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Abstract: India, renowned as the leading rice exporter and the second - largest rice producer globally, faces the crucial task of 

ensuring an adequate rice supply to meet the demands of its growing population. Consequently, accurate yield prediction plays a vital 

role in enabling policymakers and planners to devise effective strategies concerning import - export dynamics to achieve food security 

objectives. Additionally, such predictions serve as a valuable tool for crop insurance purposes. This research focuses on Assam, a state 

in India known for its significant cultivation of paddy. In Assam, paddy is cultivated three seasons, namely Ahu (Autumn rice), Sali 

(Winter rice), and Boro (summer rice). The study primarily focuses on the "Sali" season, given its prominence as the dominant crop, 

occupying approximately 77.5% of the rice - growing area (dmagri. in) and contributing to nearly 75% of the overall rice production in 

the state (dmagr. in). The selection of the Sali season is further influencedby its vulnerability to flood - related challenges, rendering it 

an ideal period for investigation. To achieve cost - effective and efficient crop monitoring, remote sensing technology is employed. This 

study adopts a semi - physical approach for predicting crop yield, utilizing remote sensing data for crop masking in the study area, 

coupled with essential physiological parameters including temperature stress, water stress, and insolation. The estimation of Net 

Primary Productivity (NPP) is accomplished through Monteith's model, leveraging variables such as Photosynthetically Active 

Radiation (PAR), Fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Radiation Use Efficiency (RUE), water stress, 

and temperature stress. The NPP and Harvest Index (HI) are then utilized to compute rice/paddy yield. The investigation spans a period 

of five years (2018 - 2022) and encompasses the entirety of Assam. Comparisons with existing data from the Directorate of Economics 

and Statistics (DES) demonstrate slight deviations in yield, primarily attributed to the relatively coarse resolution of the remote sensing 

data (500m or 1km). Nonetheless, this research model exhibits promising potential for semi - operational utilization in forecasting rice 

crop yield.  
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1. Introduction 
 

Rice, one of the staple food crops in India, plays a crucial 

role in ensuring food security for the nation's ever - growing 

population. With an extensive cultivation area of 43.86 

million hectares and an impressive output level of 130.29 

million tonnes in the fiscal year 2021 - 2022, India stands as 

the world's second - largest rice producer and top exporter. 

However, despite these notable achievements, India's rice 

productivity remains relatively low compared to many other 

rice - producing nations. Enhancing rice yield and 

addressing the challenges associated with it are imperative to 

meet the rising demand and sustain food availability. Rice 

cultivation in India is taken up across diverse climatic and 

soil conditions, encompassing various regions such as the 

northeastern part (including Assam, Arunachal Pradesh, and 

Manipur), the eastern region (Orissa and West Bengal), 

northern parts (Punjab and Uttar Pradesh), western part 

(Maharashtra and Gujarat), and the southern tip (Tamil 

Nadu, Andhra Pradesh, etc.). It is estimated that over 60% of 

India's population heavily relies on rice consumption, 

emphasizing the significance of maintaining a consistent and 

abundant rice supply.  

 

Over the years, significant progress has been made in 

expanding the area under rice cultivation and increasing rice 

production in India. From a modest 30.81 million hectares in 

1950 - 1951, the rice cultivation area has witnessed a 

substantial growth to 46.38 million hectares in 2021 - 2022, 

representing an impressive increase of approximately 142%. 

The surge in rice output has been even more remarkable, 

expanding from 20.58 million tonnes in 1950 - 1951 to 

130.29 million tonnes in 2021 - 2022, reflecting a fivefold 

increase. This progress has resulted in a notable rise in rice 

yield, with an increase from 668 kg/ha in 1950 - 1951 to 

2809 kg/ha in 2021 - 2022. The Kharif season, characterized 

by the southwest monsoon, is crucial for rice production, 

accounting for the majority of the country's rice output. 

Successful rice cultivation relies on implementing 

appropriate agronomic practices, including land preparation, 

nursery bed preparation, sowing of nursery, and 

transplanting of 25 to 30 - day - old saplings. To further 

augment rice productivity, the Department of Agriculture 

and Farmers Welfare (DAC & FW) 's Crops Division has 

implemented various programs and schemes. Notable 

initiatives include the National Food Security Mission 

(NFSM) for rice and the Bringing Green Revolution to 

Eastern India (BGREI) program, which aim to boost rice 

production and productivity.  

 

Despite these efforts, there are several factors contributing to 

the lower yield rates observed in different parts of India. 

