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Abstract: Background: The harmonic sequence and the sum of infinite harmonic series are topics of great interest in mathematics. 

The sum of the infinite harmonic series has been linked to the Euler-Mascheroni constant. It has been demonstrated that, although the 

sum diverges, it can be expressed as the Euler-Mascheroni constant added to the natural log of infinity. By utilizing the Euler-

Maclaurin method, we can extend the expression to approximate the sum of finite harmonic series with a fixed first term and a variable 

last term. However, natural extension is not possible for a variable value of the first term or the common difference of the reciprocals. 

Aim: The aim of this paper is to create a formula that generates an approximation of the sum of a harmonic progression for a variable 

first term and common difference. An objective remains that the resultant formula is fundamentally similar to Euler's equation of the 

constant and the result using the method. Method: The principal result of the paper is derived using approximation theory. The 

assertion that the graph of harmonic progression closely resembles the graph of y=1/x is key. The subsequent results come through a 

comparative view of Euler's expression and by using numerical manipulations on the Euler-Mascheroni Constant. Results: We created 

a general formula that approximates the sum of harmonic progression with variable components. Its fundamental nature is apparent 

because we can derive the results of the method from our results.  
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1. Introduction 
 

1.1 Core Concepts 

 

1.1.1 Arithmetic progression 

It is the sequence of numbers such that the difference 

between any two consecutive terms is equal. If the first term 

of the progression is a with the common difference being d, 

then the resultant arithmetic progression is as follows 

𝑎, (𝑎 + 𝑑), (𝑎 + 2𝑑), (𝑎 + 3𝑑), . . . . . . . . , (𝑎 + (𝑛 − 1)𝑑) 
 

where n is the number of terms.  

 

For the purposes of this paper, we shall use the last term L as 

the variable instead of the number of terms (n).  

𝐿 = 𝑎 + (𝑛 − 1)𝑑 

 

1.1.2 Harmonic progression 

It is the sequence of numbers such that each term is a 

reciprocal of the corresponding term of an arithmetic 

progression.  

The general harmonic progression is represented as follows 

 
1

𝑎
 ,  

1

𝑎 + 𝑑
 ,  

1

𝑎 + 2𝑑
 , . . . . . . . . . . . . . ,  

1

𝐿
  

 

1.1.3 Harmonic Series 

It is the special case of the sum of harmonic progression 

where the first term and common difference equal to unity. 

𝐻(𝐿)  =  
1

1
+

1

2
+

1

3
+

1

4
+. . . . . . . . . . . . +

1

𝐿
 

 

To generalize the terms and the terminology, we shall make 

the following changes. 

 

𝐻(𝐿, 𝑎, 𝑑)  =  
1

𝑎
+

1

𝑎 + 𝑑
+

1

𝑎 + 2𝑑
+. . . . . . . . . . . . +

1

𝐿
 

 

 

 

 

1.1.4 Graph of harmonic progression 

 

 
Figure 1: Graph of harmonic progression with a=d=1 

superimposed with the function y=1/x 

 

1.2 Background 

 

1.2.1 Euler-Mascheroni constant 

It is the limiting difference between the harmonic series and 

the natural logarithm. It can be represented as follows 

𝛾 = lim
𝑛→∞

[𝐻(𝑛, 1,1) − log(𝑛)] . 

 

The value of the constant can be approximated to 

0.5772156649.(N J A Sloane, 2012) 

 

By removing the limit, we get an expression for the infinite 

harmonic series. (Havil, 2003) 

 
 

1.2.2 Approximation using Euler’s constant 

With equation (1) and by using the Euler-Maclaurin method, 

we can arrive at the following expression. 

𝐻(𝐿, 1, 1)  =  ln(𝐿)  +  𝛾 +  
1

2𝐿
− 𝜀𝐿 

 

where 0 ≤ 𝜀𝐿 ≤
1

8𝐿2. (Bressoud, 2007) 
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As 𝜀𝐿 is negligibly small, especially for sufficiently large 

values of L, we can ignore it and create an approximation for 

the partial sum of the harmonic series. The accuracy of 

which will increase as the value of L increases and as L 

tends to infinity, we will have arrived at equation (1).  

 
 

1.3 Aims and Objectives 

 

Aim: To find a general formula that approximates the sum 

of a given harmonic progression. 

 

Objectives:  

1) The formula should be applicable for diverse values of 

a, d and L. This also includes non-integer values. 

