm{r}^{\wedge} 2 \backslash \mathrm{Psi}(\mathrm{r})\right) \backslash \operatorname{rright}\right) \backslash\right)$
TOV Equation	$\backslash\left(\right.$ frac $\{\mathrm{dp}\}\{\mathrm{dr}\}=-\backslash$ frac $\{\mathrm{G}\}\left\{\mathrm{c}^{\wedge} 2\right\}($ (rho +p$)(\mathrm{m}+4 \backslash \mathrm{pip} \mathrm{r}) \backslash$)

4. Conclusion

From the relativistic Euler conditions and the Einstein field conditions, the makers intentionally reason the TOV condition. Expecting legitimate conditions on the circumstance of state depicting the matter, they display the presence and uniqueness of deals with the TOV condition portraying a star of restricted range. The concentrate likewise shows that the notable Buchdahl headed turns out as expected for the smallness of the matter held inside a circle focused at the beginning, no matter what the circle's range. Moreover, the makers use quantifiable mechanics to surmise the state of state for an ideal, conventional monoatomic relativistic gas and show that it satisfies the necessities for the presence of a phenomenal plan tending to a restricted reach star. The goal of the audit's choice is to additionally foster data on the TOV condition, a generally relativistic hypothesis of the Way Emden condition, by offering a broad and strong introduction to the subject of relativistic superb models. The survey's disclosures are not novel; in the writing, they are frequently dispersed throughout a few books and papers, all things considered. Hence, the paper offers a serious data on relativistic superb models and their implications for general relativity and stargazing. It does this by conveying a unified and instructive review of the TOV condition and its responses.

References

[1] Boonserm, P., Ngampitipan, T. and Visser, M., 2016. Mimicking static anisotropic fluid spheres in general relativity. International Journal of Modern Physics D, 25(02), p. 1650019.
[2] Das, B., Ray, P.C., Radinschi, I., Rahaman, F. and Ray, S., 2011. Isotropic cases of static charged fluid spheres in general relativity. International Journal of Modern Physics D, 20(09), pp.1675-1687.
[3] Esculpi, M. and Aloma, E., 2010. Conformal anisotropic relativistic charged fluid spheres with a linear equation of state. The European Physical Journal C, 67, pp.521-532.
[4] Maurya, S.K. and Gupta, Y.K., 2013. Charged fluid to anisotropic fluid distribution in general relativity. Astrophysics and Space Science, 344, pp.243-251.
[5] Murad, M.H. and Fatema, S., 2014. Some static relativistic compact charged fluid spheres in general relativity. Astrophysics and Space Science, 350, pp.293-305.
[6] Nambo, E.C. and Sarbach, O., 2020. Static spherical perfect fluid stars with finite radius in general relativity: a review. arXiv: preprint arXiv: 2010. 02859.

Volume 13 Issue 1, January 2024

[7] Pant, N. and Rajasekhara, S., 2011. Variety of Wellbehaved parametric classes of relativistic charged fluid spheres in general relativity. Astrophysics and Space Science, 333, pp.161-168.
[8] Pant, N., Pradhan, N. and Bansal, R.K., 2016. Relativistic model of anisotropic charged fluid sphere in general relativity. Astrophysics and Space Science, 361(1), p.41.
[9] Yousaf, Z., Bhatti, M.Z. and Naseer, T., 2020. Study of static charged spherical structure in $\mathrm{f}(\mathrm{R}, \mathrm{T}, \mathrm{Q})$ gravity. The European Physical Journal Plus, 135(3), p.323.

Volume 13 Issue 1, January 2024

[^0]: 1. Metric and Field Equations

 For a static, spherically symmetric charged fluid sphere, the metric can be written as: $\mathrm{ds} \wedge 2=-\mathrm{e}^{\wedge}\{2 \backslash \operatorname{Psi}(\mathrm{r})\} \mathrm{dt} \wedge 2+\mathrm{e}^{\wedge}\{-2 \backslash \operatorname{Psi}(\mathrm{r})\} \mathrm{dr}^{\wedge} 2+\mathrm{r}^{\wedge} 2\left(\mathrm{~d} \mid\right.$ theta ${ }^{\wedge} 2+\sin ^{\wedge} 2 \backslash$ theta $\left.\mathrm{d} \mid \mathrm{phi} \wedge 2\right)$
 where:
 $\Psi(\mathrm{r})$ is the gravitational potential.
 t is the coordinate time.
 r is the radial coordinate.
 θ and φ are the usual spherical coordinates.
 The Einstein field equations for this metric, with a charged fluid source described by an energy density $\rho(\mathrm{r})$ and pressure $\mathrm{p}(\mathrm{r})$, take the form:
 $8 \pi \mathrm{Gp}(\mathrm{r})=\mathrm{e}^{\wedge}\{-4 \backslash \operatorname{Psi}(\mathrm{r})\} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\{1\}\left\{\mathrm{r}^{\wedge} 2\right\} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\{\mathrm{d}\}\{\mathrm{dr}\}\left(\mathrm{r}^{\wedge} 2 \backslash \mathrm{frac}\{\mathrm{d} \backslash P s i\}\{\mathrm{dr}\}\right) \backslash\right.\right.$ right $\left.)-\backslash \operatorname{Psi}(\mathrm{r})^{\wedge} 2 \operatorname{rright}\right)$
 $8 \pi \mathrm{Gp}(\mathrm{r})=-\mathrm{e}^{\wedge}\{-4 \mathrm{PSi}(\mathrm{r})\} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\{\mathrm{d} \backslash \operatorname{Psi}\}\{\mathrm{dr}\} \backslash \operatorname{right} \wedge^{\wedge} 2+\backslash \operatorname{frac}\{1\}\left\{\mathrm{r}^{\wedge} 2\right\} \backslash \operatorname{left}\left(2 \backslash \operatorname{Psi}(\mathrm{r})-\backslash \operatorname{frac}\{\mathrm{d}\}\{\mathrm{dr}\}\left(\mathrm{r}^{\wedge} 2 \backslash \operatorname{Psi}(\mathrm{r})\right) \backslash \operatorname{right}\right)\right.$
 where G is the gravitational constant and ' denotes the derivative with respect to r .

[^1]: 2. Tolman-Oppenheimer-Volk-off (TOV) Equation

 The TOV condition communicates hydrostatic balance in a circularly symmetric self-floating item. It has the following shape for a charged fluid sphere:
 $\backslash \operatorname{frac}\{\mathrm{dp}\}\{\mathrm{dr}\}=-\backslash \operatorname{frac}\{\mathrm{G}\}\left\{\mathrm{c}^{\wedge} 2\right\}(\backslash \mathrm{rho}+\mathrm{p})(\mathrm{m}+4 \pi \mathrm{pr})$
 where:
 c is the speed of light.
 $\mathrm{m}(\mathrm{r})$ is the mass encased inside a span r .
 The TOV condition relates the strain slope, thickness, pressure, and encased mass, giving an essential condition to the security and design of the circle.

