A New Variant of Banach Space Valued Sequence Space Using Modulus Function

Indu Bala

Department of Mathematics, Government College, Chhachhrauli (Yamuna Nagar) 135 103, India E-mail: prof.indubansal[at]gmail.com

Abstract: The main object of the paper is to introduce a new Banach space valued sequence space $ces_{\theta}(X, f, p)$ involving lacunary sequence and a modulus function. Various algebraic and topological properties of the space have been examined. Some inclusion relations between the space have been investigated and information on multipliers for $ces_{\theta}(X, f, p)$ has been given. Our results generalize and unify the corresponding earlier results of Karakaya [3], Shiue [12], Sanhan and Suantai [11] and Bala [1].

AMS Subject Classification: 46B45, 46A45, 40A05

Key words: Frechet space, Banach space, Banach algebra, Modulus function, Lacunary sequence

Introduction

The notion of a modulus function was introduced in 1953 by Nakano[8]. We recall [7,8] that a modulus *f* is a function $f : [0, \infty) \rightarrow [0, \infty)$ such that

- i) f(x) = 0 if and only if x = 0,
- ii) $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$,
- iii) *f* is increasing,
- iv) f is continuous from the right at 0.

Because of (ii), $|f(x) - f(y)| \le f(|x - y|)$ so that in view of (iv), f is continuous everywhere on $[0, \infty)$. A modulus may be unbounded (for example, $f(x) = x^p$, $0) or bounded (for example, <math>f(x) = \frac{x}{1+x}$).

It is easy to see that $f_1 + f_2$ is a modulus function when f_1 and f_2 are modulus functions, and that the function f^i (*i* is a positive integer), the composition of a modulus function f with itself *i*times, is also a modulus function.

Ruckle [10] used the idea of a modulus function *f* to construct a class of FK spaces

$$L(f) = \{ x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty \}.$$

The space L(f) is closely related to the space ℓ_1 which is an L(f) space with f(x) = x for all real $x \ge 0$.

By a lacunary sequence $\theta = (k_r)$; r = 0,1,2,..., where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$, and the ratio k_r/k_{r-1} will be denoted by q_r . The space of lacunary strongly convergent sequences N_{θ} was defined by Freedman et al. [2] as follows:

$$N_{\theta} = \{x = (x_k) : \lim_{r \to \infty} h_r^{-1} \sum_{k \in I_r} |x_k - l| = 0 \text{ for some } l\}.$$

There is a strong connection [2] between N_{θ} and the space *w* of strongly Ces*à*ro summable sequences, which is defined by

$$w = \{x = (x_k): \lim_{n \to \infty} n^{-1} \sum_{k=1}^n |x_k - l| = 0 \text{ for some } l\}.$$

In the special case where $\theta = (2^r)$, we have $N_{\theta} = w$. Infact, for a lacunary sequence θ , $N_{\theta} = w$ if and only if $1 < \text{liminf}_r q_r \le \text{limsup}_r q_r < \infty [2, p. 511]$.

Let w, ℓ^0 denote the spaces of all scalar and real sequences, respectively. For $1 , the Cesàro sequence space <math>ces_n$ defined by

Volume 12 Issue 9, September 2023

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR23907115700

$$ces_p = \{x \in \ell^0 \colon \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^n |x_k|\right)^p < \infty\}$$

is a Banach space when equipped with the norm

$$\parallel x \parallel = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k|\right)^p\right)^{1/p}$$

This space was first introduced by Shiue [12], which is useful in the theory of Matrix operator and others (see [4, 5]). Some geometric properties of the Cesàro sequence space ces_p were studied by many authors.

Sanhan and Suantai [11] introduced and studied a generalized Cesàro sequence space ces(p), where $p = (p_n)$ is a bounded sequence of positive real numbers.

Quite recently, Karakaya[3], Ozturk and Basarir[9] introduced a new sequence space involving lacunary sequence and examined some geometric properties of this space equipped with Luxemburg norm.

Let $(X, \|.\|)$ be a Banach space over the complex field \mathbb{C} . Denote by w(X) the space of all X-valued sequences. Let $p = (p_k)$ be a bounded sequence of positive real numbers.