2) The formula should not require the use of discrete 

operators such as summation or series expansions. The 

purpose of this objective is to eliminate the need for any 

computation. 

3) The formula should be fundamentally linked to the 

Euler’s constant and the results of the Euler-Maclaurin 

method.  

 

2. Results 
 

2.1 General formula 

 

In view of approximation theory, we can assert that the area 

of the graph of harmonic progression is approximately equal 

to the area under the curve of 𝑦 =
1

𝑥
. 

 

By equating the two areas we get an approximation 

represented as follows 

 
 

2.2 Error function and derivation of equation (2) 

 

The next logical step is to introduce an error function that 

calculates the difference between H (L, a, d) and f(L, a, d). 

 

Let 

𝐸(𝐿, 𝑎, 𝑑)  =  𝐻(𝐿, 𝑎, 𝑑)  −  𝑓(𝐿, 𝑎, 𝑑) 
 

The error that can be calculated by this definition is of the 

infinite harmonic series i.e.  

𝐸(∞, 1, 1)  =  𝐻(∞, 1, 1)  −  𝑓(∞, 1, 1)  
 

We can substitute the expression of H(L, a, d) and f(L, a, d) 

when L tends to infinity from equation (1) and equation (3) 

respectively. By doing so we get 

 
If we assert that 𝐸 𝐿, 1, 1 ≈  𝐸 ∞, 1, 1 , we consequently 

obtain equation (2). 

 

 

 

 

2.3 Formula for a variable first and last term 

 

We have the error of infinite harmonic series from equation 

(4). To generalize it for a variable first and last term, we can 

simply introduce another function.  

Let 

𝐸(𝐿, 𝑎, 1)  =  𝐸(∞, 1, 1) . 𝑔 (𝐿, 𝑎, 1) 

 

The absolute value of g(L, a, 1) cannot be determined by 

algebraic manipulation, however we can find an 

approximation that is accurate and checks certain specific 

cases for the function.  

 

By doing so, we have the result 

𝑔(𝐿, 𝑎, 1)  ≈   
1

𝑎2
−

1

𝐿2
  

 

Consequently,  

𝐸(𝐿, 𝑎, 1)  ≈  𝐸(∞, 1, 1) .  
1

𝑎2
−

1

𝐿2
  

 
 

Thus, we can conclude the formula for the sum of a 

harmonic progression with variable first and last term as 

follows 

𝐻(𝐿, 𝑎, 1)  ≈  𝑓(𝐿, 𝑎, 1)  +  𝐸(∞, 1, 1) . 𝑔(𝐿, 𝑎, 1) 

 
 

2.4 Formula for a variable common difference  

 

We have calculated the error when the first term and the last 

term are variable in equation (5). Similarly, we can calculate 

the error when the common difference is variable by 

introducing another function.  

Let 

𝐸(𝐿, 𝑎, 𝑑)  =  𝐸(∞, 1, 1) . 𝑔(𝐿, 𝑎, 1) . 𝑘(𝐿, 𝑎, 𝑑) 

 

The absolute value of k(L, a, d) largely remains an open 

problem, but we can approximate it.  

 

The function’s dependency on L is very small (<2%) and 

therefore negligible. This claim can be supported by a 

comparative analysis of errors at infinity.  

 

The approximation is therefore based on the assertion that 

𝑘(𝐿, 𝑎, 𝑑)  ≈  𝑘(𝑎 + 𝑑, 𝑎, 𝑑)  
 

The value of k(a+d, a, d) can be calculated manually.  

By definition 

𝑘(𝑎 + 𝑑, 𝑎, 𝑑)  =  
𝐻(𝑎 + 𝑑, 𝑎, 𝑑)  −  𝑓(𝑎 + 𝑑, 𝑎, 𝑑)

𝐸(∞, 1, 1). 𝑔(𝑎 + 𝑑, 𝑎, 1)
 

 

Because we assume, 𝑘 𝐿, 𝑎, 𝑑 ≈  𝑘 𝑎 + 𝑑, 𝑎, 𝑑 , we can 

conclude that 

𝑘(𝐿, 𝑎, 𝑑)  ≈  
𝐻(𝑎 + 𝑑, 𝑎, 𝑑)  −  𝑓(𝑎 + 𝑑, 𝑎, 𝑑)

𝐸(𝑎 + 𝑑, 𝑎, 1)
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Substituting the expressions of these terms from equation 

