
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhancing Load Balancing in Heterogeneous High

Performance Cloud Computing with MMWRR+: A

Novel Task Allocation Approach

Suvarna N A

Research Scholar, SoE, GD Goenka University, Gurugram, Haryana - 122102, India

Email: suvarna07.aradhya[at]gmail.com

Abstract: Cloud computing has emerged as a leading paradigm for providing scalable, on - demand and pervasive computing

resources. But load balancing through efficient task allocation remains a challenging problem in cloud environments due to the

dynamic and unpredictable nature of workloads across diverse virtualized resources. Addressing this, we present an innovative task

allocation approach by amalgamating two state - of - the - art scheduling algorithms, namely Max - Min and Weighted Round - Robin

to achieve effective load balancing in heterogeneous high performance distributed computing (HPDC). The proposed method

MMWRR+ emphasizes resource awareness, scalability and dynamic adaptability, alleviating resource contention and optimizing

resource utilization. Comparative evaluations demonstrate that the proposed approach outperforms the referred individual algorithms

and prior research - based improvement techniques to these algorithms. Moreover, it effectively mitigates resource imbalances,

efficiently manages diverse workloads and empowers cloud systems to handle fault tolerance.

Keywords: Load Balancing; Resource Optimization; Max - Min; Heuristic Algorithm; Fault Tolerance

1. Introduction

Load balancing in cloud systems is defined as the practice of

distributing incoming network traffic, computational tasks,

or application workloads across multiple resources, such as

virtual machines (VMs), servers, or datacentres, to optimize

resource utilization, improve system performance, and

ensure high availability, reliability and fault tolerance. The

primary goal of load balancing is to prevent any single

resource from becoming overwhelmed by an excessive

amount of work while others remain underutilized. In

totality, load balancing ensures that all resources are always

kept productive. The challenges to load balancing are posed

by the nature of distributed systems, such as: lack of

centralized control, coordination between heterogeneous

nodes, network structures, automated services, VM

migrations and wide geographical distribution of resources.

To address all the above challenges and meet the best of all

performance metrics is highly computational and NP hard

problem. Only selective challenges can be targeted, and few

metrics can be aimed for improvement. This research article

considers only the time critical parameters such as make

span, waiting time, response time for improved performance

along with primary goal of optimal resource utilization.

Inherently, the framework adopted also facilitate the easy

detection and mitigation of faults. This paper proposes a

hybrid, resource - aware, scalable, heuristic, and dynamic

task allocation method to achieve efficient load balancing in

cloud computing. The method combines the advantages of

both Max - Min and Weighted Round - Robin to exploit

their complementary features and overcome their

limitations.

Max - Min, Min - Min and Weighted Round - Robin are the

popularly known and vastly used heuristic task scheduling

algorithms in cloud systems. These algorithms are used in

our research as benchmark to investigate and compare the

effects on load balancing.

The Max - Min, Min - Min, Min - Max, and Max - Max

algorithms are all different ways of implementing the

minimax strategy in job scheduling. They are based on game

theory approaches to optimization for job scheduling. Min -

Max and Max - Max are less common because they do not

correspond to well - known or widely used strategies in the

context of task scheduling.

In this research, extensive simulations are conducted in a

representative cloud computing environment to evaluate the

performance of the proposed resource - aware hybrid task

allocation method. The results demonstrate the superiority of

the method compared to existing load balancing techniques

in terms of resource utilization, response time, makespan

and system throughput.

The contributions of this research are twofold. Firstly, the

proposed method offers a novel approach to load balancing

in cloud computing by using centralized task allocation

technique for batch processing. Secondly, the resource -

awareness aspect of the method ensures efficient utilization

of heterogeneous cloud resources, leading to improved

system performance.

The remainder of this article is organized as follows: Section

2 provides an overview of related work in the field of task

scheduling and load balancing in cloud computing. Section 3

describes the methodology and algorithms employed in the

proposed allocation method. Section 4 presents the

simulation setup and performance evaluation results. Finally,

Section 5 concludes the article with a summary of findings

and future research directions.

2. Related Works

Load balancing in cloud systems is not just a critical issue

but also the main objective of task - allocation, as it ensures

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 757

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

that resources are utilized efficiently and that users

experience a consistent level of performance [1], [18].

