
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 9, September 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Advancements in Security Testing: A Comprehensive 

Review of Methodologies and Emerging Trends in 

Software Quality Engineering 
 

Shravan Pargaonkar 
 

Software Quality Engineer 

 

 

Abstract: In an era dominated by digital interactions and sensitive data exchange, ensuring the security of software applications has 

become a paramount concern. This article provides an extensive exploration of security testing methodologies and emerging trends that play 

a pivotal role in safeguarding applications against evolving cyber threats. The article begins by emphasizing the critical importance of 

security testing in identifying vulnerabilities, mitigating risks, and protecting sensitive user information. It delineates the multifaceted nature 

of security testing, which encompasses a spectrum of techniques aimed at uncovering vulnerabilities ranging from code-level weaknesses to 

intricate architectural flaws. Previous decades witnessed the use of various analyzing methods, but they often focused solely on the views of 

single stakeholders, leading to significant limitations in the development process [2] A comprehensive overview of security testing 

methodologies is presented, covering diverse approaches such as penetration testing, vulnerability scanning, code reviews, and threat 

modeling. Each methodology is dissected to elucidate its purpose, scope, and potential benefits, equipping practitioners with a holistic 

understanding of their applicability and limitations. The article delves into the incorporation of automated tools and technologies in security 

testing, highlighting the role of dynamic analysis, static analysis, and interactive application security testing (IAST) in efficiently detecting 

vulnerabilities across various stages of the software development lifecycle. Furthermore, emerging trends in security testing are explored, 

encompassing areas such as DevSecOps integration, continuous security testing, and threat intelligence sharing. The article underscores the 

significance of seamlessly integrating security testing into the development pipeline, enabling early detection and remediation of 

vulnerabilities, and fostering a proactive security posture. Challenges inherent to security testing are addressed, including the dynamic threat 

landscape, the complexity of modern applications, and the balance between automated scanning and manual analysis. Mitigation strategies 

are discussed, emphasizing the amalgamation of human expertise with automated tools to achieve comprehensive security assessments. In 

conclusion, this article serves as a comprehensive reference for practitioners and researchers in the realm of security testing. By synthesizing 

methodologies, tools, trends, and challenges, it aims to guide the effective implementation of security testing strategies and contribute to the 

development of resilient and secure software applications in an increasingly interconnected digital ecosystem. 
 

Keywords: Security, software quality engineering, penetration testing, regression testing 

 

1. Introduction 
 

1.1 Highlighting the Crucial Significance of Security 

Testing in Uncovering Vulnerabilities, Mitigating Risks, 

and Safeguarding Sensitive User Information: 

 

In today's interconnected and data-driven landscape, the role 

of security testing has risen to a paramount position in the 

software development process. The imperative to ensure the 

integrity and confidentiality of applications cannot be 

overstated, considering the relentless expansion of cyber 

threats and the increasing value of sensitive user data. 

 

Security testing stands as the vanguard against potential 

breaches and attacks, serving as a proactive measure to 

identify vulnerabilities that malicious actors could exploit. By 

subjecting applications to rigorous scrutiny, security testing 

uncovers hidden weaknesses, ranging from common coding 

errors to intricate architectural flaws. This process serves as a 

sentinel, guarding against potential breaches that could lead to 

data leaks, service disruptions, and compromised user trust. 

 

Beyond its role in vulnerability detection, security testing 

plays a pivotal role in risk mitigation. By systematically 

assessing potential weak points, security testing empowers 

development teams to prioritize and rectify vulnerabilities 

before they can be leveraged by attackers. This proactive 

approach not only reduces the likelihood of security incidents 

but also minimizes the associated costs of remediation and 

reputational damage. 

 

Crucially, security testing is intrinsically linked to the 

protection of sensitive user information. As applications 

handle an ever-expanding array of personal and confidential 

data, from financial records to personal communications, 

ensuring the security of this information is a moral obligation 

and a legal requirement. Security testing acts as an assurance 

mechanism, assuring users that their data is handled with the 

utmost care and protection. 