(0), equation (3) and equation (5), we get the following 

formula 

 
 

Thus, we can conclude the formula for sum of harmonic 

progression with variable first term, common difference and 

last term is as follows 

𝐻 𝐿, 𝑎, 𝑑 ≈  𝑓 𝐿,𝑎, 𝑑 + 
𝑔 𝐿, 𝑎, 1 

𝑔 𝑎 + 𝑑, 𝑎, 1 
 ×  𝐸 𝑎 + 𝑑, 𝑎, 𝑑  

 
 

3. Discussion 
 

3.1 General Formula 

 

The method to obtain equation (3) is based in approximation 

theory. The principal assumption is that the area of the graph 

of harmonic progression is approximately equal to the area 

under the curve of 𝑦 =
1

𝑥
. 

 

This assertion is valid because 

1) Harmonic progression is a partition of the domain of the 

function.  

2) The graphs become similar as the value of d decreases. 

 

The area of the graph of harmonic progression [Ar(HP)] can 

be calculated by expressions of areas of simple geometric 

shapes when Figure (1) is altered in the following way.  

 

 
Figure 2: Graph of area of a harmonic progression with a 

variable term x 

 

The area then becomes a summation of the areas of variable 

rectangles and triangles.  

 

Area of any rectangle for a variable term x can be 

represented as 𝑑 ×
1

𝑥+𝑑
. The sum of the areas of these 

rectangles will therefore be 

 
𝑑

𝑥 + 𝑑

𝐿−𝑑

𝑥=𝑎

 =  𝑑 × 𝐻(𝐿, 𝑎, 𝑑)  −  
𝑑

𝑎
 

 

Similarly, the area of any triangle for a variable term x can 

be represented as
1

2
× 𝑑 ×  

1

𝑥
−

1

𝑥+𝑑
 . The sum of the areas of 

these triangles will therefore be 

 
𝑑

2
×  

1

𝑥
−

1

𝑥 + 𝑑
 

𝐿−𝑑

𝑥=𝑎

=  
𝑑

2𝑎
−

𝑑

2𝐿
 

 
The total area will be the sum of these two i.e. 

𝐴𝑟 (𝐻𝑃)  =  𝑑 ×  𝐻(𝐿, 𝑎, 𝑑)  −  
1

2𝑎
−

1

2𝐿
  

 

The area under the curve is simply the integral of the 

function i.e. 𝐴𝑟  
1

𝑥
  =  

1

𝑥
𝑑𝑥

𝐿

𝑎

 

Therefore, the area under the curve can be written as 

𝐴𝑟  
1

𝑥
 = ln  

𝐿

𝑎
  

 

In line with our assumption 𝐴𝑟 (𝐻𝑃)  ≈  𝐴𝑟  
1

𝑥
  

𝑑 ×  𝐻(𝐿, 𝑎, 𝑑)  −  
1

2𝑎
−

1

2𝐿
  ≈  ln  

𝐿

𝑎
  

 

Hence, we can conclude equation (3) 

 

𝐻 𝐿, 𝑎, 𝑑 ≈ 𝑓 𝐿, 𝑎, 𝑑 =  
ln  

𝐿

𝑎
 

𝑑
+  

1

2𝑎
+

1

2𝐿
 

 

3.2 Error function and derivation of Equation (2) 

 

We begin by introducing an error function that is equal to the 

difference between the sum and the approximation of the 

sum of a given harmonic progression. i.e.  

𝐸(𝐿, 𝑎, 𝑑)  =  𝐻(𝐿, 𝑎, 𝑑)  −  𝑓(𝐿, 𝑎, 𝑑) 
 

Next, we determine the expression for the error of the 

infinite harmonic series i.e.  

𝐸(∞, 1, 1)  =  𝐻(∞, 1, 1)  −  𝑓(∞, 1, 1)  
 

We can substitute these values from equation (1) and 

equation (3) and we will get 

𝐸(∞, 1, 1)  =   ln ∞  +  𝛾  −   ln ∞ +
1

2
+

1

2∞
  

 

The equation (4) can be obtained by solving this equation.  