Algorithms for load balancing through task allocation are

broadly classified as: Centralized Algorithms, Decentralized

Algorithms, Task Specific Algorithms and Game - Theoretic

Algorithms [1]. These load balancing algorithms are built to

work suitably across different network architectures and

operating mechanisms [2], [7].

Each algorithm emphasizes on certain specific QoS

parameters. Because, in a heterogeneous cluster, the load

balancing through task allocation to improve all the QoS

parameters is highly computational and is a NP Hard

problem [6]. Therefore, only sub optimal solution exists that

helps to improve few specific QoS parameters.

The task allocation algorithms are broadly classified as

primitive, heuristic, or metaheuristic based on the level of

sophistication and complexity of the algorithms and the

approach they use to solve the task allocation problems [6].

Game - theoretic task allocation algorithms are based on

principles of game theory, which studies the strategic

interactions between decision - making agents. These

heuristic algorithms aim to allocate tasks efficiently while

considering the self - interested behaviour of individual

agents. These algorithms offer a principled approach to

address task allocation problems in scenarios where agents

act strategically, helping achieve efficient and stable task

assignments [36].

In recent years, there has been a growing interest in

developing resource - aware, dynamic, fault detectable and

task migratable load balancing algorithms [3], [7], [22].

These algorithms consider the resources available in the

neighbourhood when making load balancing decisions. This

can help to improve load balancing performance by ensuring

that tasks are allocated to resources that have the capacity to

meet their requirements [5], [9], [13].

Focussing on the research towards the improvements to the

existing heuristic Min - Min and Max - Min algorithms

along with the fundamental insights into Weighted Round -

Robin, several researchers have presented modified

algorithms based on these.

Saeed Parsa et. al. [21] suggested a modified scheduling

policy based on Max - Min and Min - Min called as

“RASA”. In this algorithm, tasks are scheduled to

appropriate resources using one of the two strategies: Max -

Min and Min - Min alternatively. Resources are

characterized with two variables, namely processing speed

and communication speed.

An improved Max - Min algorithm for Elastic Cloud called

(ECMM) is suggested by Xiaofang Li, et al. [30]. Main idea

is to maintain an executing task status table and a virtual

machine status table to estimate the workload in real time

inside a load balancer for a batch of tasks. The algorithm

selects the task with the longest execution time (Max) and

assigns it to virtual machine with the shortest completion

time (Min). Meanwhile, it also updates the number of tasks

and the total task execution time of the virtual machine in

the virtual machine status table. The process cycles until all

tasks are allocated.

Belal Ali Al - Maytami et al [6]. suggests an improvement in

Max - Min scheduling algorithm using Directed Acyclic

Graph (DAG) based on the Prediction of Tasks Computation

Time algorithm (PTCT) to estimate the preeminent

scheduling algorithm for prominent cloud data. It employs

Principal Components Analysis (PCA) to reduce the

Expected Time to Compute (ETC) matrix.

S. VaaheedhaKfatheen et al. [31] proposes another

improvement to Max - Min called as Mim - Mam. It

segregates the tasks into two groups: 1. Above the average

task length (MinETC) 2. Below the average task length

(MaxETC). The number of tasks in both the resulted ETC‟s

is now used to take decision. If number of tasks in MinETC

is less than or equal to MaxETC then Max - Min algorithm

is used to schedule the MaxETC. Otherwise, Min - Min

algorithm is used to schedule the MinETC.

 O. M. Elzeki, et al. [33] recommends an improvement to

Max - Min. The algorithm calculates the expected

completion time of the submitted tasks on each resource.

Then the task with the overall maximum expected execution

time is assigned toa slowest resource so that many shorter

jobs can be completed simultaneously on the fastest machine

to improve the makespan. Finally, this scheduled taskis

removed from meta - tasks and all calculated times are

updated and the processing is repeated until all submitted

tasks are executed.

Pandaba Pradhan et. al [35] advised an improvement to Max

- Min and Min - Min through an algorithm called “IMM”.

Algorithm assigns the first task according to Max - Min

strategy and then assigns tasks using Min - Min strategy till

the total task length of the assignments equal that of earlier

Max - Min assignment. The technique is the same as that of

[33].