 

In summary, security testing stands as an indispensable 

safeguard against the relentless evolution of cyber threats. Its 

role in identifying vulnerabilities, mitigating risks, and 

safeguarding sensitive user information is not only a 

technological necessity but a fundamental obligation to users 

and stakeholders. As technology continues to advance, the 

adoption of robust security testing practices remains a 

cornerstone in maintaining the integrity and trustworthiness of 

software applications in the digital age. 

 

Paper ID: SR23829090815 DOI: 10.21275/SR23829090815 61 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 9, September 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Overview of Security Testing Methodologies: 

Security testing is a multidimensional practice that employs a 

range of methodologies to identify vulnerabilities, assess risks, 

and enhance the resilience of software applications against 

potential cyber threats. software development teams to make 

well-informed decisions when designing their testing 

strategies, balancing trade-offs, and optimizing their testing 

efforts to deliver top-notch software products that meet user 

expectations and business objectives [1]. This overview delves 

into some prominent security testing methodologies, each 

designed to uncover specific types of vulnerabilities and 

provide insights into application security/: 

 

1) Penetration Testing: 

Penetration testing, or ethical hacking, involves 

simulating real-world cyberattacks to identify 

vulnerabilities that malicious actors could exploit. Testers 

employ various techniques to probe systems, networks, 

and applications, mimicking different attack vectors and 

attempting to gain unauthorized access. The insights 

gained from penetration testing guide the strengthening of 

security measures and the fortification of potential entry 

points. 

2) Vulnerability Scanning: 

Vulnerability scanning employs automated tools to detect 

known security vulnerabilities within an application's 

codebase, infrastructure, or dependencies. These tools 

systematically analyze software components and 

configurations, highlighting weaknesses that could be 

exploited. Vulnerability scanning provides a rapid 

assessment of potential risks and helps prioritize 

necessary patches or mitigations. 

3) Code Review (Static Analysis): 

Code review involves manual or automated inspection of 

source code to identify security weaknesses at the code 

level. Static analysis tools scan source code for common 

vulnerabilities, such as SQL injection, cross-site scripting 

(XSS), and insecure authentication mechanisms. This 

methodology allows for early detection of coding flaws, 

promoting secure coding practices. 

4) Dynamic Analysis (Black Box Testing): 

Dynamic analysis, also known as black box testing, 

assesses application security while it's running. Testers 

explore the application's functionalities, inputs, and 

outputs to uncover vulnerabilities that may arise during 

runtime. This approach identifies security issues that stem 

from improper input handling, insecure configurations, or 

inadequate access controls. 

5) Threat Modeling: 

Threat modeling involves creating a structured 

representation of an application's architecture and 

identifying potential security threats within that 

framework. It helps pinpoint areas susceptible to attacks 

and assists in prioritizing security countermeasures. 

Threat modeling guides development teams in designing 

and implementing security controls proactively. 

6) Security Code Review (White Box Testing): 

Security code review, or white box testing, examines the 

source code for security vulnerabilities and adherence to 

security best practices. Unlike dynamic analysis, this 

approach allows testers to delve deeply into the codebase, 

identifying intricate vulnerabilities and architectural 

weaknesses that might not manifest during runtime. 

7) Fuzz Testing: 

Fuzz testing, or fuzzing, involves bombarding an 

application with unexpected or malformed inputs to assess 

how it responds. This methodology aims to identify buffer 

overflows, input validation issues, and other 

vulnerabilities that might cause the application to crash or 

behave unpredictably. 

8) Security Requirements Analysis: 

Security requirements analysis entails evaluating an 

application's security requirements, aligning them with 

industry standards and regulatory compliance. This 

methodology ensures that security considerations are 

integrated into the application's design and development 

phases. 

9) Regression Testing for Security: 

Regression testing focuses on verifying that security 

vulnerabilities addressed in previous iterations have been 

effectively remediated. It ensures that new code changes 

or updates do not reintroduce previously identified 

vulnerabilities. 

10) Interactive Application Security Testing (IAST): 

IAST combines elements of dynamic analysis and runtime 

testing. It instruments the application to monitor its 

behavior during runtime and assess its security posture. 