To derive equation (2), we must assume that the error in a 

partial sum is approximately equal to the error of the infinite 

harmonic series. i.e. 𝐸(𝐿, 1, 1)  ≈  𝐸(∞, 1, 1) 

 

Consequently, the expression for the partial sum becomes 

𝐻(𝐿, 1, 1)  ≈  𝑓(𝐿, 1, 1)  +  𝐸(∞, 1, 1) 
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We can substitute of these terms from equation (3) and 

equation (4). It is apparent without any further manipulation 

that this results in equation (2) 

 

𝐻(𝐿, 1, 1)  ≈   ln  
𝐿

1
 +

1

2
+

1

2𝐿
 +  𝛾 −

1

2
  

 

3.3 Formula for a variable first and last term 

 

We have obtained the error in the infinite harmonic series. 

To extend it for a variable first and last term, we can 

introduce a function that acts a coefficient. 

𝐸(𝐿, 𝑎, 1)  =  𝐸(∞, 1, 1)  ×  𝑔(𝐿, 𝑎, 1) 
 

The absolute value of g(L, a, 1) cannot be determined. 

However, an approximation can be obtained by finding a 

function that follows certain necessary constraints. We shall 

now list the constraints and the reasons for including them. 

 

3.3.1 Special case constraints 

In the special case of the infinite harmonic series where L 

tends to infinity, 𝐸(𝐿, 1, 1)  =  𝐸(∞, 1, 1). Therefore,  

𝑔(∞, 1, 1)  =  1 
 

In the special case where the first term is equal to the last 

term which is equal to unity. 𝐸(1, 1, 1)  =  0. Therefore, 

𝑔(1, 1, 1)  =  0  
 

3.3.2 The sum constraint 

Consider the sum of error functions of the following 

harmonic progressions.  

𝐸(𝑎, 1, 1)  +  𝐸(𝐿, 𝑎, 1)  +  𝐸(∞, 𝐿, 1) 

 

We know that  

𝐸(𝑥, 𝑦, 𝑧)  =  𝐻(𝑥, 𝑦, 𝑧)  −  𝑓(𝑥, 𝑦, 𝑧) 

 

We know from equation (0) that 

𝐻 𝑎, 1, 1 + 𝐻 𝐿, 𝑎, 1 +  𝐻(∞, 1, 1)

= 𝐻(∞, 1, 1)  +  
1

𝑎
+

1

𝐿
 

 

From equation (3) we get 

𝑓(𝑎, 1, 1)  =  ln  
𝑎

1
  +  

1

2
+

1

2𝑎
 

𝑓(𝐿, 𝑎, 1)  =  ln  
𝐿

𝑎
 + 

1

2𝑎
+

1

2𝐿
 

𝑓 ∞, 1, 1 =  ln  
∞

𝐿
 +

1

2𝐿
+

1

2∞
 

 

Therefore, we have 

𝑓(𝑎, 1, 1) + 𝑓(𝐿, 𝑎, 1) + 𝑓(∞,𝐿, 1)  = ln ∞ +
1

2
 +

1

𝑎
+

1

𝐿
 

 

Thus,  

𝐸(𝑎, 1, 1) + 𝐸(𝐿, 𝑎, 1) + 𝐸(∞, 1, 1) = 𝛾 −
1

2
= 𝐸(∞, 1, 1) 

 

Because g is simply the coefficient of E, the sum of the 

coefficients in this case must be one. 

𝑔(𝑎, 1, 1)  +  𝑔(𝐿, 𝑎, 1)  +  𝑔(∞, 𝐿, 1)  =  1 
 

 

 

3.3.3 Case for g(L, a, 1) 

The function that best approximates g(L, a, 1) that also 

follows the constraints listed above was found to be 

𝑔(𝐿, 𝑎, 1)  ≈  
1

𝑎2
−

1

𝐿2
  

 

We shall now verify that the constraints are followed.  

𝑔(∞, 1, 1)  =   
1

12
−

1

∞2
  =  1 

𝑔(1, 1, 1)  =   
1

12
−

1

12
  =  0 

 

For a partial sum of harmonic series where the first term is 

one and the last term is L, 𝑔(𝐿, 1, 1)  =   
1

1
−

1

𝐿2 . 

 

The approximation of the sum will be  

𝐻(𝐿, 1, 1)  ≈ ln 𝐿 +
1

2
+

1

2𝐿
+  𝛾 −

1

2
 ×  

1

1
−

1

𝐿2
  

 

By comparing this with the expression obtained by the 

Euler-Mclaurin method, we get  

𝜀𝐿 =
 𝛾 −

1

2
 

𝐿2
≈

1

13𝐿2
 

 

Which incidentally is within the limits 0 ≤ 𝜀𝐿 ≤
1

8𝐿2. 