D. Chitra Devi, et al. [8] advises an improvement to

Weighted Round - Robin. it allocates the jobs to the most

suitable VMs based on the VM‟s information like its

processing capacity, load on the VMs, and length of the

arrived tasks with its priority. The static scheduler of this

algorithm uses the processing capacity of the VMs, the

number of incoming tasks, and the length of each task to

decide the allocation on the appropriate VM. The dynamic

scheduler of this algorithm additionally uses the load on

each of the VMs to decide the allocation of the task to the

appropriate VM. There is a probability at run timethat, in

some of the cases that the task may take longer execution

time based on the run time data. In such situations, the load

balancer rescues the scheduling controller and rearranges the

jobs through task migration to circumvent the overload on

the VMs.

In summary, traditional task allocation methods often fail to

consider the dynamic nature of cloud resources and the

varying workload demands imposed by users. Therefore,

there is growing need for novel task allocation methods that

can effectively address these challenges and achieve optimal

resource utilization and load balancing for time - critical

applications in cloud computing.

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 758

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Problem Formulation

In this research, the existing traditional algorithms: Max -

Min, Min - Min and Weighted Round - Robin are

investigated in depth along with the suggested

improvements by earlier researchers to devise an improved

algorithm “MMWRR+”which is resource - aware, dynamic,

and scalable. The algorithm is designed for the following

situations.

a) A subsystem of cloud/cluster consisting of a limited

number of nodes.

b) Batch processing for scheduling of tasks at the broker

level.

c) Only time - critical parameters are considered for

improvement.

3.1 System Model

The algorithms are implemented on CloudSim, a Java -

based simulation toolkit for modelling and simulating cloud

computing systems. The broad architecture of cloud system

and details of the entities within it are as under.

Figure 1: Architecture of the Cloud System

The cloud entities are emulated on a representative cloud

setup (CloudSim) for implementation of the scheduling

algorithms under study. Entire cloud system is a huge

number of geographically distributed network of computing

devices. For the system under study, a section or cluster of

this network at one location ordatacenter with few

computing nodes are considered. Tasks/Cloudlets are batch

processed dynamically in real time with centralized task

allocation at the broker level.

3.2 System Configuration

Virtual Machines (VMs): Four VMs of following

configuration (Table - 1) are used. Onlyparameter varied is

MIPS (Execution Speed in Millions of Instructions Per

Second) to depict heterogeneous systems. The MIPs of four

VMs are set to 1000, 2000, 3000 and 4000 respectively.

Table 1: Configuration of Virtual Machines
Image Size in MB RAM in MB BW in Gbps PEs VMM

10, 000 512 1000 1 Xen

Hosts: Two Hosts of the following configuration are used.

Table 2: Configuration of Hosts
RAM in

MB
Storage BW PEs MIPs

VM Allocation

Policy

4096 1 GB 10, 000 Gbps 1 10, 000 First Fit

Datacenter: One Datacenter is created with architecture

“X86”, Linux Operating System and “XEN” VMM.

Cloudlets (Tasks): Tasks with random task lengths

(between 100, 000 and 500, 000 million instructions) are

applied in three different data sizes (100, 500 and 1000).

3.3 Proposed Algorithm (MMWRR+)

The algorithm is designed to exploit the advantages of

Weighted Round - Robin and Max - Min.

Notations:

Number of tasks = n (namely, T1, T2, ……. . Tn)

Number of Machines = m (namely, VM1, VM2 …. . VMm)

Length of each task = Li (Millions of Instructions, i ranging

from

1 ton; Also, Li> Li+1 for 1≤i≤n)

Total length of tasks, LT= Li 𝑛
𝑖=1

Processing rate (Speed) of each machine

VMi= I Millions of Instructions Per Second, i ranging from

1 to m; Also, i>i+1 for 1≤i≤m

Arrival rate of the tasks, λ = n/unit time = n (⸪ Batch

Processing)

Utilization of each VM, ρi = λ/i

Now, the problem is to assign the tasks to any one of the

available machines so as utilize the machines to the

optimum extent to complete the execution of tasks at the

earliest possible.

