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Abstract: Cloud computing has emerged as a leading paradigm for providing scalable, on - demand and pervasive computing 

resources. But load balancing through efficient task allocation remains a challenging problem in cloud environments due to the 

dynamic and unpredictable nature of workloads across diverse virtualized resources. Addressing this, we present an innovative task 

allocation approach by amalgamating two state - of - the - art scheduling algorithms, namely Max - Min and Weighted Round - Robin 

to achieve effective load balancing in heterogeneous high performance distributed computing (HPDC). The proposed method 

MMWRR+ emphasizes resource awareness, scalability and dynamic adaptability, alleviating resource contention and optimizing 

resource utilization. Comparative evaluations demonstrate that the proposed approach outperforms the referred individual algorithms 

and prior research - based improvement techniques to these algorithms. Moreover, it effectively mitigates resource imbalances, 

efficiently manages diverse workloads and empowers cloud systems to handle fault tolerance.  
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1. Introduction 
 

Load balancing in cloud systems is defined as the practice of 

distributing incoming network traffic, computational tasks, 

or application workloads across multiple resources, such as 

virtual machines (VMs), servers, or datacentres, to optimize 

resource utilization, improve system performance, and 

ensure high availability, reliability and fault tolerance. The 

primary goal of load balancing is to prevent any single 

resource from becoming overwhelmed by an excessive 

amount of work while others remain underutilized. In 

totality, load balancing ensures that all resources are always 

kept productive. The challenges to load balancing are posed 

by the nature of distributed systems, such as: lack of 

centralized control, coordination between heterogeneous 

nodes, network structures, automated services, VM 

migrations and wide geographical distribution of resources. 

To address all the above challenges and meet the best of all 

performance metrics is highly computational and NP hard 

problem. Only selective challenges can be targeted, and few 

metrics can be aimed for improvement. This research article 

considers only the time critical parameters such as make 

span, waiting time, response time for improved performance 

along with primary goal of optimal resource utilization. 

Inherently, the framework adopted also facilitate the easy 

detection and mitigation of faults. This paper proposes a 

hybrid, resource - aware, scalable, heuristic, and dynamic 

task allocation method to achieve efficient load balancing in 

cloud computing. The method combines the advantages of 

both Max - Min and Weighted Round - Robin to exploit 

their complementary features and overcome their 

limitations.  

 

Max - Min, Min - Min and Weighted Round - Robin are the 

popularly known and vastly used heuristic task scheduling 

algorithms in cloud systems. These algorithms are used in 

our research as benchmark to investigate and compare the 

effects on load balancing.  

 

The Max - Min, Min - Min, Min - Max, and Max - Max 

algorithms are all different ways of implementing the 

minimax strategy in job scheduling. They are based on game 

theory approaches to optimization for job scheduling. Min - 

Max and Max - Max are less common because they do not 

correspond to well - known or widely used strategies in the 

context of task scheduling.  

 

In this research, extensive simulations are conducted in a 

representative cloud computing environment to evaluate the 

performance of the proposed resource - aware hybrid task 

allocation method. The results demonstrate the superiority of 

the method compared to existing load balancing techniques 

in terms of resource utilization, response time, makespan 

and system throughput.  

 

The contributions of this research are twofold. Firstly, the 

proposed method offers a novel approach to load balancing 

in cloud computing by using centralized task allocation 

technique for batch processing. Secondly, the resource - 

awareness aspect of the method ensures efficient utilization 

of heterogeneous cloud resources, leading to improved 

system performance.  

 

The remainder of this article is organized as follows: Section 

2 provides an overview of related work in the field of task 

scheduling and load balancing in cloud computing. Section 3 

describes the methodology and algorithms employed in the 

proposed allocation method. Section 4 presents the 

simulation setup and performance evaluation results. Finally, 

Section 5 concludes the article with a summary of findings 

and future research directions.  

 

2. Related Works 
 

Load balancing in cloud systems is not just a critical issue 

but also the main objective of task - allocation, as it ensures 
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that resources are utilized efficiently and that users 

experience a consistent level of performance [1], [18]. 

Algorithms for load balancing through task allocation are 

broadly classified as: Centralized Algorithms, Decentralized 

Algorithms, Task Specific Algorithms and Game - Theoretic 

Algorithms [1]. These load balancing algorithms are built to 

work suitably across different network architectures and 

operating mechanisms [2], [7].  

 

Each algorithm emphasizes on certain specific QoS 

parameters. Because, in a heterogeneous cluster, the load 

balancing through task allocation to improve all the QoS 

parameters is highly computational and is a NP Hard 

problem [6]. Therefore, only sub optimal solution exists that 

helps to improve few specific QoS parameters.  