 

The final constraint is that the sum of the coefficients must 

equal to unity.  

 1 −
1

𝑎2
 +  

1

𝑎2
−

1

𝐿2
 +  

1

𝐿2
−

1

∞2
  =  1 

 

Additionally, this approximation is intuitive in that it is 

simply the difference derivative of 
1

𝑥
. 

 

This corresponds to the difference between the slopes of the 

function in question at the first and the last term. 

 

With all this in mind, we can conclude that our hypothesis is 

viable and hence equation (5) and equation (6) are valid.  

 

3.4 Formula for a variable common difference 

 

We have obtained the error for a variable first and last terms. 

To extend it further for a variable common difference, we 

must introduce another function that acts as a coefficient.  

𝐸(𝐿, 𝑎, 𝑑)  =  𝐸(𝐿, 𝑎, 1)  ×  𝑘(𝐿, 𝑎, 𝑑) 

 

Naturally, the absolute value of k(L, a, d) cannot be 

determined. Additionally, the method of finding a function 

that closely approximates it that also follows certain 

constraints does not lend any fruitful results.  

 

The best method to find an approximation for k(L, a, d) is to 

simply calculate a small portion of it manually. 

Experimentally we saw that k(L, a, d) is dependent on a, d, 

and L as expected. However, its dependency on L is 

negligible (<2%).  

 

If this holds true, and we eliminate L as a variable, we can 

assert that 

𝑘(𝐿, 𝑎, 𝑑)  ≈  𝑘(𝑎 + 𝑑, 𝑎, 𝑑). 
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The latter term can be calculated manually by its definition. 

 

𝒌(𝒂 + 𝒅, 𝒂, 𝒅)  =  
𝑯(𝒂 + 𝒅, 𝒂, 𝒅)  −  𝒇(𝒂 + 𝒅, 𝒂, 𝒅)

𝑬(𝒂 + 𝒅, 𝒂,𝒅)
 

(9) 

 

 

3.4.1 The dependency on L 

I shall make the case here that although k(L, a, d) depends 

on L, it is does so, negligibly.  

 

Because k(L, a, d) is directly proportional to L, it will have 

the largest effect on it when L is equal to infinity.  

 

Consider the infinite harmonic progression such that  

𝑎 = 𝑑 = 𝑥. It is apparent that all its components are equal to 

the corresponding components of the harmonic series 

divided by x. 

𝐸(∞, 𝑥, 𝑥)  =  
𝐸(∞, 1, 1)

𝑥
 

 

We know by definition that 

𝑘(∞, 𝑥, 𝑥)  =  
𝐸(∞, 𝑥, 𝑥)

𝐸(∞, 1, 1)  × 𝑔(∞, 𝑥, 𝑥)
 

 

Therefore,  

𝑘(∞, 𝑥, 𝑥)  =  

𝐸(∞ ,1,1)

𝑥
𝐸(∞ ,1,1)

𝑥2

=  𝑥 

 

L will have the smallest effect on k(L, a, d) when L is equal 

to (a+d). 

Consider the harmonic progression such that 𝑎 = 𝑑 = 𝑥and 

𝐿 = 𝑎 + 𝑑 = 2𝑥. 

Using equation (9), we have 

𝑘(2𝑥, 𝑥, 𝑥)  =  

 
1

𝑥
+

1

2𝑥
 −  

ln 
2𝑥

𝑥
 

2
−

1

2𝑥
−

1

4𝑥
 

 𝛾 −
1

2
 ×  

1

𝑥2 −
1

 2𝑥 2 
 

 

Therefore,  

𝑘(2𝑥, 𝑥, 𝑥)  =  
𝑥  

3

4
− ln 2  

3

4
 𝛾 −

1

2
 

≈ 0.9817𝑥 

 

The difference between the greatest and smallest effect of L 

on k(L, a, d) is 0.0182𝑥. In percent of 𝑘 ∞, 𝑥, 𝑥 = 𝑥, it 

would be equal to 1.82% which is less that 2 percent.  

 

3.4.2 The Final general formula 

Thus, we can conclude that the effects of L on k(L, a, d) can 

be ignored, and we can proceed with equation (9).  