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 759

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Algorithm of MMWRR+:

1) Compute the total length of the tasks

LT = Li 𝑛
𝑖=1

2) Compute the total available processing power of the

virtual machines

T = i 𝑚
𝑖=1

3) Compute the share of processing power of each virtual

machine

ρi = i/ i 𝑚
𝑖=1

4) For (i = 1 to m) // for each machine VMi

 {Tasks assigned to VMi = TPi = { } // Empty List

 For (j = 1 to n) // for each task Tj

 {If (Total Length of Tasks in TPi<ρi* LT)

 {If (Length of Tj< ((ρi* LT) – Length of TPi))

 Add TjtoTPi

}

 }

 }

5) Repeat steps 1 to 4 for the remaining tasks and leftover

resources (CPU computing time).

6) Execute the tasks assigned to each VM in the reverse

order.

The flow chart of the devised algorithm is indicated in figure

- 2 below.

3.4 Simulation of algorithms

The state - of - the - art Max - Min, Min - Min, and

Weighted Round - Robin and the earlier proposed

improvements by the researchers to these algorithms along

with the proposed algorithm (MMWRR+) are implemented

on the simulation platform. The results are obtained for three

different data sizesof 100, 500, and 1000, where each dataset

is a collection of tasks with random task lengths. The graphs

of makespan, waiting time and resource utilization are

tabulated in the next section.

Flow Chart of MMWRR+:

Figure 2: Flow chart of the proposed algorithm

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 760

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Results

Table 3: Summary of Simulation Results

Summary of Results

Makespan in Seconds

Data Size Max - Min Min - Min WRR RASA [21] IMM [33] MMWRR+

100 3147 3211 3387 7887 3199 3179

500 106438 107041 107076 185870 104068 106686

1000 208055 215926 215755 276858 282395 215483

 Average Wait Time in Seconds

100 1839 1177 1465 2039 1376 1384

500 69640 35932 51135 67491 42882 50410

1000 136979 73586 107125 125485 88134 96981

 Resource (Computing Time) Utilized in Seconds

VM Max - Min Min - Min WRR RASA [21] IMM [33] MMWRR+

Data Size = 100, Threshold = 3053 Seconds

VM0 3098 2868 3390 7887 3182 3099

VM1 3151 3187 3194 2625 3101 3179

VM2 3157 3121 3228 2613 3117 3133

VM3 3165 3231 3018 2638 3199 3141

Data Size =500, Threshold = 106498 Seconds

VM0 106462 107068 106827 276858 103617 106404

VM1 106469 106982 107125 87593 103248 106203

VM2 106511 106004 107118 87270 104068 106461

VM3 106512 106484 105637 87782 103969 106481

Data Size =1000, Threshold = 215304 Seconds

VM0 210388 215979 215721 480341 215685 215210

VM1 210380 216010 215859 185833 215308 214892

VM2 210388 214759 215508 185878 215272 215282

VM3 210364 215191 214770 185850 215231 215302

4.1 Makespan (Time to complete the execution of all tasks)

Makespan obtained from the implementation of traditional and earlier suggested improved algorithms for three different data

sizes listed in Table - 3. The graph so obtained from this data is indicated in Figure - 3.

Figure 3: Makespan of the different algorithms

It is observed from the graph of makespan that MAX - MIN

performs best for makespan. By prioritizing the assignment

of tasks with the maximum completion time, MAX - MIN

aims to balance the workload more effectively, preventing

the occurrence of heavily loaded processors and idle time.

This load balancing strategy led to improved overall

efficiency and a reduced makespan. On the other hand, Min

- Min makes task assignments based on the earliest

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 761

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

completion time of the tasks. This early commitment to

suboptimal choices has led to a snowball effect, where

subsequent task assignments become increasingly

constrained and less efficient, ultimately leading to a larger

makespan. WRR also performs badly for makespan as

doesn‟t consider the varying processing times of tasks,

leading to imbalanced resource utilization and longer overall

completion time. IMM is not exhibiting consistent

performance with varying data size. RASA is performing

poor compared to all other algorithms.

4.2 Average Waiting Time:

The results of waiting time obtained from implementation of

same set of algorithms for three different data sizes are listed

in Table - 3. The graph so obtained from this data is shown

in Figure - 4 below.