These factors encompass imbalanced fertilizer usage, 

reliance on traditional farming methods, soil pH stress, pest 

incidences, and inadequate plant population. The 

identification of yield determinants and their correlation 
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with management techniques is of paramount importance for 

farmers to enhance crop productivity and address these 

concerns effectively. In this context, remote sensing 

techniques present a valuable tool for enabling farmers to 

manage their crop practices at the field level. Remote 

sensing data offers the capability to monitor crop phenology 

throughout the growing season, capturing changes in color 

content and primary characteristics. Satellite and aerial 

imagery serve as valuable planning tools for crop mapping, 

intra - season crop health monitoring, agro - cultural practice 

monitoring, and evaluating crop suitability. Vegetation 

indices derived from spectral coefficients, facilitating easy 

interpretation of reflectance coefficients at specific 

wavelengths, play a pivotal role in assessing plant 

characteristics. Various remote sensing data sources, ranging 

from high to low resolution, such as MODIS, NOA, and 

SPOT, are employed for agricultural purposes based on 

specific requirements. Several models, including regression 

models utilizing normalized difference vegetation index 

(NDVI) and leaf area index (LAI), as well as statistical 

models like multiple linear regression and moving averages, 

have been used for crop yield estimation. Strong correlations 

have been observed between vegetation indices, plant 

canopy attributes, and grain yield.  

 

In this study, a semi - physical model to estimate paddy 

yield is used, considering factors like crop variety, 

classification, transplanting, harvest, and environmental 

variations, which include factors such as weather conditions, 

temperature, precipitation, and other ecological influences 

that can affect the growth and productivity of paddy crops. 

The model incorporates Photosynthetically Active Radiation 

(PAR), within the insolation transmission range of 0.4–0.7 

μm, as a critical component. The Net Primary Productivity 

(NPP) is calculated using the model proposed by Kumar and 

Monteith (1982), which directly relates NPP to variables 

such as Fraction Absorbed Photosynthetically Active 

Radiation (fAPAR) and Radiation Use Efficiency (RUE), 

representing the conversion of absorbed radiation into 

biomass. This study aims to integrate PAR, fAPAR, water 

stress, and temperature stress elements within the NPP 

model to accurately estimate rice yield. By combining crop 

models with remotely sensed information, it is anticipated 

that the limitations associated with yield prediction, 

especially at regional scales, can be overcome. The findings 

of this research hold significant potential in guiding farmers' 

decision - making processes and contributing to the overall 

improvement of rice crop management and productivity.  

 

2. Material and Methods  
 

2.1 Study Area 

 

Assam, located in northeastern India, serves as the primary 

study area for this research. Rice cultivation is the dominant 

agricultural activity in the state, covering approximately 

2.54 million hectares out of a total cultivated area of 4.16 

million hectares. Remarkably, rice production in Assam 

accounts for 96% of the state's total food grain production. 

Over time, natural selection and farmer preferences have 

contributed to the emergence of a wide range of rice 

varieties, showcasing the state's rich genetic diversity in rice. 

The Sali season, corresponding to winter rice cultivation, 

holds particular significance in Assam, constituting 70% of 

the total paddy production. The state's unique physical 

characteristics, geographical location, and historical 

background have contributed to its distinct rice diversity. 

Additionally, the migration and immigration of ethnic 

communities to Assam have introduced various genetic 

stocks of rice. As a result, Assam's indigenous rice 

germplasm contributes significantly to the National Rice 

Research Institute's collection of 12, 256 rice germplasms, 

representing approximately 20% of the total collection.  

 

However, due to the increasing demand for higher yields, 

farmers in Assam are gradually transitioning from traditional 

rice varieties to modern ones. Efforts by institutions such as 

Assam Agriculture University (AAU) and the Department of 

Agriculture, Government of Assam, aim to facilitate this 

transition and promote the adoption of improved rice 

varieties.  

 

 
Figure 1: Study Area 

 

3. Methodology and Data Used:  
 

The data and materials used in this study are as follows:  
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Table 1: showing the data and materials used for the study 

Data  Satellite/Ground  Resolution  Source  

Daily insolation/PAR  INSAT - 3D  4km resampled to 1km  MOSDAC  

10 days composite fAPAR ver.2  PROBA V and SPOT - VGT  1km  Copernicus Land Service  

8 days composite surface reflectance  Terra - MODIS  500m to 1km MODIS Time Series Tool  

Rice Mask  Sentinel 1 10m to 1km ESA Copernicus 

Temperature  Gridded data from NASA Power website  1km interpolated  NASA Power  

Light - use efficiency    Literature  

Harvest Index  Ground  CCE  Ground/Paper 

 

The software we used to process the data are ArcGIS, Erdas 

Imagine and RStudio.  

