
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Optimizing App Memory Usage in Android

Smartphones

Omkar Manohar Ghag

M.S. in Telecommunication, University of Pittsburgh, PA. Independent Research

Abstract: Understanding app memory measurement in the constantly changing technologies of Android smartphones is a broad and

complex process. Given the complicated architecture of Android devices, minimizing app memory use becomes the most critical priority

but is hard to achieve. Every Android device has its own set of issues regarding optimizing memory utilization; hence, app memory

measurement in Android devices is a complex goal to achieve for most engineers. The varied hardware combinations in Android devices

also complicate minimizing application memory use. It is essential to understand that efficient and responsive mobile apps depend on

their ability to use memory resources efficiently. This comprehensive study narrows its attention to the critical elements to consider for

optimizing memory considering Android devices' modern, evolving technology. The detailed research presented in this article seeks to go

beyond the ordinary and give practical insights. Identifying the specific software that effectively handles the challenges posed by various

hardware setups is helpful, recognizing that the optimization process is constantly changing with technological growth. The importance

of this investigation is highlighted by the recognition that attaining optimum memory usage is only sometimes a universally applicable

effort as it needs a customized strategy specific to the presented challenge, considering the other difficulties presented by the constantly

evolving Android smartphone environment. This article thoroughly examines the complex aspects of memory efficiency, providing

engineers with a clear guide to balancing application performance, the best memory allocation, and optimization strategy. By avoiding

generalizations, this investigation guarantees that the insights provided are relevant and immediately implementable to the unique

demands of memory optimization in the constantly evolving technology of Android devices.

Keywords: Android memory optimization, app performance, memory usage analysis, Android hardware configurations, mobile

application development.

1. Introduction

The optimization of memory utilization is of utmost

importance in the complex environment of Android apps, as

it plays a fundamental role in determining the performance

of an application. Due to their varied hardware

configurations, Android smartphones present unique

problems that need an advanced understanding of memory

management [1]. It is, therefore, important to thoroughly

examine the methods engineers use to quantify and improve

the utilization of app memory on Android smartphones.

Research reveals the complexities that govern the efficiency

of Android applications in utilizing device memory. Aspects

such as deconstructing parameters like PSS and USS,

analyzing foreground and background memory dynamics,

and examining the toolsets of Linux and specialized utilities

such as Valgrind with Massif and the MAT (Memory

Analyzer Tool) are essential factors to understand in

measuring app memory in Androids.

1.1 Understanding Memory Parameters

App memory measurement in androids begins with

understanding critical parameters such as the unique set size

(USS) and proportional set size (PSS). These parametric

values are foundational in understanding the memory usage

of an application.

Proportional Set Size (PSS) may be considered a

comprehensive overview of an application's memory use [3].

PSS contains the exclusive memory specific to the

application and the shared memory, which several other

processes use. Proportional Set Size is a parameter

that offers a proportionate depiction of the overall memory

use of a program. PSS is crucial in evaluating the app's

overall effect on the device's memory resources.

In contrast, Unique Set Size (USS) focuses only on a

particular application's distinct and non-shared memory [3].

USS precisely measures the amount of memory the process

uses, excluding any shared components. The USS (Unique

Set Size) metric is helpful for accurately determining the

specific app's impact on memory utilization. Engineers may

get detailed insights into the app's resource use by

exclusively focusing on the particular memory space

associated with it [2]. When examined using the PSS

method, the USS tool thoroughly comprehends the common

and unique components of an application's memory use.

1.2 Evaluation of Foreground and Background Memory

Understanding the interplay between foreground and

background memory consumption is crucial for unraveling

the complexities of an application's behavior, especially in

determining how it utilizes resources during activity and

inactivity.

Foreground memory pertains to the amount of memory an

application uses when it is actively running and used by the

user. The most accurate formula in foreground memory

calculation entails deducting shared memory from PSS,

offering a detailed understanding of the resources used

during active interaction with the application.

Foreground Memory = PSS − Shared Memory

This procedure isolates the memory components directly

attributed to the app's operating state. Engineers may

acquire a detailed insight into the unique resources used

during active engagement with the program by analyzing

Paper ID: SR24104104037 DOI: https://dx.doi.org/10.21275/SR24104104037 464

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

the shared memory separately from the total proportional set

size.

Even when an app operates in the background, it still

consumes memory resources on the device. The residual

memory used after a process has ended is often known as

background memory. To calculate background memory, the

most accurate formula requires one to sum the USS (Unique

Set Size) with the shared memory to account for the app's

exclusive memory space, even when the user is not using it.

Background Memory = USS + Shared Memory

1) Memory Measurement Tools for Linux

Engineers may use the powerful tools available in the Linux

environment to do thorough memory analysis. Two

prominent resources are Pmap and Perfdump [5].

To assist engineers in recognizing memory utilization

patterns, the command-line program known as Pmap offers

a comprehensive description of the memory used by

processes [2]. It enables a thorough examination of the

memory environment, assisting in optimization. Engineers

mostly prefer Pmap as it provides an in-depth analysis of the

memory environment, enabling the identification of

irregularities and inefficiencies, making it a significant tool

for optimization [5].

Even though it is not a Linux-specific tool, perfdump is an

Android-specific program that helps profile different

elements of an application's performance, including memory

utilization [5]. Perfdump is used to quantify an application's

memory consumption on Android devices by analyzing

diverse performance factors, such as memory metrics, and

providing customized insights specific to the Android

platform. Perfdump outperforms standard profiling tools by

offering tailored insights for the Android environment. The

Android-centric features enhance the accuracy of memory

measurements, providing engineers with a customized tool

to comprehend the interaction between an app and the

underlying hardware resources [1]. Perfdump provides

engineers with a customized view of an application's

memory performance, enabling them to make educated

decisions to optimize it.