Figure 4: Average Wait Time of the different algorithms

The trend here is just opposite to that of the makespan graph.

The Max - Min algorithm exhibits more wait time compared

to all other algorithms. It is because it prioritizes processes

with the maximum completion time. This strategy has led to

longer wait times for tasks on processors with higher loads,

potentially increasing the overall waiting time before tasks

are completed. The waiting time is minimum in the Min -

Min algorithm because it assigns tasks to processors based

on the earliest completion time. Weightedround - robin

performs badly for waiting time because it unfairly

prioritizes tasks with higher weights, causing longer waiting

times for lower - weighted tasks. IMM closely follows the

best performing Min - Min. RASA and Max - Min are

exhibiting longer wait times as longer jobs are scheduled

prior to shorter jobs. The proposed MMWRR+ performs

close to the best (Min - Min & IMM).

4.3 Load Balancing& Resource Utilization

Load Balancing is directly related to Resource Utilization. It

is a very important performance metric, as it affects the

overall time of completion (Makespan). Any server, which is

under - utilized will wait for the over utilized server to

complete its work. Load Balancing is to keep all the servers

busy all the time or in other words, all servers finish the jobs

at the same time.

Sample Calculation of Threshold CPU time (Resource

utilization):

Using the M/G/c queuing model,

Resource Utilization = ρ =λ/ (c *) where λ is the arrival

rate of the tasks,  is the service rate of the server and c is

the number of servers. In batch processing, all tasks arrive at

the same time. Therefore ʎ = total number of tasks at the

server queue.

Total Task Lengths of 100 tasks = 31531862 (Millions of

Instructions or MI)

Average MIs processed by four VMs in one second = 10,

000/4 = 2500 MI/Sec

(Where 1000, 2000, 3000, 4000 are the processing speeds of

VMs, their sum is 10, 000 MIs)

Therefore, ρ = 31531862/ (4 * 2500) = 3153 seconds. The

value, ρ also indicates the upper threshold of the workload to

the VMs. This threshold value for data size of 500 and 1000

is also similarly calculated as 106498 seconds and 215304

seconds respectively.

The graphs below in figures: 5, 6 and 7 are the results to

show the load imbalancing effect of the algorithms. Each

graph is related to a specific data size.

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 762

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: Load Imbalance for data size 100

Figure 6: Load Imbalance for data size 500

Figure 7: Load Imbalance for data size 1000

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 763

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Summary of Load Imbalance as percentage deviation from Threshold

The workload distributed above/below the threshold value to

each of the available four Virtual machines through the

various algorithms to avail the CPU computing time is

indicated in these graphs. Threshold indicates a 100%

workload.

As is clear from the graph, the load balancing is poor for

WRR. It is because it allocates tasks to processors based on

fixed weights, without considering the dynamic workload or

processing capabilities, leading to potential imbalances in

processor utilization. Load balancing is very poor in RASA

due to prioritization of smaller tasks. As it is very evident

from the results table that RASA is not comparable to other

algorithms, it is excluded from the graph. MAX - MIN

performs best in load balancing as it prioritizes longer tasks.

It also optimally utilizes the resources. MMWRR+ is very

close to the best performing MAX - MIN, as far as load

balancing is concerned. Next is IMM, close to MMWRR+

and performs almost equally good.

4.4 Fault Tolerance

Having done the scheduling at the broker level, maintaining

a lookup table of VM allocation and tallying it with the

information received from the VMs about finished tasks

results in earlier detection of faults.

4.5 Discussion of Results

The performance of the proposed algorithm (MMWRR+)

closely rivals the top - performing MAX - MIN in makespan

and closely approaches the best (MIN - MIN) in waiting

time. Additionally, it outperforms MIN - MIN and WRR in

load balancing and its performance is nearly on par with the

best (MAX - MIN). In totality, proposed algorithm gives

better results when all the three - performance metrics is

considered.