 

The methodology is as follows:  

 

Photosynthetic Absorbed Radiation (PAR):  

PAR is calculated from daily insolation data. The daily 

insolation data is converted to 8 - day composite (sum) for 

the whole period.50% insolation is considered as PAR. This 

daily insolation data is collected from MOSDAC from 

INSAT - 3D satellite, source link (www.mosdac. gov. in) for 

the crop season from 2018 to 2022.  

PAR= 8 - day composite * 0.5 

 

Fraction Absorbed PAR (FAPAR):  

The FAPAR data is from Copernicus Land Service, source 

link is (https: //land. copernicus. eu/global/index. html). the 

10 - day composite product with 1 km data is used. The 

range of FAPAR lies between 0 and 1. The physical values 

are retrieved from the Digital Number (DN).  

Light Use Efficiency (ℇ):  

The light use efficiency is relatively constant for crops like 

Paddy (with a value of about 1.8 g•MJ - 1).  

 

Temperature Stress (Tstress):  

The daily average temperature data is downloaded from 

NASA Power website, source link is (https: //power. larc. 

nasa. gov/data - access - viewer. html). It is a gridded data 

with a resolution of 1°0 * 1°0 latitude and longitude.  

 

The Tstressis calculated in the following way:  

Tstress= (T - Tmin) * (T - Tmax) / [(T - Tmin) * (T - Tmax) – (T 

– Topt) 
2]

 

 [T = Daily average temperature] 

 

Based on Paddy optimum photosynthesis, Tmin = 14°C; 

Tmax = 40°C and Topt = 30°C, if air temperature falls 

below Tmin, Tscalar is set be 0.  

 

Water Stress (Wstress):  

The Wstress is calculated from Land Surface Water Index 

(LSWI). The MODIS time series tool (MODIStsp) used to 

download and process the MODIS 8 day composite 

(MOD09A1) source link is (https: //lpdaac. usgs. 

gov/products/mod09a1v006), and LSWI is calculated for the 

entire period with the formula –  

 

LSWI = 
 ƿ𝑵𝑰𝑹−ƿ𝑺𝑾𝑰𝑹 

(ƿ𝑵𝑰𝑹−ƿ𝑺𝑾𝑰𝑹)
 

 

LSWI value range from - 1 to 1, and higher positive values 

indicate the vegetation and soil water stress.  

 

Further, the Wstress is calculated from 8 days LSWI output 

–  

 

Wstess = 
 𝟏−𝑳𝑺𝑾𝑰 

(𝟏+𝑳𝑺𝑾𝑰𝒎𝒂𝒙)
 

 

The LSWImaxvalue has been taken from the spatial 

maximum of paddy crop mask of the entire state.  

 

WHEAT CROP MASK:  

The paddy crop mask was generated using Sentinel 1 data 

from ESA Copernicus for the period of July to October 

2022. Supervised Classification using Erdas Imagine 

software was done.  
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Figure 2: Crop Mask for Paddy 

 

CALCULATION FOR NPP AND GRAIN YIELD:  

To compute the final NPP and its Grain Yield, the formula 

and equation is used as follows:  

NPP = PAR * FAPAR * ℇ * Tstress * Wstress (Logic of 

Monteith Equation 1972)  

 

The HI value for study area is considered 0.50, based on 

literature. The NPP sum has been multiplied with HI to 

estimate per pixel yield.  

 

Grain Yield= HI  𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑜𝑤𝑖𝑛𝑔 𝑁𝑃𝑃 

 
Figure 3: Flow Chart of Methodology 

 

VALIDATION:  

The accuracy of our model was evaluated on the basis of 

DES government data (Directorate of Economics and 

Statistics) for the crop season of (2017 - 2018, 2018 - 2019, 

2019 - 2020, 2020 - 2021, 2021 - 2022).  