IAST provides insights into vulnerabilities as they 

manifest during actual user interactions. 

 

 
Figure 1: Types of Security Testing 

 

These methodologies collectively form a toolkit that equips 

security professionals to comprehensively evaluate software 

applications' security postures. The choice of methodology 

depends on factors such as the application's nature, the desired 

Paper ID: SR23829090815 DOI: 10.21275/SR23829090815 62 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 9, September 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

depth of analysis, and the potential risks associated with it. By 

employing these methodologies in tandem, organizations can 

systematically identify, remediate, and prevent security 

vulnerabilities, fortifying their applications against an 

evolving threat landscape. 

 

The realm of security testing has been significantly augmented 

by the integration of automated tools and technologies, 

empowering organizations to efficiently detect vulnerabilities 

and bolster the security of their software applications. This 

article delves into the pivotal role of dynamic analysis, static 

analysis, and interactive application security testing (IAST) in 

this context, underscoring their efficacy across various stages 

of the software development lifecycle. 

 

 Dynamic Analysis: 

Dynamic analysis tools operate by scrutinizing an application 

during runtime, emulating real-world interactions to uncover 

vulnerabilities that might arise under dynamic conditions. 

These tools simulate actual attack scenarios, probing for 

security flaws in real-time. Dynamic analysis is particularly 

adept at identifying vulnerabilities like injection attacks, cross-

site scripting (XSS), and insecure authentication mechanisms. 

By analyzing how an application handles different inputs and 

user interactions, dynamic analysis tools provide valuable 

insights into runtime vulnerabilities. 

 

 Static Analysis: 

Static analysis tools assess the source code or binaries of an 

application without executing it. They systematically analyze 

the codebase to identify coding flaws, insecure patterns, and 

potential vulnerabilities. Static analysis excels at uncovering 

issues like hardcoded credentials, buffer overflows, and code 

injection vulnerabilities. By scanning the codebase, static 

analysis tools offer early detection of security weaknesses, 

enabling developers to rectify them before they manifest 

during runtime. 

 

 Interactive Application Security Testing (IAST): 

IAST bridges the gap between dynamic and static analysis by 

instrumenting the application to monitor its behavior during 

runtime. This approach combines elements of both 

methodologies, providing insights into vulnerabilities as they 

materialize during actual user interactions. IAST tools capture 

runtime data and correlate it with the application's source 

code, facilitating the identification of vulnerabilities in real-

time. This technique offers a unique advantage in pinpointing 

issues within complex, runtime-dependent scenarios. 

 

These automated tools collectively enhance the efficiency and 

comprehensiveness of security testing across different stages 

of the software development lifecycle: 

 

 Requirement and Design Phase: 

Incorporating automated tools during the requirement and 

design phase enables early identification of potential 

security pitfalls. Static analysis tools review architectural 

decisions and coding practices, aligning them with security 

best practices. 

 

 Development Phase: 

Dynamic analysis and IAST tools facilitate continuous 

security testing during development. By detecting 

vulnerabilities as code is written and deployed, developers 

can address issues promptly, minimizing the cost and effort 

of later-stage remediation. 

 

 Quality Assurance Phase: 

Automated security testing tools integrate seamlessly with 

continuous integration and continuous deployment (CI/CD) 

pipelines. They assess code changes and updates for 

security issues before deployment, ensuring that 

vulnerabilities are not introduced into production. 

 

 Post-Deployment Monitoring: 

Dynamic analysis and IAST tools continue to play a role 

post-deployment, monitoring applications in real-time for 

potential vulnerabilities in production environments. This 

ongoing assessment aids in swift identification and 

mitigation of emerging threats. 

 

 Iterative Refinement: 

Automated tools contribute to the iterative refinement of 

security testing strategies. Insights gained from tool 

outputs inform the enhancement of test scenarios and 

vulnerability prioritization. 