 

The task allocation algorithms are broadly classified as 

primitive, heuristic, or metaheuristic based on the level of 

sophistication and complexity of the algorithms and the 

approach they use to solve the task allocation problems [6].  

 

Game - theoretic task allocation algorithms are based on 

principles of game theory, which studies the strategic 

interactions between decision - making agents. These 

heuristic algorithms aim to allocate tasks efficiently while 

considering the self - interested behaviour of individual 

agents. These algorithms offer a principled approach to 

address task allocation problems in scenarios where agents 

act strategically, helping achieve efficient and stable task 

assignments [36].  

 

In recent years, there has been a growing interest in 

developing resource - aware, dynamic, fault detectable and 

task migratable load balancing algorithms [3], [7], [22]. 

These algorithms consider the resources available in the 

neighbourhood when making load balancing decisions. This 

can help to improve load balancing performance by ensuring 

that tasks are allocated to resources that have the capacity to 

meet their requirements [5], [9], [13].  

 

Focussing on the research towards the improvements to the 

existing heuristic Min - Min and Max - Min algorithms 

along with the fundamental insights into Weighted Round - 

Robin, several researchers have presented modified 

algorithms based on these.  

 

Saeed Parsa et. al. [21] suggested a modified scheduling 

policy based on Max - Min and Min - Min called as 

“RASA”. In this algorithm, tasks are scheduled to 

appropriate resources using one of the two strategies: Max - 

Min and Min - Min alternatively. Resources are 

characterized with two variables, namely processing speed 

and communication speed.  

 

An improved Max - Min algorithm for Elastic Cloud called 

(ECMM) is suggested by Xiaofang Li, et al. [30]. Main idea 

is to maintain an executing task status table and a virtual 

machine status table to estimate the workload in real time 

inside a load balancer for a batch of tasks. The algorithm 

selects the task with the longest execution time (Max) and 

assigns it to virtual machine with the shortest completion 

time (Min). Meanwhile, it also updates the number of tasks 

and the total task execution time of the virtual machine in 

the virtual machine status table. The process cycles until all 

tasks are allocated.  

 

Belal Ali Al - Maytami et al [6]. suggests an improvement in 

Max - Min scheduling algorithm using Directed Acyclic 

Graph (DAG) based on the Prediction of Tasks Computation 

Time algorithm (PTCT) to estimate the preeminent 

scheduling algorithm for prominent cloud data. It employs 

Principal Components Analysis (PCA) to reduce the 

Expected Time to Compute (ETC) matrix.  

 

S. VaaheedhaKfatheen et al. [31] proposes another 

improvement to Max - Min called as Mim - Mam. It 

segregates the tasks into two groups: 1. Above the average 

task length (MinETC) 2. Below the average task length 

(MaxETC). The number of tasks in both the resulted ETC‟s 

is now used to take decision. If number of tasks in MinETC 

is less than or equal to MaxETC then Max - Min algorithm 

is used to schedule the MaxETC. Otherwise, Min - Min 

algorithm is used to schedule the MinETC.  

 O. M. Elzeki, et al. [33] recommends an improvement to 

Max - Min. The algorithm calculates the expected 

completion time of the submitted tasks on each resource. 

Then the task with the overall maximum expected execution 

time is assigned toa slowest resource so that many shorter 

jobs can be completed simultaneously on the fastest machine 

to improve the makespan. Finally, this scheduled taskis 

removed from meta - tasks and all calculated times are 

updated and the processing is repeated until all submitted 

tasks are executed.  

 

Pandaba Pradhan et. al [35] advised an improvement to Max 

- Min and Min - Min through an algorithm called “IMM”. 

Algorithm assigns the first task according to Max - Min 

strategy and then assigns tasks using Min - Min strategy till 

the total task length of the assignments equal that of earlier 

Max - Min assignment. The technique is the same as that of 

[33].  

 

D. Chitra Devi, et al. [8] advises an improvement to 

Weighted Round - Robin. it allocates the jobs to the most 

suitable VMs based on the VM‟s information like its 

processing capacity, load on the VMs, and length of the 

arrived tasks with its priority. The static scheduler of this 

algorithm uses the processing capacity of the VMs, the 

number of incoming tasks, and the length of each task to 

decide the allocation on the appropriate VM. The dynamic 

scheduler of this algorithm additionally uses the load on 

each of the VMs to decide the allocation of the task to the 

appropriate VM. There is a probability at run timethat, in 

some of the cases that the task may take longer execution 

time based on the run time data. In such situations, the load 

balancer rescues the scheduling controller and rearranges the 

jobs through task migration to circumvent the overload on 

the VMs.  