We now introduce the Banach space valued sequence space $ces_{\theta}(X, f, p)$ as follows.

$$\operatorname{ces}_{\theta}(X, \mathbf{f}, p) = \left\{ x \in w(X) \colon \sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|\mathbf{x}_k\|\right) \right]^{p_r} < \infty \right\}.$$

Some well-known spaces are obtained by specializing *X*, f and *p*.

(i) If $X = \mathbb{C}$ and f(x) = x, then $ces_{\theta}(X, f, p) = \ell(p, \theta)$ (Karakaya [3]).

(ii) If $X = \mathbb{C}$, $p_n = p(1 \le p < \infty)$ for all n, f(x) = x and $\theta = (2^r)$, then $ces_{\theta}(X, f, p) = ces_p$ (Shiue [12]).

(iii) If $X = \mathbb{C}$, f(x) = x and $\theta = (2^r)$, then $ces_{\theta}(X, f, p) = ces(p)$ (Sanhan and Suantai [11]). (iv) If $X = \mathbb{C}$ and $\theta = (2^r)$, then $ces_{\theta}(X, f, p) = ces(f, p)$ (Bala[1]).

The following inequalities (see, e.g., [6, p. 190]) are needed throughout the paper.

Let $p = (p_k)$ be a bounded sequence of strictly positive real numbers. If $H = \sup_k p_k$, then for any complex a_k and b_k ,

(1)
$$|a_k + b_k|^{p_k} \leq C(|a_k|^{p_k} + |b_k|^{p_k}),$$

where $C = \max(1, 2^{H-1})$. Also for any complex λ ,

(2) $|\lambda|^{p_k} \leq \max(1, |\lambda|^H).$

Linear topological structure of $ces_{\theta}(X, f, p)$ **space**

In this section we establish some algebraic and topological properties of the sequence space defined above. In order to discuss the properties of $ces_{\theta}(X, f, p)$, we assume that (p_n) is bounded.

Theorem 2.1. $ces_{\theta}(X, f, p)$ is a linear space over the complex field \mathbb{C} .

The proof is a routine verification by using standard techniques and hence is omitted.

Theorem 2.2. $ces_{\theta}(X, f, p)$ is a topological linear space, paranormed by

$$g(x) = \left(\sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k\|\right) \right]^{p_r} \right)^{\overline{M}}$$
(2.1)

Volume 12 Issue 9, September 2023

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

where $H = \sup p_r < \infty$ and $M = \max(1, H)$.

The proof follows by using standard techniques and the fact that every paranormed space is a topological linear space [13, p. 37].

Corollary 2.3. If *p* is a constant sequence, then $ces_{\theta}(X, f, p)$ is a normed space for $p \ge 1$ and a *p*-normed space for p < 1.

Theorem 2.4. $ces_{\theta}(X, f, p)$ is a Fréchet space paranormed by (2.1).

Proof. In view of Theorem 2.2 it suffices to prove the completeness of $ces_{\theta}(X, f, p)$. Let $(x^{(i)})$ be a Cauchy sequence in $ces_{\theta}(X, f, p)$. Then $g(x^{(i)} - x^{(j)}) \to 0$ as $i, j \to \infty$, that is

$$\left(\sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \left\| x_k^{(i)} - x_k^{(j)} \right\| \right) \right]^{p_r} \right)^{\frac{1}{M}} \to 0, as \quad i, j \quad \infty,$$
(2.2)

which implies that for each fixed k, $\|x_k^{(i)} - x_k^{(j)}\| \to 0$ as $i, j \to \infty$ and so $(x_k^{(i)})$ is a Cauchy sequence in X for each fixed k. Since X is complete, there exists a sequence $x = (x_k)$ such that $x_k \in X$ for each $k \in \mathbb{N}$ and $\lim_{k \to \infty} x_k^{(i)} = x_k$ for each k. Now from (2.2), we have for $\epsilon > 0$, there exists a natural number K such that

$$\sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \left\| x_k^{(i)} - x_k^{(j)} \right\| \right) \right]^r < \epsilon^M \quad for \ i, j > K.$$
(2.3)