 

𝑘(𝐿, 𝑎, 𝑑) ≈ 𝑘(𝑎 + 𝑑,𝑎, 𝑑) =  

1

2𝑎
+

1

2(𝑎+𝑑)
−

ln 
𝑎+𝑑

𝑎
 

𝑑

 𝛾 −
1

2
 ×  

1

𝑎2 −
1

 𝑎+𝑑 2 
 

 

By definition  

𝐸 𝐿, 𝑎, 𝑑 ≈  𝐸 ∞, 1, 1 × 𝑔 𝐿, 𝑎, 1 × 𝑘 𝑎 + 𝑑, 𝑎, 𝑑  
 

𝐸(𝐿, 𝑎, 𝑑) ≈  
 𝐿2 − 𝑎2 ×  𝑎 + 𝑑 2

𝐿2𝑑 ×  2𝑎 + 𝑑 
 

×  
1

2𝑎
+

1

2(𝑎 + 𝑑)
−

ln  
𝑎+𝑑

𝑎
 

𝑑
  

 

 

Thus, we can conclude equation (8) as the general formula 

for the approximation of the sum of harmonic progression 

with variable first, common difference and last term.  

 

3.5 Verification 

 

To verify the approximation and test its accuracy, we shall 

use five sample harmonic progressions of varying first term 

and common difference.  

 

For each of them, we will graph the sum and the 

approximation and calculate the absolute error and expected 

accuracy.  

 

3.5.1 Case I: a=d=1 

Consider the harmonic progression such that 𝑎 = 1 ;  𝑑 = 1. 

We will use equation (6) as the approximation.  

 

The absolute error and accuracy can be defined in the 

following way. 

𝐸 = 𝐻(𝐿, 1, 1) − 𝑓(𝐿, 1, 1) − 𝐸(∞, 1, 1) × 𝑔(𝐿, 1, 1) 

 

𝐴 =
𝐻(𝐿, 1, 1)

𝑓(𝐿, 1, 1)  +  𝐸(∞, 1, 1) × 𝑔(𝐿, 1, 1)
× 100 

 

 
Figure 3: Graph of H(L, 1, 1) (discrete function) 

superimposed with equation (6) (Continuous function) 

 

The maximum value of absolute error is found to be when 

𝐿 =  2 ;  𝐸(𝑚𝑎𝑥)  =  −0.0011 

The minimum accuracy also found at 

𝐿 =  2 ;   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑚𝑖𝑛)  =  99.929% 
As the value of L increases, so does the accuracy and when 

𝐿 >  12 ;  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 >  99.999% 

 

3.5.2 Case II: a>1, d=1 

Consider the harmonic progression such that 𝑎 = 75 ;  𝑑 = 1 

We will use equation (6) as the approximation.  
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The absolute error and accuracy can be defined in the 

following way. 

𝐸 = 𝐻 𝐿, 75,1 − 𝑓 𝐿, 75,1 − 𝐸 ∞, 1,1 × 𝑔 𝐿, 75,1  

 

𝐴 =
𝐻(𝐿, 75, 1)

𝑓(𝐿, 75, 1) + 𝐸(∞, 1, 1) × 𝑔(𝐿, 75, 1)
× 100 

 

 
Figure 4: Graph of H(L, 75, 1) (discrete function) 

superimposed with equation (6) (continuous function) 

 

The maximum value of absolute error and the minimum 

accuracy both occur when L tends to infinity. Therefore, it 

cannot be determined but for a rough idea, we will calculate 

their values for the first 10000 terms. 

𝐿 = 10074 ; 𝐸 =  1.086 × 10−6 

𝐿 = 10074 ;  𝐴 = 99.9998% 

 

3.5.3 Case III: a=1. d>1 

Consider the harmonic progression such that𝑎 = 1 ;  𝑑 = 75 

We will use equation (8) as the approximation. 

 

The absolute error and accuracy can be defined in the 

following way.  

𝐸 = 𝐻 𝐿, 1, 75 − 𝑓 𝐿, 1, 75 − 𝐸 ∞, 1, 1 × 𝑔 𝐿, 1, 1 
× 𝑘 𝐿, 1, 75  

 

𝐴 =  
𝐻(𝐿, 1, 75) × 100

𝑓(𝐿, 1, 75) + 𝐸(∞, 1, 1) × 𝑔(𝐿, 1, 1) × 𝑘(𝐿, 1, 75)
 

 

 
Figure 5: Graph of H(L, 1, 75) (discrete function) 

superimposed with equation (8) (continuous function) 

 

The maximum value of absolute error and the minimum 

accuracy both occur when L tends to infinity. Therefore, it 

cannot be determined but for a rough idea, we will calculate 

their values for the first 10000 terms. 