 

In summary, traditional task allocation methods often fail to 

consider the dynamic nature of cloud resources and the 

varying workload demands imposed by users. Therefore, 

there is growing need for novel task allocation methods that 

can effectively address these challenges and achieve optimal 

resource utilization and load balancing for time - critical 

applications in cloud computing.  
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3. Problem Formulation 
 

In this research, the existing traditional algorithms: Max - 

Min, Min - Min and Weighted Round - Robin are 

investigated in depth along with the suggested 

improvements by earlier researchers to devise an improved 

algorithm “MMWRR+”which is resource - aware, dynamic, 

and scalable. The algorithm is designed for the following 

situations.  

a) A subsystem of cloud/cluster consisting of a limited 

number of nodes.  

b) Batch processing for scheduling of tasks at the broker 

level.  

c) Only time - critical parameters are considered for 

improvement.  

 

3.1 System Model 
 

The algorithms are implemented on CloudSim, a Java - 

based simulation toolkit for modelling and simulating cloud 

computing systems. The broad architecture of cloud system 

and details of the entities within it are as under.  

 

 
Figure 1: Architecture of the Cloud System 

 

The cloud entities are emulated on a representative cloud 

setup (CloudSim) for implementation of the scheduling 

algorithms under study. Entire cloud system is a huge 

number of geographically distributed network of computing 

devices. For the system under study, a section or cluster of 

this network at one location ordatacenter with few 

computing nodes are considered. Tasks/Cloudlets are batch 

processed dynamically in real time with centralized task 

allocation at the broker level.  

 

3.2 System Configuration 

 

Virtual Machines (VMs): Four VMs of following 

configuration (Table - 1) are used. Onlyparameter varied is 

MIPS (Execution Speed in Millions of Instructions Per 

Second) to depict heterogeneous systems. The MIPs of four 

VMs are set to 1000, 2000, 3000 and 4000 respectively.  

 

Table 1: Configuration of Virtual Machines 
Image Size in MB RAM in MB BW in Gbps PEs VMM 

10, 000 512 1000 1 Xen 

 

Hosts: Two Hosts of the following configuration are used.  

 

Table 2: Configuration of Hosts 
RAM in 

MB 
Storage BW PEs MIPs 

VM Allocation 

Policy 

4096 1 GB 10, 000 Gbps 1 10, 000 First Fit 

 

Datacenter: One Datacenter is created with architecture 

“X86”, Linux Operating System and “XEN” VMM.  

 

Cloudlets (Tasks): Tasks with random task lengths 

(between 100, 000 and 500, 000 million instructions) are 

applied in three different data sizes (100, 500 and 1000).  

 

3.3 Proposed Algorithm (MMWRR+) 

 

The algorithm is designed to exploit the advantages of 

Weighted Round - Robin and Max - Min.  

 

Notations:  

Number of tasks = n (namely, T1, T2, ……. . Tn)  

Number of Machines = m (namely, VM1, VM2 …. . VMm)  

Length of each task = Li (Millions of Instructions, i ranging 

from  

1 ton; Also, Li> Li+1 for 1≤i≤n)  

 

Total length of tasks, LT=   Li 𝑛
𝑖=1  

 

Processing rate (Speed) of each machine 

 

VMi= I Millions of Instructions Per Second, i ranging from 

1 to m; Also, i>i+1 for 1≤i≤m  

 

Arrival rate of the tasks, λ = n/unit time = n (⸪ Batch 

Processing)  

 

Utilization of each VM, ρi = λ/i 

 

Now, the problem is to assign the tasks to any one of the 

available machines so as utilize the machines to the 

optimum extent to complete the execution of tasks at the 

earliest possible.  
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Algorithm of MMWRR+:  

1) Compute the total length of the tasks 

LT =  Li 𝑛
𝑖=1  

 

2) Compute the total available processing power of the 

virtual machines 

T = i 𝑚
𝑖=1  

 

3) Compute the share of processing power of each virtual 

machine 

ρi = i/  i 𝑚
𝑖=1  

 

4) For (i = 1 to m) // for each machine VMi 

       {Tasks assigned to VMi = TPi = { } // Empty List 

        For (j = 1 to n) // for each task Tj 

 {If (Total Length of Tasks in TPi<ρi* LT)  

 {If (Length of Tj< ((ρi* LT) – Length of TPi))  

 Add TjtoTPi 

} 

          } 

 } 

5) Repeat steps 1 to 4 for the remaining tasks and leftover 

resources (CPU computing time).  