Since for any fixed natural number r_0 , we have from (2.3),

$$\sum_{r=1}^{r_0} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k^{(i)} - x_k^{(j)}\|\right) \right]^{p_r} < \epsilon^M \quad \text{for } i, j > K,$$

by taking $j \rightarrow \infty$ in the above expression we obtain

$$\sum_{r=1}^{r_0} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k^{(i)} - x_k\|\right) \right]^{p_r} < \epsilon^M \qquad for \ i > K.$$

Since r_0 is arbitrary, by taking $r_0 \rightarrow \infty$, we obtain

$$\sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \left\| x_k^{(i)} - x_k \right\| \right) \right]^{p_r} < \epsilon^M \quad for \ i > K,$$

that is, $g(x^{(i)} - x) < \epsilon$ for i > K.

To show that $x \in ces_{\theta}(X, f, p)$, let i > K and fix r_0 . Since $p_r/M \le 1$ and $M \ge 1$, using Minkowski's inequality, we have

$$\left(\sum_{r=1}^{r_0} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k\|\right) \right]^{p_r} \right)^{\overline{M}} \\ = \left(\sum_{r=1}^{r_0} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k - x_k^{(i)} + x_k^{(i)}\|\right) \right]^{p_r} \right)^{\frac{1}{M}} \\ \le \left(\sum_{r=1}^{r_0} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k - x_k^{(i)}\|\right) \right]^{p_r} \right)^{\frac{1}{M}} + \left(\sum_{r=1}^{r_0} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k^{(i)}\|\right) \right]^{p_r} \right)^{\frac{1}{M}}$$

 $< \varepsilon + g(x^{(i)})$, from which it follows that $x \in ces_{\theta}(X, f, p)$ and the space is complete.

Corollary 2.5. If *p* is a constant sequence and $p \ge 1$, then $ces_{\theta}(X, f, p)$ is a Banach space.

Volume 12 Issue 9, September 2023 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY DOI: 10.21275/SR23907115700

Inclusion between $ces_{\theta}(X, f, p)$ **spaces**

We now investigate some inclusion relations between $ces_{\theta}(X, f, p)$ spaces.

Theorem 3.1. If $p = (p_r)$ and $q = (q_r)$ are bounded sequences of positive real numbers with $0 < p_r \le q_r < \infty$ for each r, then $ces_{\theta}(X, f, p) \subseteq ces_{\theta}(X, f, q)$.

Proof. Let $x \in ces_{\theta}(X, f, p)$. Then $\sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k\|\right) \right]^{p_r} < \infty$. This implies that

 $f\left(\frac{1}{h_r}\sum_{k \in I_r} \|x_k\|\right) \le 1$ for sufficiently large values of r, say $r \ge r_0$ for some fixed $r_0 \in \mathbb{N}$. Since $p_r \le q_r$, we have

$$\sum_{r \ge r_0}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k\|\right) \right]^{q_r} \le \sum_{r \ge r_0}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k\|\right) \right]^{p_r} < \infty.$$

This shows that $x \in ces_{\theta}(X, f, q)$ and completes the proof.

Theorem 3.2. If (t_r) and (u_r) are bounded sequences of positive real numbers with

 $0 < t_r, u_r < \infty$ and if $p_r = \min(t_r, u_r), q_r = \max(t_r, u_r)$, then

 $ces_{\theta}(X, f, p) = ces_{\theta}(X, f, t) \cap ces_{\theta}(X, f, u)$ and $ces_{\theta}(X, f, q) = G$ where G is the subspace of w(X) generated by $ces_{\theta}(X, f, t) \cup ces_{\theta}(X, f, u)$.