 

 
Figure 4: PAR for Assam 2022  
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Figure 5: FAPAR for Assam 2022 

 

 
Figure 6: Water stress for Assam 2022 

 

 
 Figure 7: T stress for Assam 2022 

 

4. Result and Discussion 
 

The analysis of grain yield for the paddy crop over the five - 

year period (2018 - 2022) revealed notable variations across 

different districts in Assam. In 2021, Hojai district exhibited 

the highest yield of 3.01 tons/ha, while Sonitpur district 

recorded the lowest yield of 1.48 tons/ha. Similarly, in 2020, 

Hojai district achieved a yield of 3.2 tons/ha, whereas 

Dhemaji district had the lowest yield of 1.3 tons/ha. The 

highest yield in 2019 was observed in Udalguri district with 

3.34 tons/ha, while Tinsukia district again had the lowest 

yield of 2.01 tons/ha. In 2018, Dhemaji district had the 

lowest yield consistently across the analyzed years, with 1.5 

tons/ha, while Nalbari district recorded the highest yield of 

2.94 tons/ha. To assess the accuracy of our data, a 

comparison was made with the Decision Support System 

(DES) data provided by the government. Linear regression 

analysis was conducted to evaluate the consistency between 

our data and the DES data. The obtained R - squared (R2) 

values were 0.7, 0.5, 0.6, and 0.7 for the respective years. 

The maximum difference between our data and the DES 

data ranged from 0.70 tons/ha, while the minimum 

difference was as small as 0.02 tons/ha.  

 

 
Figure 8: Winter Rice/Sali season Yield Map for Assam 2022 

 

These findings indicate that our data aligns well with the 

DES data, demonstrating the reliability and accuracy of our 

yield estimation model. The slight discrepancies observed 

can be attributed to factors such as differences in data 

sources, measurement techniques, and resolution. Overall, 

the results affirm the effectiveness of our approach in 

predicting rice crop yield and its potential for practical 

application in yield estimation and agricultural planning.  
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Table 2: Yield of DES in tons/ha, yield derived by RS Data in tons/ha and Error in yield 2018 

District 
DES 

(tons/ha) 

RS Data 

(tons/ha) 
Difference 

1. Baksa 2.2 2.1  - 0.1 

2. Barpeta 1.94 2.5 0.56 

 3. Bongaigaon 1.46 1.7 0.24 

4. Cachar 2.21 2.5 0.29 

5. Chirang 1.61 1.89 0.28 

6. Darrang 2.38 2.7 0.32 

7. Dhemaji 1.28 1.5 0.22 

8. Dhubri 1.8 2.2 0.4 

9. Dibrugarh 1.88 2.3 0.42 

10. Dima Hasao 2.23 2.32 0.09 

11. Goalpara 2.39 2.72 0.33 

12. Golaghat 2.22 2.6 0.38 

13. Hailakandi 2.37 2.82 0.45 

14. Jorhat 2.5 2.6 0.1 

15. Kamrup 2.72 2.91 0.19 

16. KamrupMetro 2.62 2.2  - 0.42 

17. Karbi Anglong 1.99 2.11 0.12 

18. Karimganj 2.17 2.36 0.19 

19. Kokrajhar 2.14 2.25 0.11 

20. Lakhimpur 2.23 2.5 0.27 

21. Morigaon 2.13 2.3 0.17 

22. Nagaon 2.47 2.72 0.25 

23. Nalbari 2.82 2.94 0.12 

24. Sibsagar 1.94 2.03 0.09 

25. Sonitpur 2.08 2.3 0.22 

26. Tinsukia 1.72 1.9 0.18 

27. Udalguri 2.55 2.73 0.18 

 

 
Figure 9: Comparison of DES yield data with RS yield data 2018 

 

Table 3: Yield of DES in tons/ha, yield derived by RS Data in tons/ha and Error in yield 2019 

District 
DES 

(ton/ha) 