6) Execute the tasks assigned to each VM in the reverse 

order.  

 

The flow chart of the devised algorithm is indicated in figure 

- 2 below.  

 

3.4 Simulation of algorithms 

 

The state - of - the - art Max - Min, Min - Min, and 

Weighted Round - Robin and the earlier proposed 

improvements by the researchers to these algorithms along 

with the proposed algorithm (MMWRR+) are implemented 

on the simulation platform. The results are obtained for three 

different data sizesof 100, 500, and 1000, where each dataset 

is a collection of tasks with random task lengths. The graphs 

of makespan, waiting time and resource utilization are 

tabulated in the next section.  

 

Flow Chart of MMWRR+:  

 

 
Figure 2: Flow chart of the proposed algorithm 
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4. Results 
 

Table 3: Summary of Simulation Results 

Summary of Results 

Makespan in Seconds 

Data Size Max - Min Min - Min WRR RASA [21] IMM [33] MMWRR+ 

100 3147 3211 3387 7887 3199 3179 

500 106438 107041 107076 185870 104068 106686 

1000 208055 215926 215755 276858 282395 215483 

       Average Wait Time in Seconds 

100 1839 1177 1465 2039 1376 1384 

500 69640 35932 51135 67491 42882 50410 

1000 136979 73586 107125 125485 88134 96981 

 Resource (Computing Time) Utilized in Seconds 

VM Max - Min Min - Min WRR RASA [21] IMM [33] MMWRR+ 

Data Size = 100, Threshold = 3053 Seconds 

VM0 3098 2868 3390 7887 3182 3099 

VM1 3151 3187 3194 2625 3101 3179 

VM2 3157 3121 3228 2613 3117 3133 

VM3 3165 3231 3018 2638 3199 3141 

Data Size =500, Threshold = 106498 Seconds 

VM0 106462 107068 106827 276858 103617 106404 

VM1 106469 106982 107125 87593 103248 106203 

VM2 106511 106004 107118 87270 104068 106461 

VM3 106512 106484 105637 87782 103969 106481 

Data Size =1000, Threshold = 215304 Seconds 

VM0 210388 215979 215721 480341 215685 215210 

VM1 210380 216010 215859 185833 215308 214892 

VM2 210388 214759 215508 185878 215272 215282 

VM3 210364 215191 214770 185850 215231 215302 

 

4.1 Makespan (Time to complete the execution of all tasks)  

 

Makespan obtained from the implementation of traditional and earlier suggested improved algorithms for three different data 

sizes listed in Table - 3. The graph so obtained from this data is indicated in Figure - 3.  

 

 

 
Figure 3: Makespan of the different algorithms 

 

It is observed from the graph of makespan that MAX - MIN 

performs best for makespan. By prioritizing the assignment 

of tasks with the maximum completion time, MAX - MIN 

aims to balance the workload more effectively, preventing 

the occurrence of heavily loaded processors and idle time. 

This load balancing strategy led to improved overall 

efficiency and a reduced makespan. On the other hand, Min 

- Min makes task assignments based on the earliest 
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completion time of the tasks. This early commitment to 

suboptimal choices has led to a snowball effect, where 

subsequent task assignments become increasingly 

constrained and less efficient, ultimately leading to a larger 

makespan. WRR also performs badly for makespan as 

doesn‟t consider the varying processing times of tasks, 

leading to imbalanced resource utilization and longer overall 

completion time. IMM is not exhibiting consistent 

performance with varying data size. RASA is performing 

poor compared to all other algorithms.  

 

4.2 Average Waiting Time:  

 

The results of waiting time obtained from implementation of 

same set of algorithms for three different data sizes are listed 

in Table - 3. The graph so obtained from this data is shown 

in Figure - 4 below.  

 

 
Figure 4: Average Wait Time of the different algorithms 

 

The trend here is just opposite to that of the makespan graph. 

The Max - Min algorithm exhibits more wait time compared 

to all other algorithms. It is because it prioritizes processes 

with the maximum completion time. This strategy has led to 

longer wait times for tasks on processors with higher loads, 

potentially increasing the overall waiting time before tasks 

are completed. The waiting time is minimum in the Min - 

Min algorithm because it assigns tasks to processors based 

on the earliest completion time. Weightedround - robin 

performs badly for waiting time because it unfairly 

prioritizes tasks with higher weights, causing longer waiting 

times for lower - weighted tasks. IMM closely follows the 

best performing Min - Min. RASA and Max - Min are 

exhibiting longer wait times as longer jobs are scheduled 

prior to shorter jobs. The proposed MMWRR+ performs 

close to the best (Min - Min & IMM).  