5. Conclusion

In conclusion, this research introduces an innovative and

improved scheduling algorithm “MMWRR+” that

outperforms traditional approaches like Weighted Round

Robin and Max - Min. Through comprehensive

experimentation and analysis, it has been demonstrated that

the proposed algorithm effectively minimizes the makespan,

reduces waiting times for tasks, and significantly enhances

load balancing in parallel computing environments. By

considering dynamic workload variations and optimizing

task assignments based on a sophisticated weighting

mechanism, the new algorithm achieves superior

performance, making it a promising solution for task

scheduling in diverse computing systems. The findings

presented in this study contribute valuable insights to the

field of parallel computing, offering a robust alternative that

can lead to enhanced efficiency, resource utilization, and

overall system performance. With its demonstrated

advantages, this novel scheduling algorithm holds great

potential for real - world applications, paving the way for

more efficient and effective task scheduling in parallel

computing environments.

6. Future Scope

Further research and practical implementation are

recommended to fully explore the algorithm's capabilities

and validate its performance under non time - critical

scenarios including parameters such as energy consumption,

network costs, data availability using redundancy, etc. Fault

tolerance can be testedthrough fault injection at various

levels and mitigating it through migration, replication, and

monitoring.

References

[1] Yichuan Jiang, Senior Member, IEEE, “A Survey of

Task Allocation and Load Balancing in Distributed

Systems”, IEEE Transactions on Parallel and

Distributed Systems, Vol.27, no.2, February 2016.

[2] Pooja Kathalkar, A. V. Deorankar, “Challenges &

Issues in Load Balancing in Cloud Computing”,

International Journal for Research in Applied Science

& Engineering Technology (IJRASET) ISSN: 2321 -

9653; IC Value: 45.98; SJ Impact Factor: 6.887,

Volume 6 Issue IV, April 2018

[3] XiaoxunZhong, LianmingZhang, and YehuaWei,

“Dynamic Load - Balancing Vertical Control for a

Large - Scale Software - Defined Internet of Things”,

IEEE Access, September 23, 2019, Digital Object

Identifier 10.1109/ACCESS.2019.2943173

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 764

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[4] Hatim Gasmelseed Ahmed, RRamalakshmi,

“Performance Analysis of Centralized and Distributed

SDN Controllers for LoadBalancing Application”,

Proceedings of the 2nd International Conference on

Trends in Electronics and Informatics (ICOEI 2018)

IEEE Conference Record: # 42666; IEEE Xplore

ISBN: 978 - 1 - 5386 - 3570 - 4.

[5] Suchintan Mishra, Manmath Narayan Sahoo, Sambit

Bakshi, Senior Member, IEEE, Joel J. P. C. Rodrigues,

Fellow, IEEE, “Dynamic Resource Allocation in Fog -

Cloud Hybrid Systems using Multi - criteria AHP

Techniques”, DOI 10.1109/JIOT.2020.3001603, IEEE

Internet ofThings Journal.

[6] Belal Ali Al - Maytami, Pingzhi Fan1, Abir Hussain,

Thar Baker and Panos Liatsis, “A Task Scheduling

Algorithm With ImprovedMakespan Based on

Prediction of TasksComputation Time algorithm

forCloud Computing”, IEEE Access, October 21,

2019, Digital Object Identifier

10.1109/ACCESS.2019.2948704.

[7] Alireza Sadeghi Milani, Nima Jafari Navimipour,

“Load balancing mechanisms and techniques in the

cloud environments: Systematic literature review and

future trends”, Journal of Network

andComputerApplications71 (2016) 86–98.

[8] D. Chitra Devi and V. RhymendUthariaraj, “Load

Balancing in Cloud Computing EnvironmentUsing

Improved Weighted Round Robin Algorithm

forNonpre - emptive Dependent Tasks”, Hindawi

Publishing Corporation, Scientific World Journal,

Volume 2016, Article ID 3896065, 14 pages, http:

//dx. doi. org/10.1155/2016/3896065.

[9] Vadivel R, SudalaiMuthu T, “An effective HPSO -

MGA Optimization Algorithm for Demand Based

Resource Allocation in Cloud Environment”, 6
th

International Conference on Advanced Computing and

Communication Systems, 2020.

[10] Ajay Jangra, Neeraj Mangla, “ An efficient load

balancing framework for deploying resource

scheduling in cloud - based communication in

healthcare”, Measurement: Sensors 25 (2023) 100584.