RS data 

(tons/ha) 
Difference 

1. Baksa 2.04 2.54 0.5 

2. Barpeta 2.06 2.7 0.64 

3. Bongaigaon 1.69 2.05 0.36 

4. Cachar 2.28 2.83 0.55 

5. Chirang 1.8 2.11 0.31 

6. Darrang 2.63 2.89 0.26 

7. Dhemaji 1.27 2.4 1.13 

8. Dhubri 2.09 2.51 0.42 

9. Dibrugarh 1.81 2.34 0.53 

10. Dima Hasao 2.34 2.92 0.58 

11. Goalpara 2.57 2.83 0.26 

12. Golaghat 2.21 2.89 0.68 

13. Hailakandi 2.8 3.13 0.33 

14. Jorhat 2.44 2.87 0.43 

15. Kamrup 2.61 2.9 0.29 

16. KamrupMetro 2.12 2.63 0.51 
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17. Karbi Anglong 1.99 2.43 0.44 

18. Karimganj 1.92 2.57 0.65 

19. Kokrajhar 1.92 2.45 0.53 

20. Lakhimpur 1.69 2.4 0.71 

21. Morigaon 2.06 2.42 0.36 

22. Nagaon 2.14 2.61 0.47 

23. Nalbari 2.66 2.2 - 0.46 

24. Sibsagar 2.06 2.77 0.71 

25. Sonitpur 2.05 2.64 0.59 

26. Tinsukia 1.63 2.01 0.38 

27. Udalguri 2.82 3.34 0.52 

 

 
Figure 10: Comparison of DES yield data with RS yield data 2019 

 

Table 4: Yield of DES in tons/ha, yield derived by RS Data in tons/ha and Error in yield 2020 

District 

DES Data 

(tons/ha) 

RS Data 

(tons/ha) Difference 

1. Baksa 2.02 1.8 - 0.22 

2. Barpeta 2.11 2.3 0.19 

3. Biswanath 1.81 1.6 - 0.21 

4. Bongaigaon 1.88 2 0.12 

5. Cachar 2.18 2.3 0.12 

6. Charaideo 1.95 1.6 - 0.35 

7. Chirang 2 1.8 - 0.2 

8. Darrang 2.54 2.7 0.16 

9. Dhemaji 1.5 1.3 - 0.18 

10. Dhubri 2.11 2.2 0.09 

11. Dibrugarh 2.18 2.2 0.02 

12. Dima Hasao 2.48 2.7 0.22 

13. Goalpara 2.31 1.9 - 0.41 

14. Golaghat 2.08 2.3 0.22 

15. Hailakandi 2.52 2.8 0.28 

16. Hojai 2.96 3.2 0.24 

17. Jorhat 2.13 1.9 - 0.23 

18. Kamrup 2.25 2 - 0.25 

19. KamrupMetro 2.09 2.2 0.11 

20. Karbi Anglong 2.05 2.4 0.35 

21. Karimganj 2.01 2.3 0.29 

22. Kokrajhar 2.07 2.2 0.13 

23. Lakhimpur 1.93 1.8 - 0.13 

24. Majuli 2.67 2.4 - 0.27 

25. Morigaon 2.03 1.5 - 0.53 

26. Nagaon 1.77 2.1 0.33 

27. Nalbari 2.56 2.1 - 0.46 

28. Sibsagar 1.96 2.2 0.24 

29. Sonitpur 2.01 1.6 - 0.41 

30. South Salmara Mancachar 2.35 2.7 0.35 

31. Tinsukia 1.75 1.5 - 0.25 

32. Udalguri 2.62 2.4 - 0.22 

33. West Karbi Anglong 2.24 2.5 0.26 
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Figure 11: Comparison of DES yield data with RS yield data 2020 

 

Table 5: Yield of DES in tons/ha, yield derived by RS Data in tons/ha and Error in yield 2021 

District 

DES Data 

(Tons/ha) 

RS Data 

(Tons/ha) Difference 

1. Baksa 2.02 2.32 0.3 

2. Barpeta 2.11 2.42 0.31 

3. Biswanath 1.81 2.01 0.2 

4. Bongaigaon 1.88 2.13 0.25 

5. Cachar 2.18 2.34 0.16 

6. Charaideo 1.95 2.15 0.2 

7. Chirang 2 2.5 0.5 

8. Darrang 2.54 2.73 0.19 

9. Dhemaji 1.48 1.73 0.25 

10. Dhubri 2.11 2.46 0.35 

11. Dibrugarh 2.18 2.38 0.2 

12. Dima Hasao 2.48 2.62 0.14 

13. Goalpara 2.31 2.7 0.39 

14. Golaghat 2.08 2.43 0.35 

15. Hailakandi 2.52 2.82 0.3 

16. Hojai 2.96 3.01 0.05 

17. Jorhat 2.13 2.56 0.43 

18. Kamrup 2.25 2.43 0.18 

19. KamrupMetro 2.09 2.17 0.08 

20. Karbi Anglong 2.05 2.25 0.2 

21. Karimganj 2.01 2.32 0.31 

22. Kokrajhar 2.07 2.19 0.12 

23. Lakhimpur 1.93 2.11 0.18 

24. Majuli 2.67 2.89 0.22 

25. Morigaon 2.03 2.23 0.2 

26. Nagaon 1.77 1.97 0.2 

27. Nalbari 2.56 2.79 0.23 

28. Sibsagar 1.96 2.03 0.07 

29. Sonitpur 2.01 1.4 - 0.61 

30. South SalmaraMancachar 2.35 2.67 0.32 

31. Tinsukia 1.75 1.83 0.08 

32. Udalguri 2.62 2.78 0.16 

33. West Karbi Anglong 2.24 2.43 0.19 
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Figure 12: Comparison of DES yield data with RS yield data 2021 