Proof. It follows from Theorem 3.1 that $ces_{\theta}(X, f, p) \subseteq ces_{\theta}(X, f, t) \cap ces_{\theta}(X, f, u)$ and that

 $G \subseteq ces_{\theta}(X, f, q)$. For any complex λ , $|\lambda|^{p_r} \leq \max(|\lambda|^{t_r}, |\lambda|^{u_r})$; thus

 $ces_{\theta}(X, f, t) \cap ces_{\theta}(X, f, u) \subseteq ces_{\theta}(X, f, p)$. Let $A = \{r: t_r \ge u_r\}$ and $B = \{r: t_r < u_r\}$. If

 $x \in ces_{\theta}(X, f, q)$, we write

$$y_r = x_r (r \in A) \quad \text{and} \quad y_r = 0 (r \in B); and$$
$$z_r = 0 (r \in A) \quad \text{and} \quad z_r = x_r (r \in B).$$
$$\sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|y_k\|\right) \right]^{t_r} = \sum_{r \in A} + \sum_{r \in B} = \sum_{r \in A} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k\|\right) \right]^{q_r} < \infty,$$

and so $y \in ces_{\theta}(X, f, t) \subseteq G$. Similarly, $z \in ces_{\theta}(X, f, u) \subseteq G$. Thus, $x = y + z \in G$. We have proved that $ces_{\theta}(X, f, q) \subseteq G$, which completes the proof.

Corollary 3.3. The three conditions $ces_{\theta}(X, f, t) \subseteq ces_{\theta}(X, f, u)$, $ces_{\theta}(X, f, p) = ces_{\theta}(X, f, t)$ and $ces_{\theta}(X, f, q) = ces_{\theta}(X, f, u)$ are equivalent.

Corollary 3.4. $ces_{\theta}(X, f, t) = ces_{\theta}(X, f, u)$ if and only if $ces_{\theta}(X, f, p) = ces_{\theta}(X, f, q)$.

The Space of Multipliers of $ces_{\theta}(X, f, p)$

For any set $E \subset w(X)$ the space of multipliers of E, denoted by S(E), is given by

 $S(E) = \{a = (a_k) \in w(X) : ax = (a_k x_k) \in E \text{ for all } x = (x_k) \in E\}.$

Theorem 4.1.For Banach algebra X, $l_{\infty}(X) \subseteq S[ces_{\theta}(X, f, p)]$, where

$$l_{\infty}(X) = \{a = (a_k) \in w(X) : sup_k ||a_k|| < \infty\}.$$

Proof. Let $a = (a_k) \in l_{\infty}(X)$, $T = sup_k ||a_k||$ and $x = (x_k) \in ces_{\theta}(X, f, p)$. Since X is Banach algebra, by definition of modulus function (ii), (iii) and inequality (1.2), we have

International Journal of Science and Research (IJSR) ISSN: 2319-7064

SJIF (2022): 7.942

$$\sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|a_k x_k\|\right) \right]^{p_r} \leq (1 + [T])^H \sum_{r=1}^{\infty} \left[f\left(\frac{1}{h_r} \sum_{k \in I_r} \|x_k\|\right) \right]^{p_r}$$

References

- [1] I. Bala, On Cesaro sequence space defined by a modulus function, Demonstration Math., XLVI (1)(2013), 157-163.
- [2] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesàro type summability spaces, Proc. London Math. Soc., 37(3) (1978), 508-520.
- [3] V. Karakaya, Some geometric properties of sequence spaces involving lacunary sequence, J. Inequal. Appl., (2007), Article ID 81028, 8 pages, doi:10.1155/2007/81028.
- [4] P. Y. Lee, Cesàro sequence spaces, Math. Chronicle, 13(1984), 29-45.
- [5] Y. Q. Lui, B. E. Wu and P. Y. Lee, Method of Sequence Spaces, Guangdong of Science and Technology Press, 1996(Chinese).
- [6] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970 (first edition).
- [7] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100(1986), 161-166.
- [8] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- [9] M. Ozturk and M. Basarir, On k NUC property in some sequence spaes involving lacunary sequence, Thai J. Math., 5(1)(2007), 127-136.
- [10] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
- [11] W. Sanhan and S. Suantai, On k-nearly uniform convex property in generalized Cesàro sequence spaces, International J. Math. Math. Sci., 57(2003), 3599-3607.
- [12] J. S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math., 1(1970), 19-25.
- [13] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, 1978.

DOI: 10.21275/SR23907115700