[11] Majid Derakhshan, Zohreh Bateni, “Optimization of

Tasks in Cloud Computing Based onMax - Min, Min -

Min and Priority”, 4th International Conference on

Web Research (ICWR), 2018.

[12] Shanchen Pang, Wenhao Li, Hua He, Zhiguang Shan,

And Xun Wang“An EDA - GA Hybrid Algorithm for

Multi - ObjectiveTask Scheduling in Cloud

Computing”, Special section on innovation and

application of intelligent processing ofData,

information and knowledge as resources in edge

computing, IEEE Access, October 2019.

[13] Altaf Hussain, Muhammad Aleem, Muhammad Azhar

Iqbal, Muhammad Arshad Islam, “SLA‑RALBA:

cost‑efficient and resource‑aware loadbalancing

algorithm for cloud computing “, The Journal of

Supercomputing (2019) 75: 6777–6803, https: //doi.

org/10.1007/s11227 - 019 - 02916 - 4, June 2019.

[14] He XioShan, Sun XionHe, Gregor Von Laszewski,

“QoS Guided Min - Min Heuristic for Grid Task

Scheduling”, Journal of Computer Science and

Technology, July 2003.

[15] Pillareddy VamsheedharReddy and Karri Ganesh

Reddy, “A Multi - Objective Based Scheduling

Frameworkfor Effective Resource Utilization in

CloudComputing”, April 2023. IEEE Access,

10.1109/ACCESS.2023.3266294.

[16] Huankai Chen, Professor Frank Wang, Dr Na Helian,

Gbola Akanmu, “User - Priority Guided Min - Min

Scheduling AlgorithmFor Load Balancing in Cloud

Computing”, IEEE, National Conference on Parallel

Computing Technologies, 2013.

[17] James Olmsted, Eyhab Al - Masri, “FogWeaver: Task

Allocation Optimization Strategy across Hybrid Fog

Environments”, 3rd IEEE International Conference on

Knowledge Innovation and Invention, 2020.

[18] Shu - Ching Wang, Kuo - Qin Yan, Wen - Pin Liao

and Shun - Sheng Wang, “Towards a Load Balancing

in a Three - level Cloud Computing Network”, IEEE,

3rd International Conference on Computer Science and

Information Technology, 2010.

[19] Sohaib Manzoor, Ze Chen, Yayu Gao, Xiaojun Hei

andWenqingCheng, “Towards QoS - Aware Load

Balancing for HighDensity Software Defined Wi -

FiNetworks”, IEEE Access, July 2020, DOI:

10.1109/ACCESS.2020.3004772.

[20] Weikun Wang, Giuliano Casale, “Evaluating Weighted

Round Robin Load Balancing for Cloud Web

Services”, IEEE, 16th International Symposium on

Symbolic and Numeric Algorithms for Scientific

Computing, 2014.

[21] Saeed Parsa and Reza Entezari - Maleki, “RASA: A

New Task Scheduling Algorithm in Grid

Environment”, World Applied Sciences Journal 7

(Special Issue of Computer & IT): 152 - 160, 2009,

ISSN 1818.4952

[22] Rahul Mishra, Gaurav Mitawa, “Improved Round

Robin Algorithm for effective Scheduling Process for

CPU” (2021), Proceedings of the Third International

Conference on Intelligent Communication

Technologies and Virtual Mobile Networks (ICICV

2021). IEEE Xplore Part Number: CFP21ONG - ART;

978 - 0 - 7381 - 1183 - 4

[23] BING HU, (Senior Member, IEEE), FUJIE FAN,

(Student Member, IEEE), KWAN L. YEUNG, (Senior

Member, IEEE), AND SUGIH JAMIN (2018),

“Highest Rank First: A New Class of Single - iteration

Scheduling Algorithms for Input - queued Switches”

IEEE Access, DOI: 10.1109/ACCESS.2017

[24] Mohammad Oqail Ahmad and Rafiqul Zaman Khan

(2019), “Cloud Computing Modelling and Simulation

using CloudSim Environment”, International Journal

of Recent Technology and Engineering (IJRTE) ISSN:

2277 - 3878, Volume - 8 Issue - 2, July 2019.