2) Specialized Methods for In-Depth Analysis

In addition to general tools, specialized tools give engineers

a more profound comprehension of memory dynamics,

allowing them to make well-informed optimization choices.

Two notable tools, Valgrind with Massif and the MAT

(Memory Analyzer Tool), excel in their capacity to simplify

complex memory consumption data, enabling engineers to

make well-informed optimization choices [6].

While the Massif tool from Valgrind was first developed as

a debugging tool, it has now evolved into a robust

instrument for analyzing heap usage [6]. The Massif is a

comprehensive guide for engineers, including extensive

memory allocation and deallocation analysis. Engineers use

Valgrind's Massif tool to analyze the memory behavior of a

program, detecting possible inefficiencies and indicating

areas that may be improved [6]. The tool comprehensively

visualizes an application's heap memory consumption,

allowing developers to optimize memory utilization patterns

for improved efficiency and performance.

While initially intended for Java applications, MAT may be

modified to analyze Android memory [6]. This tool enables

engineers to do a thorough analysis of the Java heap,

providing them with the ability to explore intricate details

connected to memory. MAT is a navigational tool for

engineers, providing them with a thorough examination of

the Java heap. This tool enables a comprehensive

exploration of memory-related challenges, providing a

comprehensive overview of an application's memory

environment. Engineers may use MAT for Android to

analyze the Java heap's composition, revealing memory

leaks, suboptimal object retention, and other intricacies that

might affect an application's performance [6]. Due to its

flexibility, MAT is a significant tool for engineers to

analyze and understand the complexities of memory

consumption.

2. Recommendations

Understanding the complexities of app memory

measurement in the constantly evolving world of Android

smartphones is a complex obstacle. The wide range of

hardware combinations on Android handsets adds additional

complications when minimizing memory use. The

efficiency and responsiveness of mobile apps are closely

linked to their ability to manage memory resources

effectively. Therefore, it is crucial to understand the

approaches for assessing app memory on Android devices.

In addition to the previously examined aspects of PSS, USS,

foreground, and background memory, looking into other

elements, such as the shared and unshared memory

components, may be essential. A profound grasp of this is

necessary since it gives engineers valuable insights into the

app's overall effect on device capacity. Amidst the

constantly changing world of Android devices, this extra

level of understanding guides developers towards

customized strategies for efficient memory use, highlighting

the need to use flexible tactics when dealing with various

types of Android hardware.

3. Conclusion

In conclusion, achieving the best possible app memory use

on Android devices requires a detailed approach and a range

of specialized tools. Engineers negotiate the complex web

of memory dynamics, beginning with the fundamental

knowledge of factors such as PSS and USS and moving on

to the detailed analysis of foreground and background

memory. Linux tools like Pmap and Android-specific

programs like Perfdump provide comprehensive insights

into memory landscapes through deep analysis. In addition,

specialist tools like Valgrind's Massif and the adaptable

MAT allow engineers to get significant insights and make

well-informed choices to achieve optimal performance. The

efficiency and responsiveness of Android apps are formed

and polished at the intersection where theory and practical

tools cross in this pursuit of knowledge.

Paper ID: SR24104104037 DOI: https://dx.doi.org/10.21275/SR24104104037 465

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

References

[1] B. Li, Q. Zhao, S. Jiao, and X. Liu, “DroidPerf:

Profiling Memory Objects on Android Devices,” Jul.

2023, doi: https://doi.org/10.1145/3570361.3592503.

[2] M. Mahendra and B. Anggorojati, "Evaluating the

performance of Android-based Cross-Platform App

Development Frameworks," 2020 the 6th

International Conference on Communication and

Information Processing, Nov. 2020, doi:

https://doi.org/10.1145/3442555.3442561.

[3] C. Wimmer et al., “Initialize once, start fast:

application initialization at build time,” Proceedings

of the ACM on Programming Languages, vol. 3, no.

OOPSLA, pp. 1–29, Oct. 2019, doi:

https://doi.org/10.1145/3360610.

[4] C. Sampayo-Rodríguez et al., “18 53-61 Android

application,” Article Journal Applied Computing, vol.

6, pp. 53–61, 2022, doi:

https://doi.org/10.35429/JCA.2022.18.6.53.61.

[5] I. Tanzima, A. Alexis, J. Quentin, and I. Khaled,

"Toward a Programmable Analysis and Visualization

Framework for Interactive Performance Analytics |

IEEE Conference Publication | IEEE Xplore,"

ieeexplore.ieee.org, 2019.

https://ieeexplore.ieee.org/abstract/document/895567

7/

[6] K. S. Gadgil, “Performance Benchmarking Software-

Defined Radio Frameworks: GNURadio and

CRTSv.2,” vtechworks.lib.vt.edu, Apr. 08, 2020.

https://vtechworks.lib.vt.edu/handle/10919/97568

(accessed Dec. 28, 2023).

Paper ID: SR24104104037 DOI: https://dx.doi.org/10.21275/SR24104104037 466

https://doi.org/10.1145/3570361.3592503.
https://doi.org/10.1145/3442555.3442561.
https://doi.org/10.1145/3360610.
https://ieeexplore.ieee.org/abstract/document/8955677/
https://ieeexplore.ieee.org/abstract/document/8955677/
https://vtechworks.lib.vt.edu/handle/10919/97568