 

4.3 Load Balancing& Resource Utilization 

 

Load Balancing is directly related to Resource Utilization. It 

is a very important performance metric, as it affects the 

overall time of completion (Makespan). Any server, which is 

under - utilized will wait for the over utilized server to 

complete its work. Load Balancing is to keep all the servers 

busy all the time or in other words, all servers finish the jobs 

at the same time.  

 

Sample Calculation of Threshold CPU time (Resource 

utilization):  

 

Using the M/G/c queuing model,  

Resource Utilization = ρ =λ/ (c *) where λ is the arrival 

rate of the tasks,  is the service rate of the server and c is 

the number of servers. In batch processing, all tasks arrive at 

the same time. Therefore ʎ = total number of tasks at the 

server queue.  

 

Total Task Lengths of 100 tasks = 31531862 (Millions of 

Instructions or MI)  

Average MIs processed by four VMs in one second = 10, 

000/4 = 2500 MI/Sec  

(Where 1000, 2000, 3000, 4000 are the processing speeds of 

VMs, their sum is 10, 000 MIs)  

 

Therefore, ρ = 31531862/ (4 * 2500) = 3153 seconds. The 

value, ρ also indicates the upper threshold of the workload to 

the VMs. This threshold value for data size of 500 and 1000 

is also similarly calculated as 106498 seconds and 215304 

seconds respectively.  

 

The graphs below in figures: 5, 6 and 7 are the results to 

show the load imbalancing effect of the algorithms. Each 

graph is related to a specific data size.  
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Figure 5: Load Imbalance for data size 100 

 

 
Figure 6: Load Imbalance for data size 500 

 

 
Figure 7: Load Imbalance for data size 1000 
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Figure 8: Summary of Load Imbalance as percentage deviation from Threshold 

 

The workload distributed above/below the threshold value to 

each of the available four Virtual machines through the 

various algorithms to avail the CPU computing time is 

indicated in these graphs. Threshold indicates a 100% 

workload.  

 

As is clear from the graph, the load balancing is poor for 

WRR. It is because it allocates tasks to processors based on 

fixed weights, without considering the dynamic workload or 

processing capabilities, leading to potential imbalances in 

processor utilization. Load balancing is very poor in RASA 

due to prioritization of smaller tasks. As it is very evident 

from the results table that RASA is not comparable to other 

algorithms, it is excluded from the graph. MAX - MIN 

performs best in load balancing as it prioritizes longer tasks. 

It also optimally utilizes the resources. MMWRR+ is very 

close to the best performing MAX - MIN, as far as load 

balancing is concerned. Next is IMM, close to MMWRR+ 

and performs almost equally good.  

 

4.4 Fault Tolerance 
 

Having done the scheduling at the broker level, maintaining 

a lookup table of VM allocation and tallying it with the 

information received from the VMs about finished tasks 

results in earlier detection of faults.  

 

4.5 Discussion of Results 

 

The performance of the proposed algorithm (MMWRR+) 

closely rivals the top - performing MAX - MIN in makespan 

and closely approaches the best (MIN - MIN) in waiting 

time. Additionally, it outperforms MIN - MIN and WRR in 

load balancing and its performance is nearly on par with the 

best (MAX - MIN). In totality, proposed algorithm gives 

better results when all the three - performance metrics is 

considered.  

 

5. Conclusion 
 

In conclusion, this research introduces an innovative and 

improved scheduling algorithm “MMWRR+” that 

outperforms traditional approaches like Weighted Round 

Robin and Max - Min. Through comprehensive 

experimentation and analysis, it has been demonstrated that 

the proposed algorithm effectively minimizes the makespan, 

reduces waiting times for tasks, and significantly enhances 

load balancing in parallel computing environments. By 

considering dynamic workload variations and optimizing 

task assignments based on a sophisticated weighting 

mechanism, the new algorithm achieves superior 

performance, making it a promising solution for task 

scheduling in diverse computing systems. The findings 

presented in this study contribute valuable insights to the 

field of parallel computing, offering a robust alternative that 

can lead to enhanced efficiency, resource utilization, and 

overall system performance. With its demonstrated 

advantages, this novel scheduling algorithm holds great 

potential for real - world applications, paving the way for 

more efficient and effective task scheduling in parallel 

computing environments.  

 

6. Future Scope 
 

Further research and practical implementation are 

recommended to fully explore the algorithm's capabilities 

and validate its performance under non time - critical 

scenarios including parameters such as energy consumption, 

network costs, data availability using redundancy, etc. Fault 

tolerance can be testedthrough fault injection at various 

levels and mitigating it through migration, replication, and 

monitoring.  
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