𝐿 = 749926 ;  𝐸 = 9.27 × 10−4 

𝐿 = 749926 ;  𝐴 =  99.918% 
 

3.5.4 Case IV: a>1, d>1 
Consider the harmonic progression such that                   

𝑎 = 100 ;  𝑑 = 10 
We will use equation (8) as the approximation. 

 

The absolute error and accuracy can be defined in the 

following way. 

𝐸 = 𝐻 𝐿, 100,10 − 𝑓 𝐿, 100, 10 
− 𝐸 ∞, 1, 1 . 𝑔 𝐿, 100, 1 . 𝑘(𝐿, 100, 10) 

 

𝐴 =
𝐻(𝐿, 100, 10) × 100

𝑓 𝐿, 100, 10 + 𝐸 ∞, 1, 1 . 𝑔 𝐿, 100, 1 . 𝑘(𝐿, 100, 10)
 

 

 
Figure 6: Graph of H(L, 100, 10) (discrete function) 

superimposed with equation (8) (continuous function) 
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The maximum value of absolute error and the minimum 

accuracy both occur when L tends to infinity. Therefore, it 

cannot be determined but for a rough idea, we will calculate 

their values for the first 10000 terms. 

𝐿 = 100090 ;  𝐸 = 6.828 × 10−8 

𝐿 = 100090 ; 𝐴 = 99.9998% 

 

3.5.5 Case V: a, d are non-integers 

Consider the harmonic progression such that 𝑎 =
15

2
 ;  𝑑 =  

1

4
 

We will use equation (8) as the approximation. 

The absolute error and accuracy can be defined in the 

following way. 

𝐸 = 𝐻  𝐿,
15

2
,
1

4
 − 𝑓  𝐿,

15

2
,
1

4
  

−  𝐸 ∞, 1, 1 . 𝑔  𝐿,
15

2
, 1 . 𝑘  𝐿,

15

2
,
1

4
  

𝐴 =
𝐻  𝐿,

15

2
,

1

4
 × 100

𝑓  𝐿,
15

2
,

1

4
 + 𝐸 ∞, 1, 1 . 𝑔  𝐿,

15

2
, 1 . 𝑘  𝐿,

15

2
,

1

4
 
 

 

 
Figure 7: Graph of H (L, 15/2, ¼) (discrete function) 

superimposed with equation (8) (continuous function) 

 

The maximum value of absolute error and the minimum 

accuracy both occur when L tends to infinity. Therefore, it 

cannot be determined but for a rough idea, we will calculate 

their values for the first 10000 terms. 

𝐿 =
10029

4
 ; 𝐸 = 3.85 × 10−8 

𝐿 =
10029

4
;  𝐴 = 99.999999%  

 

4. Conclusion 
 

In keeping with the principal aim of the paper, we were able 

to create a general formula to approximate the sum of a 

given harmonic progression. Majority of the contemporary 

approximations are only applicable for the special case of 

the harmonic series. The result formula is applicable for 

diverse values of the first term and the common difference 

which also include non-integer values. 

 

One of the objectives of this paper was to construct a 

formula that does not depend on discrete operators such as 

summation. It is apparent that none of the resultant formulas 

depend on the use of discrete operators or series expansions.  

 

The fundamental nature of the general form must be 

stressed. It shares a strong connection with the original 

equation of Euler-Mascheroni constant and is also able to 

derive the results found by the Euler-Maclaurin method for 

the harmonic series.  

 

The statistical analysis also reveals positive results. 

Although the accuracy of the formula will decrease as the 

last term increases, it will do so very slowly and is highly 

unlikely to drop below 99.9% regardless of the first term and 

common difference. If on the other hand, only the absolute 

error is relevant, then the results are more promising.  

 

4.1 Application 

 

To calculate the sum of a harmonic progression when the 

common difference is unity, equation (6) should be 

preferred. For all other cases equation (8) should be used.  

 

The general application of the formula is in any area that 

requires the sum of a given harmonic progression, such that 

computation is not a viable path or when the solution is 

required to be algebraic in nature.  

 

4.2 Future Research 

 

The problem that still requires further attention is perhaps 

finding a better approximation for k(L, a, d) when d is very 

large. A constraint based search for k(L, a, d) can also be a 

worthwhile avenue. 

 

The sum of other series in which the degree of the terms is 

less than zero such as the finite Basel problem could also 

potentially be approximated using similar methods.  
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