 

The analysis of yield prediction in Assam has revealed 

interesting insights into the factors influencing rice 

productivity. Several reasons contribute to the observed 

variations in yield across districts in the state. Firstly, 

districts like Dima Hasao, Karbi Anglong, and Cachar 

exhibited unexpectedly high yields despite having relatively 

smaller cultivated lands. This anomaly can be attributed to 

the presence of tropical rainforests in these areas. Tropical 

rainforest regions are known to have the highest Net Primary 

Productivity (NPP) globally, which likely influenced the 

higher yields observed in these districts. Another significant 

factor impacting yield in Assam is the presence of the 

mighty Brahmaputra River. Assam is prone to frequent 

floods and riverbank erosions, resulting in excessive water 

inundation in paddy fields. The fluctuating intensity of 

floods and rainfed waters from year to year has negatively 

affected rice productivity in the state. Remote sensing data, 

with its varying spatial resolutions, plays a crucial role in 

enhancing image interpretation. In the case of Assam, which 

has a vast geographical area, a coarse resolution of 1000m or 

1km was chosen for data analysis. However, this coarse 

resolution poses certain challenges in accurately capturing 

yield factors, particularly in narrow land strips with scrubs 

and non - forest regions. Accounting for such factors 

becomes complex when calculating yield at the tehsil level 

in Assam.  

 

Majuli, the world's largest riverine island located in Assam, 

has unique characteristics that impact yield. Districts 

surrounding Majuli, such as Shibsagar and Karbi Anglong 

East, contain wetlands and marshes, which contribute to 

higher biomass and potentially amplify yield in these 

regions. The presence of estuarine and wetland biomes has a 

significant influence on rice productivity. Additionally, 

forest cover depletion in Assam has been observed, 

particularly in the year 2020 and 2021, with a reduction of 

approximately 9 to 13%. This depletion of forest cover 

coincided with the lowest average recorded yield of 2.14 

tons/ha during the year of 2020. These findings highlight the 

empirical support provided by the semi - physical model in 

understanding the complex dynamics of yield and its 

underlying factors.  

 

Overall, the study emphasizes the multifaceted nature of 

yield prediction in Assam, taking into account factors such 

as tropical rainforests, flood vulnerability, remote sensing 

data resolution, wetland ecosystems, and forest cover. By 

considering these factors, the semi - physical model offers 

valuable insights into rice yield dynamics and can contribute 

to better - informed decision - making processes in 

agricultural planning and management.  

 

5. Conclusion 
 

This analysis utilized a framework based on the estimation 

of net primary productivity (NPP) to predict paddy yield in 

the tehsils of Assam. The results highlight the diverse nature 

of yield determination in Assam, where various secondary 

and tertiary factors, in addition to active radiation, play a 

significant role. The harvest index (HI) emerges as a crucial 

parameter influencing yield. While the semi - physical 

model demonstrated promising results, it also revealed 

certain disparities with government data. Further 

improvements are necessary to enhance the spatial 

efficiency of the model. One aspect that requires attention is 

the availability of accurate data, particularly regarding 

sowing and harvest dates, which greatly influence NPP 

modelling and yield prediction accuracy. The model 

achieved a satisfactory R - square (r2) value ranging from 

0.75 to 0.5, indicating a reasonably good fit. Despite its 

limitations, remote sensing data proved invaluable in 

providing a deeper understanding of the underlying realities 

and factors affecting yield prediction. Therefore, it can be 

concluded that the semi - physical NPP model holds 

potential for predicting the yield of various crops in an 

altruistic manner.  

 

In summary, this study highlights the importance of 

considering multiple factors and leveraging remote sensing 

techniques for accurate yield prediction. Further research 

and refinements to the model can lead to more robust and 

reliable predictions, enabling farmers, policymakers, 

Insurance companies and stakeholders to make informed 

decisions and optimize agricultural practices for improved 

crop productivity.  
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