 

Exploring Emerging Trends in Security Testing: 

The dynamic landscape of security testing continues to evolve 

as technology advances and threat vectors become more 

sophisticated. The waterfall approach does not allow the 

process to go back to the previous phase and allow changes in 

it. The waterfall model is used for small projects, as there is 

little room for revisions once a stage is completed [3]. This 

exploration delves into emerging trends that are reshaping the 

realm of security testing, focusing on the integration of 

security into DevOps practices, the adoption of continuous 

security testing, and the significance of threat intelligence 

sharing. 

 

DevSecOps Integration: 

The convergence of development, operations, and security—

commonly known as DevSecOps—has gained traction as 

organizations recognize the necessity of integrating security 

throughout the entire software development lifecycle. By 

embedding security practices early and consistently, 

DevSecOps aims to proactively identify vulnerabilities, reduce 

risk, and accelerate the delivery of secure applications. This 

trend emphasizes collaboration among cross-functional teams, 

encouraging security professionals to work closely with 

developers and operations personnel. This approach enables 

the detection and remediation of security issues at an 

accelerated pace, mitigating the impact of potential threats and 

aligning security efforts with the speed of modern 

development practices. 

Paper ID: SR23829090815 DOI: 10.21275/SR23829090815 63 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 9, September 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Continuous Security Testing: 

The traditional approach of conducting security testing as a 

one-time event is giving way to continuous security testing, 

which advocates for ongoing, automated assessment of 

application security. This trend aligns with the principles of 

continuous integration and continuous deployment (CI/CD), 

ensuring that security testing is seamlessly integrated into the 

development pipeline. As code changes are made, continuous 

security testing tools analyze the codebase, identify 

vulnerabilities, and provide real-time feedback to developers. 

This approach minimizes the window of exposure to potential 

threats, fosters a culture of security awareness, and enables 

swift remediation of issues. 

 

Threat Intelligence Sharing: 

The growing complexity of cyber threats necessitates 

collaborative efforts among organizations to combat emerging 

risks effectively. Threat intelligence sharing involves the 

exchange of information about the latest threats, attack 

techniques, and vulnerabilities among different entities. This 

trend empowers organizations to preemptively prepare for 

potential threats, identify patterns across different attacks, and 

adopt proactive security measures. Collaboration and 

information sharing within the cybersecurity community 

enable collective resilience against a rapidly evolving threat 

landscape. 

 

These emerging trends collectively contribute to a more robust 

and proactive approach to security testing: 

 

Holistic Security Culture: 

DevSecOps integration instills a security-centric mindset 

throughout development and operations teams. Security 

becomes an integral aspect of the development process, rather 

than an afterthought. 

 

Rapid Vulnerability Remediation: 

Continuous security testing ensures that vulnerabilities are 

detected and addressed promptly. This accelerates the 

resolution process, reducing the potential impact of security 

breaches. 

 

Adaptive Risk Mitigation: 

By staying informed through threat intelligence sharing, 

organizations can proactively adapt their security strategies to 

counter evolving threats effectively. 

 

Automation and Efficiency: 

Both DevSecOps integration and continuous security testing 

heavily rely on automation, enhancing efficiency, scalability, 

and accuracy in security testing processes. 

 

Agile Compliance: 

Emerging trends facilitate the integration of compliance 

requirements into development practices, ensuring that 

security and regulatory needs are met seamlessly. 

 

The Significance of Seamlessly Integrating Security Testing 

into the Development Pipeline: 

In the rapidly evolving landscape of software development, 

the integration of security testing into the development 

pipeline has emerged as a critical imperative. This approach 

marks a departure from the traditional post-development 

security assessment, offering numerous benefits that 

encompass enhanced security, efficiency, cost-effectiveness, 

and a fortified software development lifecycle. 

 

 Early Detection of Vulnerabilities: 

Integrating security testing from the inception of the 

development process enables the early identification of 

vulnerabilities. By assessing code changes as they are 

introduced, security flaws are uncovered at their root, reducing 

the likelihood of these issues propagating into production. 