[25] Shahbaz Afzal, G. Kavitha (2019), “Load balancing in

cloud computing – A hierarchical taxonomical

classification”, Journal of Cloud Computing:

Advances, Systems and Applications https: //doi.

org/10.1186/s13677 - 019 - 0146.

[26] Komal Mahajan, AnsuyiaMakroo and Deepak Dahiya

(2013) “Round Robin with Server Affinity: A VM

Load Balancing Algorithm for Cloud Based

Infrastructure Journal of Information Processing

Systems”, DOI: 10.3745/JIPS.2013.9.3.379.

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 765

http://dx.doi.org/10.1155/2016/3896065
http://dx.doi.org/10.1155/2016/3896065
https://doi.org/10.1007/s11227-019-02916-4
https://doi.org/10.1007/s11227-019-02916-4
https://ieeexplore.ieee.org/xpl/conhome/5550976/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5550976/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5550976/proceeding
https://doi.org/10.1186/s13677-019-0146
https://doi.org/10.1186/s13677-019-0146

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[27] Altaf Hussain, Muhammad Aleem, Muhammad

Arshad Islam, Muhammad Azhar Iqbal (2018), “A

Rigorous Evaluation of State - of - the - Art

Scheduling Algorithms for Cloud Computing”, IEEE

Access, DOI: 10.1109/ACCESS.2018.2884480.

[28] Mung Chiang, Fellow, IEEE, and Tao Zhang, Fellow,

IEEE (2016), “Fog and IoT: An Overview of Research

Opportunities”, IEEE Internet of Things Journal, vol.3,

no.6, December 2016.

[29] Bharat Khatavkar, Prabadevi Boopathy, “Efficient

WMaxMin Static Algorithm For LoadBalancing In

Cloud Computation”, International Conference on

Innovations in Power and Advanced Computing

Technologies, 2017.

[30] Xiaofang Li, Yingchi Mao, Xianjian Xiao, Yanbin

Zhuang, “An Improved Max - Min Task - Scheduling

Algorithm for Elastic Cloud”, International

Symposium on Computer, Consumer and Control,

2014.

[31] S. VaaheedhaKfatheen, Dr. M. Nazreen Banu, “MiM -

MaM: A new scheduling algorithm for grid

environment”, International Conference on Advances

in Computer Engineering and Applications, 2015.

[32] Sikha Suhani Bhuyan, Ashis Kumar Mishra, “A

Comparative Analysis Of Task Scheduling Algorithms

Through CloudSim”, International Journal of Creative

Research Thoughts, 2022 IJCRT | Volume 10, Issue 7

July 2022 | ISSN: 2320 - 2882.

[33] O. M. Elzeki, M. Z. Reshad, M. A. Elsoud, “Improved

Max - Min Algorithm in Cloud Computing”,

International Journal of Computer Applications (0975

– 8887) Volume 50 – No.12, July 2012.

[34] Kaushik Mishra and Santosh Kumar Majhi, “A State -

of - Art on Cloud Load Balancing Algorithms”,

International Journal of Computing and Digital

Systems ISSN (2210 - 142X) Int. J. Com. Dig. Sys.9,

No.2 (Mar - 2020).

[35] Pandaba Pradhan, Prafulla Ku. Behera, B. N. B. Ray,

“Improved Max - Min Algorithm for

ResourceAllocation in Cloud Computing”, Sixth

International Conference on Parallel, Distributed and

Grid Computing, 2020.

[36] Chandrasekhar Salimath, Bhupender Parashar, “

Operations Research”, Universities Press, 2014, ISBN

978 - 81 - 7371 - 931 - 8, Pages 297 - 326.

Author Profile

Suvarna N A, received her B. E degree in (E & C)

Engineering from Mysore University in 1987 and M.

Tech from UP Technical University in 2010. She is

currently pursuing Ph. D from GD Goenka University,

Gurugram, India, She has worked as Software Consultant for

World Band Aided Project, Software Lead in IT Industry, and as

Faculty in Engineering for more than a decade. Her research areas

and interests include Grid Computing, Cloud Computing,

Distributed Processing, Algorithms and Data Processing. She has

also authored a book on “Programming Data Structures Using „C‟”

on Amazon KDP.

Paper ID: SR23907175427 DOI: 10.21275/SR23907175427 766