 

 Reduced Remediation Costs: 

Identifying and addressing security vulnerabilities at an early 

stage significantly reduces the costs associated with 

remediation. When security issues are caught during 

development, the effort required to rectify them is often less 

complex and resource-intensive compared to addressing them 

after deployment. 

 

 Accelerated Time to Market: 

By seamlessly integrating security testing into the 

development pipeline, organizations can prevent last-minute 

security roadblocks that delay product releases. Swift 

vulnerability identification and resolution facilitate quicker 

delivery to market, maintaining a competitive edge. 

 

 Cultivating Security Awareness: 

Incorporating security testing fosters a culture of security 

awareness among development teams. Developers become 

more attuned to security best practices, coding securely 

becomes second nature, and security becomes an integral part 

of their development mindset. 

 

 Continuous Improvement: 

Integration into the development pipeline promotes continuous 

improvement in security practices. As vulnerabilities are 

identified and addressed iteratively, development processes 

evolve to incorporate lessons learned from previous security 

assessments. 

 

 Alignment with Agile and DevOps Practices: 

Seamless integration aligns with agile and DevOps principles 

by integrating security as a core aspect of the iterative 

development cycle. This ensures that security is not a separate 

entity but an inherent component of the development 

workflow. 

 

 Mitigation of Security Debt: 

Addressing security issues in the early stages of development 

prevents the accumulation of "security debt," where postponed 

security concerns amass and become harder to manage later in 

the development lifecycle. 

 

 

Paper ID: SR23829090815 DOI: 10.21275/SR23829090815 64 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 9, September 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 Facilitating Compliance: 

For applications subject to regulatory compliance, integrating 

security testing streamlines the process of meeting security 

and privacy standards. Compliance requirements are met 

continuously rather than as a post hoc obligation. 

 

 Proactive Risk Management: 

Seamless integration empowers organizations to adopt a 

proactive risk management approach. Potential vulnerabilities 

are identified and managed before they can be exploited, 

reducing exposure to security breaches. 

 

 Enhanced Stakeholder Confidence: 

Stakeholders, including clients, customers, and partners, gain 

confidence in the security of the software when they witness a 

consistent commitment to security testing throughout the 

development lifecycle. 

 

Addressing Inherent Challenges in Security Testing: 

 

Security testing, while indispensable, presents a series of 

challenges that demand strategic approaches for effective 

mitigation. This section delves into key challenges, including 

the dynamic threat landscape, the complexity of modern 

applications, and the delicate balance between automated 

scanning and manual analysis. 

 

 Dynamic Threat Landscape: 

The ever-evolving threat landscape poses a formidable 

challenge to security testing. Cyber attackers constantly devise 

new methods and exploit previously unknown vulnerabilities. 

Addressing this challenge requires a proactive stance, where 

security testing strategies are adaptable and continually 

updated to encompass emerging threats. 

 

 Complexity of Modern Applications: 

Modern applications are increasingly intricate, comprising 

distributed architectures, microservices, APIs, and diverse 

third-party integrations. These complexities amplify the 

potential attack surface. Testing such applications demands 

comprehensive assessments that encompass all components 

and interactions, necessitating sophisticated tools and 

methodologies. 

 

 Balancing Automated Scanning and Manual Analysis: 

The delicate equilibrium between automated scanning and 

manual analysis is a pivotal challenge. While automated tools 

expedite vulnerability detection, they might miss nuanced 

issues that require human intuition and expertise. Striking the 

right balance involves leveraging automated scans for rapid 

detection and employing manual analysis to delve into 

intricate vulnerabilities and attack vectors. 

 

 False Positives and Negatives: 

Automated security testing tools may generate false positives 

(flagging benign code as vulnerabilities) or false negatives 

(failing to identify actual vulnerabilities). Addressing this 

challenge entails fine-tuning tools, refining rule sets, and 

employing manual verification to ensure accurate 

identification of vulnerabilities. 

 

 Resource Constraints: 

Security testing, especially manual analysis, demands skilled 

professionals and time resources. Organizations often face 

challenges in allocating the necessary human resources for 

comprehensive testing, particularly for large-scale or time-

sensitive projects. 

 

 Impact on Development Speed: 

Stringent security testing, if not integrated effectively, can 

potentially slow down development processes. Striking a 

balance between security assessments and timely project 

delivery requires careful coordination and optimization of 

testing efforts. 

 

 Compliance and Regulatory Hurdles: 

Applications in regulated industries must adhere to specific 

compliance standards. Ensuring that security testing aligns 

with these requirements and that evidence of compliance is 

documented can be complex and time-consuming. 

 

 Prioritization of Vulnerabilities: 

Identifying vulnerabilities is only the first step; the challenge 

lies in prioritizing remediation efforts. A robust risk 

assessment strategy is essential to focus resources on 

addressing vulnerabilities with the highest potential impact. 

 

 Lack of Comprehensive Tools: 

While automated security testing tools are valuable, no single 

tool can uncover all potential vulnerabilities. Organizations 

often need to use multiple tools to ensure a more thorough 

assessment. 

 

 Continuous Monitoring: 

Monitoring applications for security vulnerabilities after 

deployment is crucial. However, maintaining continuous 

monitoring can be resource-intensive, demanding specialized 

tools and skilled personnel. 

 

2. Conclusion 
 

The exploration of security testing methodologies showcased a 

diverse array of approaches, from dynamic and static analysis 

to penetration testing and threat modeling. Each methodology 

plays a distinct role in unraveling vulnerabilities, emphasizing 

the need for a comprehensive and multifaceted testing strategy 

that aligns with the complexities of modern applications. 

 

The integration of automated tools and technologies emerged 

as a pivotal factor in streamlining security testing efforts. 

Dynamic analysis, static analysis, and interactive application 

security testing (IAST) were highlighted as powerful tools that 

expedite vulnerability detection across the development 

lifecycle. This integration addresses the need for continuous 

assessment and proactive risk management in an era of rapid 

technological advancement. 

Paper ID: SR23829090815 DOI: 10.21275/SR23829090815 65 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 9, September 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 

The article delved into emerging trends, illustrating the shift 

toward DevSecOps integration, continuous security testing, 

and threat intelligence sharing. These trends underscore the 

dynamic nature of security testing, emphasizing the need to 

adapt and collaborate within an evolving threat landscape. 

 

Recognizing challenges such as the dynamic threat landscape, 

application complexity, and the balance between automation 

and manual analysis, the article underscored the importance of 

strategic mitigation strategies. Whether through proactive 

threat intelligence, judicious resource allocation, or 

prioritization strategies, addressing these challenges bolsters 

an organization's security readiness. 

 

In conclusion, security testing is not merely an isolated 

practice; it is a continuous journey that demands collaboration, 

adaptability, and a commitment to excellence. By integrating 

security testing seamlessly into the development lifecycle, 

organizations can safeguard their applications, protect 

sensitive user data, and foster a culture of security 

consciousness. With emerging trends and advanced tools at 

their disposal, security professionals can navigate the ever-

changing threat landscape and contribute to a safer digital 

ecosystem for all. 

 

References 
 

[1] Shravan Pargaonkar (2023); A Study on the Benefits and 

Limitations of Software Testing Principles and 

Techniques: Software Quality Engineering; International 

Journal of Scientific and Research Publications (IJSRP) 

13(08) (ISSN: 2250-3153), DOI: 

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14018 

[2] Shravan Pargaonkar (2023); Enhancing Software Quality 

in Architecture Design: A Survey- Based Approach; 

International Journal of Scientific and Research 

Publications (IJSRP) 13(08) (ISSN: 2250-3153), DOI: 

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14014 

[3] Shravan Pargaonkar (2023); A Comprehensive Research 

Analysis of Software Development Life Cycle (SDLC) 

Agile & Waterfall Model Advantages, Disadvantages, and 

Application Suitability in Software Quality Engineering; 

International Journal of Scientific and Research 

Publications (IJSRP) 13(08) (ISSN: 2250-3153), DOI: 

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015 

 

Paper ID: SR23829090815 DOI: 10.21275/SR23829090815 66 

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14018
http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14014



